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Abstract—Inductive loop detectors are widely deployed in 

strategic roadway networks. This paper investigates recursive 
estimation of traffic densities using the information provided by 
loop detectors.  The existing studies for multi-lane roadways 
mainly focus on the scenario where vehicles’ lane change 
movements are not common and can be ignored. This research, 
however, takes into consideration of lane change effect in traffic 
modeling and incorporates a Markov chain into the state space 
model to describe the lane-change behavior. We update the 
traffic density estimate using the Kalman filter. To avoid the 
approximation due to the linearization of the nonlinear 
observation equation in the extended Kalman filter, we have 
considered a suitable transformation. Numerical studies were 
carried out to investigate the performance of the developed 
approach. It is shown that it outperforms the existing methods. 
 

Index Terms— Density estimation, Kalman filter, lane change, 
Markov chain process.  
 

I. INTRODUCTION 
N both developed and emerging-economy countries, major 
cities continue to experience increasing traffic congestion. 

In recent years, intelligent transportation systems are shown to 
be a promising approach to help manage congested traffic. 
These systems fuse traffic-surveillance-related information 
from a variety of sensors deployed across traffic networks. 

An intelligent transportation system requires real-time 
information to make effective control decisions and to deliver 
trustworthy information to users, such as travel time, 
congestion level, etc. There are three fundamental inputs 
required by intelligent transportation systems, i.e. traffic 
volume, vehicular speed, and traffic density.  

In practice, point sensors such as inductive loop detectors 
are widely used for traffic detection. These point sensors can 
continuously count vehicle numbers in traffic streams passing 
at the sensor locations (see e.g. [1], [2]) so the information on 
traffic volume is directly available from a point sensor. In 
addition, vehicular speed can be calculated using the 
information collected from either a single loop detector [2] or 
 

Copyright (c) 2011 IEEE. Personal use of this material is permitted. 
However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending a request to pubs-permissions@ieee.org. 

Karandeep Singh is with the School of Business & Economics, 
Loughborough University, Loughborough, LE11 3TU UK (e-mail: 
k.singh@lboro.ac.uk). 

Baibing Li is with the School of Business & Economics, Loughborough 
University, Loughborough, LE11 3TU UK (corresponding author. Tel. +44-
1509-228841. e-mail: b.li2@lboro.ac.uk). 

a speed trap [3]. Hence, speed information can also be derived 
from a point sensor.  

Traffic density defined as the number of vehicles in a lane 
within a unit length of roadway segment, however, cannot be 
measured directly using point sensors. As an instantaneous 
and range concept, traffic density can be worked out using a 
snapshot photo of traffic by an aerial camera along a stretch of 
roadway (see e.g. [4], [5]). Practical traffic network systems, 
particularly freeway networks, however, do not have aerial 
cameras to continuously monitor the traffic in real time. 
Although dense point sensor systems (e.g. inductive loop 
detectors) could approximate continuous measurements in 
space, the cost would be prohibitive in general. Consequently 
the problem of estimating the number of vehicles traversing 
within a roadway segment presents an important issue and has 
attracted a great deal of research in the recent decades.  

The Kalman filter is an efficient recursive technique to 
update the estimated state vector of a dynamic system from a 
series of noisy measurements. It is widely used in the studies 
on intelligent transportation systems. The applications include 
the navigation filter in the GPS receiver for car navigation 
systems [6], image processing and behavior planning for 
intelligent vehicles [7], advanced parking assistance systems 
[8], the estimation of lane width in a vehicle lane tracking 
system [9], and the modeling of vehicular energy storage [10]. 
Recently it has also been applied to the area other than state 
estimation such as fault detection [20] and optimization [21]. 

A pioneering study on traffic density estimation using 
Kalman filter can be traced back to the early work in [11] in 
1970s. Since then the Kalman filter has been employed quite 
frequently in the literature to estimate roadway traffic 
densities, including linear Kalman filter [15], extended 
Kalman filter [12][13], mixture Kalman filter [14], etc.  

This paper is mainly based on the recent research 
framework developed in [12]. It investigates traffic flow 
modeling via the approach of state space model, and the 
application of Kalman filtering to roadway traffic density 
estimation. Unlike [12] where lane change behavior is 
ignored, however, we will take into account of lane change 
effect in the analysis and will model lane change behavior 
directly in the state equation of the state space model. Lane 
change behavior can have great impact on traffic flow for 
some roadway sections and it has attracted considerable 
attention in the traffic literature. However, although lane 
change behavior is an important aspect of transport research, it 
has not been studied much in relation with density estimation 
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[16]. In addition, some of the lane change models assume 
accurate measurements of traffic counts (e.g. [17]) but this is 
not true in practice because the operation of conventional 
inductive loop detectors involves substantial measurement 
errors (see e.g. [12]). In this paper we will use a Markov chain 
process to describe lane change behavior.  

