
16                             IPTEK, The Journal for Technology and Science, Vol. 27, No. 1, April 2016 

 

Estimation of TSS and Chl-a Concentration 

from Landsat 8-OLI: The Effect of Atmosphere 

and Retrieval Algorithm 
Lalu Muhamad Jaelani1, Resti Limehuwey1, Nia Kurniadin1, Adjie Pamungkas2,  

Eddy Setyo Koenhardono3, and Aries Sulisetyono4 

 

AbstractTSS and Chl-a are globally known as a key parameter for regular seawater monitoring. Considering the high 

temporal and spatial variations of water constituent, the remote sensing technique is an efficient and accurate method for 

extracting water physical parameters. The accuracy of estimated data derived from remote sensing depends on an accurate 

atmospheric correction algorithm and physical parameter retrieval algorithms. In this research, the accuracy of the 

atmospherically corrected product of USGS as well as the developed algorithms for estimating TSS and Chl-a concentration 

using Landsat 8-OLI data were evaluated. The data used in this study was collected from Poteran’s waters (9 stations) on 

April 22, 2015 and Gili Iyang’s waters (6 stations) on October 15, 2015. The low correlation between in situ and Landsat 

Rrs(λ) (R2 = 0.106) indicated that atmospheric correction algorithm performed by USGS has a limitation. The TSS 

concentration retrieval algorithm produced an acceptable accuracy both over Poteran’s waters (RE of 4.60% and R2 of 

0.628) and over Gili Iyang’s waters (RE of 14.82% and R2 of 0.345). Although the R2 lower than 0.5, the relative error was 

more accurate than the minimum requirement of 30%. Whereas, the Chl-a concentration retrieval algorithm produced an 

acceptable result over Poteran’s waters (RE of 13.87% and R2 of 0.416) but failed over Gili Iyang’s waters (RE of 99.14% 

and R2 of 0.090). The low correlation between measured and estimated TSS or Chl-a concentrations were caused not only by 

the performance of developed TSS and Chl-a estimation retrieval algorithms but also the accuracy of atmospherically 

corrected reflectance of Landsat product. 

 

Keywordsremote sensing; water quality; TSS; Chl-a. 

 

Abstrak TSS dan Chl-a secara global dikenal sebagai parameter utama dalam pemantauan kualitas air laut. Mengingat 

tingginya variasi temporal dan spasial dari konstituen perairan, teknik penginderaan jauh adalah metode yang efisien dan 

akurat untuk mengekstrak parameter fisik air tersebut. Akurasi dari parameter fisik yang diturunkan dari data 

penginderaan jauh tergantung pada algoritma koreksi atmosfer dan algoritma  estimasi parameter fisik yang akurat. 

Dalam penelitian ini, akurasi dari produk USGS yang terkoreksi secara atmosfer serta algoritma yang dikembangkan 

untuk menghitung konsentrasi TSS dan Chl-a menggunakan Landsat 8-OLI data telah dikaji. Data yang digunakan dalam 

penelitian ini dikumpulkan dari Perairan Poteran (9 stasiun) pada tanggal 22 April 2015, dan Perairan Gili Iyang (6 

stasiun) pada tanggal 15 Oktober 2015. Korelasi yang rendah antara data in situ dan Landsat Rrs(λ) (R2 = 0,106) 

menunjukkan  algoritma koreksi atmosfer yang digunakan oleh USGS memiliki keterbatasan. Algoritma estimasi 

konsentrasi TSS menghasilkan akurasi yang dapat diterima di Perairan Poteran (RE sebesar  4,60% dan R2 sebesar 0,628) 

dan di perairan Gili Iyang  (RE sebesar 14,82% dan R2 sebesar 0,345). Meskipun R2 lebih rendah dari 0,5, kesalahan 

relatifnya lebih akurat dari persyaratan minimum sebesar 30%. Sementara itu, algoritma estimasi konsentrasi Chl-a 

menghasilkan akurasi yang dapat diterima untuk Perairan Poteran (RE sebesar 13,87% dan R2 sebesar 0,416) akan tetapi 

gagal di Perairan Gili Iyang (RE sebesar 99,14% dan R2 sebesar 0,090). Korelasi yang rendah antara konsentrai TSS atau 

Chl-a estimasi dan ukuran disebabkan tidak hanya oleh akurasi algoritma estimasi TSS dan Chl-a, tetapi juga oleh akurasi 

dari reflektan terkoreksi atmosfer dari produk Landsat. 

 

Kata Kunci penginderaan jauh; kualitas air; TSS; Chl-a 

I. INTRODUCTION1 

emote sensing data have been widely used for 

monitoring the ecological, biological, and physical 

state of the seawater. Many studies have demonstrated 

that remote sensing imagery can be used for monitoring 

of the Chlorophyll-a (Chl-a) and Total Suspended Solid 
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(TSS) concentrations. The range of 400 to 850 nm is 

often chosen for research aimed at determining methods 

for estimation of water quality parameters within the 

water column from remote sensing data [1]. The 

estimation of water quality parameters such as the 

concentration of TSS and Chl-a from satellite images is 

strongly depend on the accuracy of atmospheric 

correction and water quality parameter retrievals 

algorithms [2]–[7]. Atmospheric correction is a 

necessary process for quantitative monitoring of water 

quality parameters from satellite data. 

In Indonesia’s water, there was very limited algorithm 

developed and validated based on the in situ data of 

physical parameter as well as its reflectance data [7], [8]. 

Hence, the existing algorithm that was designed in 

different water area was directly implemented without 

considering the dynamic changes and the specific 

characteristics of local water in Indonesia. 

Consequently, the objectives of the present study were 

1) to evaluate the performance of atmospheric corrected 
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reflectance data processed by USGS, and 2) to develop 

more accurate TSS and Chl-a concentration retrieval 

algorithms for Landsat 8-OLI data at Poteran and Gili 

Iyang’s waters of Indonesia using in situ reflectance, 

TSS and Chl-a concentrations. 

II. METHOD 

 Study Area 

The data were collected from two water locations 

surrounding small islands in Indonesia. The first island is 

Poteran (7°5'11.88"S; 113°59'43.77"E), which is located 

in the southeast part of Madura Island, East Java 

Province and has a surface area of 49.8 km2. At the south 

of the island, local community utilizes sea for seaweed 

farming. The second one is Gili Iyang (6°59'7.07"S; 

114°10'32.22"E) which is located in the northeast of 

Madura Island, East Java Province and has a surface area 

of 9.15 km2. The concentration of oxygen in this island is 

very high with average of 21.4 %. These two islands 

were separated by 22 km of distance. The locations of 

study area as well as the distribution of sample stations 

were shown in Figure 1. The waters surrounding this 

island were suffering with high loads of nutrients that 

indicated by high concentration of Chl-a (higher than 

100 mg/m3). 

 In situ Data Collection 

To assess the performance of atmospheric corrected 

reflectance of Landsat product, the in situ spectra data 

and water quality concentration (i.e. TSS and Chl-a) 

were collected from Poteran’s waters on April 22, 2015, 

the same time with Landsat 8-OLI acquisition. The same 

field campaign was performed over Gili Iyang’s waters 

on October 15, 2015, except for spectra measurement 

which could not be measured by reason of strong wind 

speed. The data collecting station, which located less 

than one Landsat 8-OLI pixel (i.e. 30 m) away from the 

coastal area and corresponding Landsat 8-OLI pixels 

were contaminated by clouds were excluded from the 

analyses. Accordingly, 9 data (2 data without spectra) 

were used for Poteran area and 6 for Gili Iyang area. 

All reflectance measurements were performed three 

hours before until three hours after 9.30 AM local time 

over optically deep waters. The water-leaving radiance 

(Lu(λ)), the downward irradiance (Ed(λ)), and the 

downward radiance of skylight (Lsky(λ)) were measured 

at each site using a Field Spec Hand Held (or Pro VNIR) 

spectroradiometer (Analytical Spectral Devices, Boulder, 

CO) in the range of 325–1075 nm at 1-nm intervals. The 

above-water remote-sensing reflectance (Rrs(λ)) was 

calculated approximately using the following equation 

[9]: 

𝑅rs(λ) =  (
𝐿u(λ)

𝐸d(λ)
−

𝑟𝐿sky(λ)

𝐸𝑑(λ)
) ×  𝐶𝑎𝑙 (λ) (1) 

where Cal(λ) is the spectral reflectance of the grey 

reference panel that has been accurately calibrated, and r 

represents a weighted surface reflectance for the 

correction of surface-reflected skylight and is determined 

as a function of wind speed [9]. 