Now we turn to the issue of the estimation of traffic 
densities. In most existing studies that use state space models 
to estimate traffic densities, the speed-density relationship 
serves as the observation equation. As the speed-density 
relationship in the Drake’s model [18] is nonlinear, the 
existing methods utilize the extended Kalman filter to update 
the estimated traffic state vector for online traffic surveillance. 
We note, however, the extended Kalman filter involves an 
approximation where the nonlinear system is linearized. This 
can sometimes lead to substantial estimation errors (see e.g. 
[2]). To avoid the linearization in the extended Kalman filter 
used in the existing methods, we have considered a 
transformation in this paper. As demonstrated later, the 
accuracy of traffic density estimation can be substantially 
improved using this transformation.  

This paper is organized as follows. In the next section we 
will develop a model for traffic flow where lane change effect 
is taken into account. Then we consider a transformation 
approach to transform the observation equation from a 
nonlinear equation to a linear form. The Kalman filter 
technique is then applied to update the estimated traffic 
densities. Sections III and IV are devoted to two simulation 
studies where the performance of the developed state space 
model is compared with the existing method in [12]. Then the 
developed approach is illustrated using real traffic data. 
Finally discussion and conclusions are offered in Section VI.  

 

II. METHODOLOGY 
Effective real time surveillance and control of roadway 

traffic rely on the information regarding the numbers of 
vehicles in different segments of multi-lane roadways. We 
consider a roadway section with N different segments and M 
different lanes, where each segment is defined to be a 
detection zone with one upstream and one downstream 
embedded inductive loop detector, plus a speed sensor. 
Following [12] and [13], we assume that the detectors are 
deployed about 500 meters to 1,500 meters apart. Although 
longer segments do not cause any technical difficulties for the 
approach in this paper, traffic condition may change 
substantially and thus may lead to unreliable results.  

We will investigate the estimation of traffic density in each 
lane of each roadway segment using traffic measurements 
from the inductive loop detectors. 
 

A. A Brief Summary of the Existing Models 
First, we briefly summarize a typical state space model used 

in the literature for traffic density estimation.  
Let 𝐱(𝑡) = [𝑥11(𝑡), 𝑥12(𝑡), … , 𝑥𝑀𝑁(𝑡)]𝑇  denote the state 

vector where 𝑥𝑖𝑗(𝑡) is the number of vehicles in lane j of 

segment i in time interval t (𝑡 = 0,1,2, … ). The state equation 
in the existing studies is usually formulated on the basis of 
traffic conservation equation, where the number of vehicles in 
each lane j of a segment i is equal to the number of vehicles in 
the previous time interval, plus the net gain of vehicles 
entering and leaving the upstream and downstream loop 
detectors respectively (see e.g. [12]): 

 
𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑢𝑖𝑗(𝑡) − 𝑢�𝑖𝑗(𝑡) + 𝜀𝑖𝑗(𝑡) − 𝜀�̃�𝑗(𝑡), 
 

where 𝑢𝑖𝑗(𝑡) and 𝑢�𝑖𝑗(𝑡) denote the counts of vehicles entering 
and leaving the upstream and downstream detectors in lane j 
of segment i in time interval t. 𝜀𝑖𝑗(𝑡) and 𝜀�̃�𝑗(𝑡) denote the 
corresponding  counting errors. The above state equation can 
be rewritten in a matrix form: 
 
                      𝐱(𝑡 + 1) = 𝐱(𝑡) + 𝐰(𝑡) + 𝛏(𝑡) ,               (1)               
 
where vector 𝐰(𝑡) includes the entries of the net gain 
𝑢𝑖𝑗(𝑡) − 𝑢�𝑖𝑗(𝑡), and 𝛏(𝑡) includes the entries 𝜀𝑖𝑗(𝑡) − 𝜀�̃�𝑗(𝑡) 
for all i and j. Let Q denote the covariance matrix of  𝛏(𝑡).  