Concurrently, water samples were collected at nine and 

six stations over Poteran and Gili Iyang waters, 

respectively.  Water samples were kept in ice boxes and 

taken to the laboratory for furthermore analysis. The 

chlorophyll-a were determined spectrometrically using 

spectrophotometer. The optical density of the extracted 

Chl-a was measured at four wavelengths (750, 663, 645, 

and 630 nm), and the concentration was calculated 

according to SCOR-UNESCO’s equations [10]. The total 

suspended solids were determined gravimetrically. 

Samples were filtered through pre-combusted whatman 

gf/f filters at 500°c for 4 hours to remove dissolved 

organic matter in suspension, which was then dried at 

105°c for 4 hours and weighted to obtain TSS. The in 

situ remote sensing reflectance and water quality 

parameter collected over Poteran and Gili Iyang waters 

were presented in Table 1 and Figure 2. 

 Landsat 8-OLI Data Collection 

Landsat 8-OLI data at path/row of 117/65 were 

collected at concurrent field campaign time. These data 

collected on April 22, 2015 and October 15, 2015. Since 

the atmospheric correction algorithm to convert remote 

sensing reflectance from Top of Atmospheric (TOA, 

recorded by sensor) to Bottom of Atmosphere (BOA, 

surface reflectance) is difficult for Landsat data, the 

Surface Reflectance (SR) which processed by USGS was 

used directly. The surface reflectance data was 

atmospheric corrected data using internal algorithm (for 

Landsat 8) and based on 6S algorithm for prior Landsat 8 

for 7 bands. The information of Landsat band (excluded 

the TIR band) was presented in Table 2. These data 

could be ordered and downloaded from ESPA’s website 

(http://espa.cr.usgs.gov/). The downloaded SR data then 

calibrated by dividing all digital numbers by 10000 and 

converted to remote sensing reflectance, Rrs(λ), by 

dividing surface reflectance by π. 

 Accuracy Assessment 

Assessment the accuracy of atmospheric correction 

algorithm developed by USGS and water quality 

parameter (TSS and Chl-a) retrieval algorithms used root 

mean square error (RMSE), relative error (RE) and 

determination coefficient (R2). These notations were 

defined as follow: 

𝑅𝑀𝑆𝐸 = √∑ (𝑥esti,i−𝑥meas,i)
2𝑁

𝑖=1

𝑁
 (2) 

𝑅𝐸 =  
1

𝑁
∑ |

𝑥esti,i−𝑥meas,𝑖

𝑥meas
|𝑁

𝑖=1  100% (3) 

𝑅2 =  
1

𝑁
∑ (𝑥esti,i − 𝑥meas,𝑖)

2𝑁
𝑖=1  (4) 

where xmeas,i and xesti,i are the measured and estimated 

values, respectively, and N is the number of samples. 

The RMSE gives the absolute scattering of the retrieved 

remote sensing reflectance as well as water quality 

parameter concentration, the RE represents the 

uncertainty associated with satellite-derived distribution 

and R2 the strong relationship between in situ measured 

Rrs(λ) and estimated Rrs(λ) from atmospherically 

corrected of Landsat 8-OLI as well as measured and 

estimated water quality parameter (TSS and Chl-a) 

concentrations. 

III. RESULTS AND DISCUSSION 

 Validation of Landsat Remote Sensing Reflectance 

To validate the atmospheric corrected reflectance of 

Landsat (SR), the average of 3-by-3 window of Landsat 

pixel was used to compare with in situ-measured Rrs(λ) 

in order to avoid potential error in the geometric 

correction and dynamics of water bodies, as well as the 

http://espa.cr.usgs.gov/
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potential error in spatial variability [11]. The in situ 

Rrs(λ) measured by spectroradiometer in 1 nm interval 

was resampled to fit Landsat bands with the center of 

440, 480, 560, 655, and 865 nm for band 1 to 7, 

respectively. Figure 3 showed the remote sensing 

reflectance comparison. 