Following [12], we assume that the counting errors 𝜀𝑖𝑗(𝑡) 
and 𝜀�̃�𝑗(𝑡) are independent of each other, having an identical 
distribution with zero mean and variance 𝜎2. The entries of Q 
can be worked out as follows. For any i and j, we have 
var �𝑥𝑖𝑗(𝑡)� = 2𝜎2. In addition, for any lane j, since the 
number of vehicles leaving a segment i is equal to the number 
of vehicles entering the neighboring segment i+1, we have 
cov �𝑥𝑖𝑗(𝑡), 𝑥(𝑖+1)𝑗(𝑡)� = −𝜎2. All the other entries of matrix 
Q are equal to zero due to the independence assumption.  

In traffic engineering, the relationship between traffic speed 
v and density K is given by (see [18]): 

 

                              𝑣 = 𝑣∗ exp [−1
2
� 𝐾
𝐾∗
�
2

] ,                                (2) 
 
where 𝑣∗ is the free flow speed and 𝐾∗ is the density 
corresponding to the maximum flow in a lane of a roadway 
segment. This relationship forms the basis of the observation 
equation in the existing studies such as [12]. Specifically, by 
taking into account of noise, the speed measurement in lane j 
of segment i is assumed to satisfy the following equation: 

 

      𝑣𝑖𝑗(𝑡) =  𝑣𝑖𝑗∗ exp �−0.5𝜃𝑖𝑗 �
𝑥𝑖𝑗(𝑡)

𝐾𝑖𝑗
∗ 𝐿𝑖
�
2
� + 𝜂𝑖𝑗(𝑡),       (3) 

 
where 𝐿𝑖 is the length of segment i. 𝜂𝑖𝑗(𝑡) is the corresponding 
measurement error. All measurement errors are assumed to be 
independent of each other with a common variance 𝜏2 (see 
[12]). The parameters 𝑣𝑖𝑗∗  and 𝐾𝑖𝑗∗  are treated as tuning 
parameters in [12]. In this paper, we assume that the 
relationship between traffic speed and density is calibrated 
using a coefficient 𝜃𝑖𝑗.  

Let 𝐡(𝐱(𝑡)) denote the vector of the nonlinear functions 
given by the first term of the right-hand-side of equation (3). 
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The observation equation may be rewritten in a matrix form 
 

          𝐯(𝑡) = 𝐡(𝐱(𝐭)) + 𝛈(𝑡),                          (4) 
 

where vector 𝛈(𝑡) includes the entries 𝜂𝑖𝑗(𝑡) for all i and j. 
𝐑 = 𝜏2𝐈  is the covariance matrix of  𝛈(𝑡) with I an identity 
matrix. Similar state space models were also incorporated in 
other studies such as [13]. 

B. A Markov Chain Process for Lane Change Behavior 
In equation (1), lane change behavior is completely ignored. 

This may not be realistic for some roadway segments. In this 
subsection, we will extend the above state equation so that 
lane change behavior is modeled explicitly and the dynamic of 
traffic flow is better represented by the state equation. 

We first focus on the scenario of single roadway segment. 
In this paper, the maneuver of a vehicle in a roadway segment 
is modeled as a Markov chain process where each lane is 
characterized as a state of the process.  

Specifically, we assume that each vehicle in the roadway 
segment has a certain probability to stay in the current state 
(lane), or to change from one state (lane) to another. We also 
assume that the traffic flow is stable so that the transition 
probabilities for the lane change behavior retain approximately 
constant over time. In practice, the time period of interest (say 
a day) may be split into several sub-periods so that traffic flow 
is stable within each sub-period. Now let 𝑝𝑗𝑘 denote the 
transition probability that a vehicle moves from state (lane) j 
to state (lane) k.   

With the lane change behavior being taken into 
consideration, the numbers of vehicles entering/leaving a lane 
from/to the neighboring lane(s) must be included into the state 
equation. For ease of exposition, we consider a 3-lane problem 
first.  For the middle lane j of segment i, the state equation has 
now become to 

 
𝑥𝑖𝑗(𝑡 + 1) = 𝑝𝑗𝑗𝑥𝑖𝑗(𝑡) + 𝑝(𝑗−1)𝑗𝑥𝑖(𝑗−1)(𝑡)+𝑝(𝑗+1)𝑗𝑥𝑖(𝑗+1)(𝑡) 

                  −𝑝𝑗(𝑗−1)𝑥𝑖𝑗(𝑡) − 𝑝𝑗(𝑗+1)𝑥𝑖𝑗(𝑡) 
                 +𝑢𝑖𝑗(𝑡) − 𝑢�𝑖𝑗(𝑡) + 𝜀𝑖𝑗(𝑡) − 𝜀�̃�𝑗(𝑡) . 
 

Likewise, for the outermost lane j=1, the state equation is 
 
𝑥𝑖𝑗(𝑡 + 1) = 𝑝𝑗𝑗𝑥𝑖𝑗(𝑡)+𝑝(𝑗+1)𝑗𝑥𝑖(𝑗+1)(𝑡) − 𝑝𝑗(𝑗+1)𝑥𝑖𝑗(𝑡) 
                 +𝑢𝑖𝑗(𝑡) − 𝑢�𝑖𝑗(𝑡) + 𝜀𝑖𝑗(𝑡) − 𝜀�̃�𝑗(𝑡) .                 
 

For the innermost lane, we have a similar equation. 
Now we extend the state equation to an M-lane and N-

segment roadway. First define the system matrix 𝐀𝑛 = [𝑎𝑗𝑘
(𝑛)]  

for the nth roadway segment via the transition probabilities:
  

𝑎𝑗𝑘 = �
𝑝𝑘𝑗                       if  𝑗 ≠ 𝑘

1 − ∑ 𝑝𝑗𝑙𝑙≠𝑗       if  𝑗 = 𝑘  , 

 
where to simplify notation, we have suppressed the superscript 
roadway segment n in the above definition.  

The state equation can thus be written as follows: 

 
  𝐱(𝑡 + 1) = 𝐀𝐱(𝑡) + 𝐰(𝑡) + 𝛏(𝑡) ,          (5) 

 
where the system matrix is  𝐀 = diag{𝐀1, … ,𝐀𝑁}. 

C. Density Estimation 
The estimate of the traffic density vector can be updated on 

the basis of the nonlinear state space model (4) and (5). The 
extended Kalman filter allows the system to be nonlinear. 
During each time interval, the nonlinear system is linearized 
about the current estimate of the state vector.  

Specifically, let  𝐱�(𝑡|𝑡) denote the estimate of the state 
vector in each time interval t.  Then for equation (4), the 
Jacobian evaluated at the current estimate  𝐱�(𝑡|𝑡) is 

 
𝐇(𝑡) = 𝜕𝐡(𝐱)/𝜕𝐱|𝐱=𝐱�(𝑡|𝑡). 

 
By some algebra it can be shown that matrix 𝐇(𝑡) is 

diagonal with each diagonal entry equal to 
−𝜃𝑖𝑗𝑣𝑖𝑗(𝑡)𝑥𝑖𝑗(𝑡)

(𝐾𝑖𝑗
∗ 𝐿𝑖)2

. The 

observation equation can thus be approximated as 
 

  𝐯(𝑡) ≈ 𝐡(𝐱�(𝑡|𝑡)) + 𝐇(𝑡)[𝐱(𝑡) − 𝐱�(𝑡|𝑡)] +  𝛈(𝑡).     (6) 
 
Let  𝐱�(𝑡 + 1|𝑡) and 𝐏(𝑡 + 1|𝑡) denote the one-step forecast 

of the state vector and the corresponding covariance matrix in 
each time interval t.  In addition, let  𝐏(𝑡|𝑡) denote the 
covariance matrix of the estimated state vector in each time 
interval t.  By applying the extended Kalman filter, the traffic 
density vector of a multi-lane multi-segment roadway can be 
estimated using the following steps (see e.g. [12], [19]): 

 
1) Initialization:  

 
𝐱�(0|0) = 𝐱0 , 𝐏(0|0) = 𝐏0,  and t=0. 

 
2) One-step forecast of the state vector:  

 
𝐱�(𝑡 + 1|𝑡)  = 𝐀𝐱�(𝑡|𝑡)  + 𝐰(𝑡), 

𝐏(𝑡 + 1|𝑡) = 𝐀𝐏(𝑡 + 1|𝑡)𝐀𝑇 + 𝐐 . 
 

3) Compute the Kalman gain matrix:  
 
𝐌 = 𝐏(𝑡 + 1|𝑡)𝐇(𝑡)[𝐇(𝑡)𝐏(𝑡 + 1|𝑡)𝐇(𝑡)𝑇 + 𝐑]−1.  

4)  Update the estimate and its covariance matrix:  
 
𝐱�(𝑡 + 1|𝑡 + 1) = 𝐱�(𝑡 + 1|𝑡) + 𝐌[𝐯(𝑡) − 𝐡(𝐱�(𝑡 + 1|𝑡))], 

𝐏(𝑡 + 1|𝑡 + 1) = 𝐏(𝑡 + 1|𝑡) −𝐌𝐇(𝑡)𝐏(𝑡 + 1|𝑡). 
 