The data in Figure 3 shows that the water-leaving 

remote sensing reflectance Rrs(λ) derived from Landsat 

8 under estimate the in situ measurement Rrs(λ) at all 

observation stations except at the observation station of 

1, 7 and 9 where the data were overestimation. The low 

relationship between two set of data indicated by low 

determination coefficient (R2=0.106). However, all data 

comparisons between in situ and Landsat derived remote 

sensing reflectance have the same pattern. 

 TSS Concentration Retrieval Algorithm 

The total suspended sediment concentration retrieval 

algorithm developed using the regression algorithm 

between the in situ TSS concentrations and in situ 

measured remote sensing reflectance Rrs(λ) based on 

single-band and two-band ratios reflectance 

combinations. In situ TSS concentration and in situ 

Rrs(λ) were used as dependent and independent variable, 

respectively. From several combinations, the highest 

correlation between both variables indicated by the 

highest coefficient of determination (R2) was chosen as a 

retrieval algorithm. The regression algorithm for TSS 

concentrations was shown in Tables 3 and 4. In these 

tables, high coefficient of determination (R2>0.5) were 

shown in the algorithm based on the band ratio of 

Rrs(λ2)/Rrs(λ3), Rrs(λ2)/Rrs(λ4) and Rrs(λ1)/Rrs(λ4).  

log(𝑇𝑆𝑆) = 1.5212 (
log 𝑅𝑟𝑠(𝜆2)

log 𝑅𝑟𝑠(𝜆3)
) − 0.3698 (5) 

The highest correlation produced by an algorithm 

based on Rrs(λ2)/Rrs(λ3) with R2 of 0.79. This band-ratio 

based algorithm was used to calculate estimation of TSS 

concentration. The linier regression algorithm for TSS 

estimation with independent variable of band-ratio of 

Rrs(λ2)/Rrs(λ3) was shown in Figure 4 and Equation 5. 

 Chl-a Concentration Retrieval Algorithm 

The Chlorophyll-a concentration retrieval algorithm 

was made using regression algorithms based on single 

band and two band-ratios of Landsat 8 following the TSS 

retrieval algorithm. The regression algorithm of Chl-a 

concentrations were presented in Tables 5 and 6, for 

single band and two band-ratio combinations, 

respectively. In these tables, a high determination 

coefficient (R2>0.5) were shown in band-ratio of 

Rrs(λ1)/Rrs(λ4), Rrs(λ2)/Rrs(λ3), and Rrs(λ2)/Rrs(λ4) with 

the highest correlation produced by Rrs(λ2)/Rrs(λ4) with 

R2 of 0.63. The linier regression algorithm for Chl-a 

estimation with independent variable of band-ratio of 

Rrs(λ2)/Rrs(λ3) for Poteran’s waters was shown in Figure 

5 and Equation 6.  

log(𝐶ℎ𝑙 − 𝑎) = 1.613 (
log 𝑅𝑟𝑠(𝜆2)

log 𝑅𝑟𝑠(𝜆4)
) + 1.0718 (6) 

The algorithm produced the highest correlation with 

coefficient determination of 0.626. 

 Estimation of TSS Concentration and Its Validation 

To assess the performance of the developed algorithms, 

the accuracy between measured data and estimated TSS 

were tested using RMSE and RE. The comparisons 

between the in situ-measured and Landsat-derived TSS 

concentrations over Poteran and Gili Iyang’s waters were 

presented in Figures 5 and 6. Over Poteran’s waters, the 

regression algorithm for estimating TSS concentration 

produced the highest accuracy with R2 of 0.628; RE of 

4.60%; and RMSE of 1.124. Whereas, over Gili Iyang 

waters, the algorithm produced the highest accuracy with 

R2 of 0.345; RE of 14.823%; and RMSE of 2.916. 