5) Let t=t+1 and return to step 2. 
 

D. The Transformed Observation Equation 
As seen in the previous section, observation equation (3) for 

the traffic density is nonlinear. Consequently, to apply the 
Kalman filtering technique, it needs to be linearized, as shown 
in equation (6). Such linearization can sometimes produce un-
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reliable results where the estimates of the state variables were 
totally off the track (see e.g. [2]). In this subsection, we 
investigate a transformation approach that transforms the 
observation equation from a nonlinear form to a linear one so 
that the approximation is avoided. Specifically, we define a 
transformed observation as follows: 

 
𝑧𝑖𝑗(𝑡) = �log [𝑣𝑖𝑗∗ /𝑣𝑖𝑗(𝑡)]�1/2

. 
 

It is the square root of the difference in speed measured on 
logarithmic scale between the free flow and the current traffic 
flow. From equation (2), it is straightforward to obtain 
𝑧𝑖𝑗(𝑡) = [𝜃𝑖𝑗/(√2𝐾𝑖𝑗∗ 𝐿𝑖)]𝑥𝑖𝑗(𝑡) with a coefficient 𝜃𝑖𝑗 added 
for the calibration purposes. By taking into account of noise, 
the transformed observation equation can be written as 

 
       𝑧𝑖𝑗(𝑡) = [𝜃𝑖𝑗/(√2𝐾𝑖𝑗∗ 𝐿𝑖)]𝑥𝑖𝑗(𝑡)+𝑒𝑖𝑗(𝑡),   (7) 

 
where the noise 𝑒𝑖𝑗(𝑡) is assumed to be independent of each 
other, having a zero mean and a variance �̃�2. Now let G be a 
diagonal matrix with diagonal entries equal to 𝜃𝑖𝑗/(√2𝐾𝑖𝑗∗ 𝐿𝑖). 
The observation equation can be written in a matrix form: 

 
            𝐳(𝑡) = 𝐆(𝑡)𝐱(𝑡) + 𝐞(𝑡),       (8) 

 
where 𝐳(𝑡) and 𝐞(𝑡) are vectors with entries 𝑧𝑖𝑗(𝑡) and 𝑒𝑖𝑗(𝑡) 
respectively. The covariance matrix of 𝐞(𝑡) is 𝐑� = �̃�2𝐈. 

Now since both state equation (5) and observation equation 
(8) are linear, the linear Kalman filter can be applied. 
Specifically, steps 1 to 4 in the above extended Kalman filter 
algorithm retain the same form but 𝐇(𝑡) is now replaced with 
𝐆(𝑡). In addition, the estimated state vector is updated as: 

 
      𝐱�(𝑡 + 1|𝑡 + 1)  = 𝐱�(𝑡 + 1|𝑡)  

                                          +𝐌[𝐳(𝑡) − 𝐆(𝑡)𝐱�(𝑡 + 1|𝑡) ]. 
 

The advantage of this approach is that the approximation in 
equation (6) caused by the linearization is avoided. 

In practical online applications, the state covariance matrix  
𝐏(𝑡|𝑡) may become asymmetrical and/or have negative 
eigenvalues due to rounding error. In addition, the matrix 
𝐇(𝑡)𝐏(𝑡 + 1|𝑡)𝐇(𝑡)𝑇 + 𝐑 may become singular and thus 
cause problem when calculating matrix M. These issues are 
normally addressed in the implementation via the Cholesky 
factorization or singular value decomposition algorithms. 
Simon [19] summarizes some widely implemented solutions 
for these stability issues.  

 

III.  SIMULATION FOR LANE CHANGE EFFECT 
In this section, state equation (5) for the estimation of traffic 

densities will be tested via simulation. One major advantage of 
simulation study is that the ‘true’ values of traffic densities are 
known a priori so that it is straightforward to assess the 
performance of the developed approach in terms of accuracy. 

When comparing the developed state equation (5) with state 
equation (1) used in [12], we will use the same observation 
equation (3) so that we can focus on lane change effect. 
 