 Estimation of Chl-a Concentration and Its 

Validation 

The accuracy assessment of estimated Chl-a 

concentration from Landsat data followed the same step 

as TSS assessment. The regression algorithm for 

estimating Chl-a concentration over Poteran’s waters 

produced high accuracy with R2 of 0.416; RE of 

13.873%; and RMSE of 68.645. Whereas over Gili 

Iyang’s waters, the R2, RE and RMSE were 0.090; 

99.140% and 129.690, respectively (Figures 8 and 9). 

Spatial distribution of TSS and Chl-a concentrations 

were processed using the previous developed algorithms 

shown in Figure 10. 

CONCLUSION 

This study was performed over Poteran’s waters (9 

stations) and Gili Iyang’s waters (6 stations). Over these 

area, the in situ remote sensing reflectance Rrs(λ), Chl-a 

and TSS concentrations were collected as well as 

Landsat-8 OLI data on the same acquisition time with in 

situ data.  Low correlation between in situ and Landsat 

Rrs(λ) (R2=0.106) indicated that atmospheric correction 

algorithm performed by USGS has a limitation. This 

phenomenon was also reported by Jaelani [12], using a 

set of high quality in situ reflectance data collected over 

Lake Kasumigaura, Japan. 

The in situ data was used to develop an applicable 

physical parameter retrieval algorithm for Chl-a and TSS 

concentration. The accuracy of algorithms were assessed 

using in situ data collected at the same acquisition time 

of Landsat 8 satellite. The TSS concentration retrieval 

algorithm produced acceptable accuracy both over 

Poteran’s waters (RE of 4.60% and R2 of 0.628) and over 

Gili Iyang’s waters (RE of 14.82% and R2 of 0.345). 

Although the R2 lower than 0.5, the RE was more 

accurate than the minimum requirement of 30%. 

Whereas, the Chl-a concentration retrieval algorithm 

produced acceptable result over Poteran (RE of 13.87% 

and R2 of 0.416) and failed over Gili Iyang’s waters (RE 

of 99.14% and R2 of 0.090). This indicated that the 

condition of chlorophyll-a over two waters is different. 

The low correlation between TSS and Chl-a measured, 

also estimated TSS and Chl-a concentrations were 

caused not only by performance of the developed TSS 

and Chl-a estimation retrieval algorithms but also the 

accuracy of atmospheric corrected reflectances of 

Landsat product. 
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Figure. 1. The location and spatial distribution of the sampling station, “P “for Poteran and “G” for Gili Iyang waters  
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Figure. 2. In situ spectral data collected over Poteran waters 

 

 
Figure. 3. Comparisons between the in situ-measured and Landsat-derived water-leaving remote sensing reflectance 
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Figure. 4. Linier regression algorithm for TSS estimation with 

independent variable of band-ratio of Rrs(λ2)/Rrs(λ3) 

 

 
Figure. 5. Linier regression algorithm for Chl-a estimation with 

independent variable of band-ratio of Rrs(λ2)/Rrs(λ4) 

 

 
Figure. 6. Comparisons between the in situ-measured and Landsat-

derived TSS concentrations over Poteran’s waters 

 

 
Figure. 7. Comparisons between the in situ-measured and Landsat-

derived TSS concentrations over Gili Iyang’s waters 

 

 
Figure. 8. Comparisons between the in situ-measured and Landsat-

derived Chl-a concentrations over Poteran’s waters 

 

 
Figure.9. Comparisons between the in situ-measured and Landsat-

derived Chl-a concentration over Gili Iyang’s waters 

 
Figure.10. Distribution map of TSS (left) and Chl-a (right) concentration over Eastern Madura Sea
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TABLE 1. 

IN SITU SPECTRAL AND WATER QUALITY 

 

TABLE 2. 

LANDSAT 8-OLI BAND INFORMATION 

 

TABLE 3. 

SINGLE BAND-BASED REGRESSION ALGORITHM FOR TSS WITH R2 

Regresion Model Band 1 Band 2 Band 3 Band 4 Band 5 

log(TSS)=y0 + a*bj 0.00 0.00 0.07 0.11 0.01 

log(TSS)=y0 + a*log(bj) 0.00 0.00 0.06 0.10 0.00 

 
TABLE 4. 

TWO BAND RATIO-BASED REGRESSION ALGORITHM FOR TSS WITH R2 

Regresion Model 
Band 1 Band 1 Band 1 Band 1 Band 2 

Band 2 Band 3 Band 4 Band 5 Band 3 

log(TSS)=y0 + a*(bj/bk) 0.17 0.43 0.77 0.01 0.72 

log(TSS)=y0 + a*log(bj/bk) 0.15 0.39 0.77 0.00 0.72 

log(TSS)=y0 + a*(log(bj)/log(bk)) 0.17 0.47 0.77 0.01 0.79 

       

Model Regresi 
Band 2 Band 2 Band 3 Band 3 Band 4 

Band 4 Band 5 Band 4 Band 5 Band 5 

log(TSS)=y0 + a*(bj/bk) 0.69 0.03 0.23 0.04 0.06 

log(TSS)=y0 + a*log(bj/bk) 0.65 0.01 0.22 0.02 0.08 

log(TSS)=y0 + a*(log(bj)/log(bk)) 0.73 0.00 0.24 0.04 0.14 

 
TABLE 5. 

SINGLE BAND-BASED REGRESSION ALGORITHM FOR CHL-A WITH R2 

Regresion Model   Band 1 Band 2 Band 3 Band 4 Band 5 

log(chl-a)=y0 + a*bj 0.01 0.05 0.17 0.21 0.06 

log(chl-a)=y0 + a*log(bj) 0.01 0.04 0.14 0.18 0.02 

Station 
Location Rrs (λ) (sr-1) TSS Chl Depth 

Lat (°) Long (°) 440 nm 480 nm 560 nm 655 nm 865 nm (g/m3) (mg/m3) (m) 

P-1 -7.0782 113.935 0.01823 0.01876 0.01971 0.01003 0.00255 14 278 3.8 

P-2 -7.1058 113.969 0.0679 0.07301 0.06891 0.04308 0.04499 13 286 9 

P-3 -7.1178 114.019 0.04327 0.04543 0.04396 0.02427 0.01624 13 298 10.1 

P-4 -7.1191 114.056 0.0434 0.04474 0.04753 0.03017 0.01845 15 280 12.9 

P-5 -7.0901 114.064 0.04661 0.04507 0.04237 0.02663 0.01729 14 254 8.5 

P-6 -7.0686 114.04 0.06321 0.06442 0.06744 0.05746 0.0451 16 386 3.7 

P-7 -7.0643 114.004 0.03498 0.03858 0.04618 0.03028 0.01151 18 459 4 

P-8 -7.0624 113.972 0.10091 0.10964 0.11662 0.07857 0.07492 17 327 3.4 

P-9 -7.0537 113.954 0.01594 0.02282 0.0268 0.01459 0.00122 16 332 13.9 

Band Wavelength (nm) Central Wavelength Bandwidth (nm) 

1 430 - 450 440 20 

2 450 - 510 480 60 

3 530 - 590 560 60 

4 640 - 670 655 30 

5 850 - 880 865 30 

6 1570 - 1650 1610 80 

7 2110 - 2290 2200 180 
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TABLE 6. 

TWO BAND RATIO-BASED REGRESSION ALGORITHM FOR CHL-A WITH R2 

 

 

Regresion Model 
Band 1 Band 1 Band 1 Band 1 Band 2 

Band 2 Band 3 Band 4 Band 5 Band 3 

log(chl-a)=y0 + a*(bj/bk) 0.10 0.00 0.61 0.00 0.50 

log(chl-a)=y0 + a*log(bj/bk) 0.09 0.01 0.62 0.02 0.51 

log(chl-a)=y0 + a*(log(bj)/log(bk)) 0.11 0.02 0.62 0.06 0.59 

       

Model Regresi 
Band 2 Band 2 Band 3 Band 3 Band 4 

Band 4 Band 5 Band 4 Band 5 Band 5 

log(chl-a)=y0 + a*(bj/bk) 0.57 0.00 0.24 0.00 0.01 

log(chl-a)=y0 + a*log(bj/bk) 0.59 0.01 0.24 0.00 0.01 

log(chl-a)=y0 + a*(log(bj)/log(bk)) 0.63 0.02 0.24 0.00 0.04 