A. Simulation Description 
We considered a simulation scenario of a 3-lane roadway 

with a single segment and the time period of 2 hours. The 
length of the roadway segment 𝐿𝑖  (i=1,2,3) was set equal to 
400 meters long. It was assumed that the upstream and 
downstream loop detector stations measured traffic every 20s 
which was taken as the duration of the time intervals in the 
algorithm. This resulted in a total of 360 time steps. Following 
[12], the density 𝐾𝑖𝑗∗  corresponding to the maximum flow was 
set equal to 32, the free speed 𝑣𝑖𝑗∗  was set to be 104.76 km/h, 
and the calibration coefficient 𝜃𝑖𝑗 was set equal to 1. The 
initial numbers of vehicles in the simulation was set equal to 
0.5𝐿𝑖𝐾𝑖𝑗∗ . The system matrix was set to be 

 

𝐀 = �
0.35 0.25 0
0.65 0.55 0.45

0 0.20 0.55
�, 

 
where it was assumed that no lane change was possible from 
the innermost lane to the outermost lane or verse visa as the 
time intervals are short. Clearly the middle lane is the most 
affected lane due to vehicles’ movements between lanes and 
we will focus on this lane in the subsequent analysis.  

The real time traffic density in each lane was simulated 
using equation (5) where the counts of vehicles entering and 
leaving the segment, 𝑢𝑖𝑗(𝑡) and 𝑢�𝑖𝑗(𝑡), were simulated as 
Poisson variates with a mean λ. The error terms 𝜀𝑖𝑗(𝑡) and 
𝜀�̃�𝑗(𝑡) were simulated as normal variates with zero mean and 
variance 𝜎2. The speed measurements were simulated using 
equation (3) where 𝜂𝑖𝑗(𝑡) was simulated as normal variates 
with zero mean and variance 𝜏2. The settings of the 
parameters, λ, 𝜎 and 𝜏, varied from experiment to experiment 
in the simulation below to reflect different scenarios.  

Each experiment was repeated 100 times. The evaluation of 
method was based on the Root Mean Square Error (RMSE) 
between the ‘true’ and estimated vehicle counts. 
 

B. Simulation Results 
First, we set σ=1, τ=2 and λ=10 in the simulation. This 

represents the scenario where on average there were λ=10 
vehicles entering the upstream detector and leaving the 
downstream detector in each lane of the roadway segment in 
every 20s time interval. The measurement error of the loop 
detectors was about σ=1 vehicle per time interval, and the 
measurement error of the speed detectors was about τ=2km/h. 

Fig. 1 (upper) displays the ‘true’ vehicle counts (broken 
line) and the estimated values (real line)  in the middle lane 
obtained using the developed state equation (5) in one run of 
the experiment. 
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Fig. 1. The ‘true’ vehicle counts in the middle lane (broken line) and the 
estimated values (real line) obtained using equation (5) (upper graph) and 
obtained using the model in [12] (lower graph). 

 
Overall, Fig. 1 (upper) shows that the developed state 

equation (5) performed well: the estimated vehicle counts 
were fairly close to the ‘true’ vehicle counts.  

Next, we investigate the performance of the developed state 
equation in various scenarios where the parameters τ and σ 
were set at different levels: τ = 1,3  and σ  = 1,2,3. They 
represent different magnitudes of the error terms. For each 
scenario, the experiment was repeated 100 times. The 
resulting RMSEs averaged over the repeated 100 runs are 
displayed in Table I.  

 
Table I 

Average RMSEs over 100 simulation runs for a three-lane roadway 
using the developed state equation (5) with λ=10 

 
 τ = 1 τ = 3 

σ Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3 
1 1.01 0.91 1.00 1.06 1.05 1.06 
2 1.21 1.01 1.19 0.97 0.90 0.98 
3 1.40 1.18 1.36 1.01 0.91 1.01 

 
Overall it can be seen from Table I that the estimation errors 

are low: on average it was about one vehicle per time interval. 
 

C. Comparison with the Existing Method 
Next, we compare the performance of the state equation (5) 

with that used in [12]. As mentioned earlier, the model 
considered in [12], i.e. equation (1), ignores lane change 
effect. Hence it works well only if few vehicles make lane 
changes. Consequently when there are a substantial number of 
vehicles that change their lanes, state equation (1) fails to 
reflect the true dynamic of traffic flow, and thus we expect the 
model has a poorer performance.  

Fig. 1 (lower) displays the ‘true’ vehicle counts in the 
middle lane (broken line) and the corresponding estimated 
values (real line) based on state equation (1) in one run of the 
experiment.  It can be seen that the quality of the estimates 
was poor: the impact of lane change was substantial and 

consequently the estimated density greatly departed from the 
‘true’ values. 

 
Table II 

Average RMSEs over 100 simulation runs for a three-lane roadway 
using the state equation in [12] with λ=10 

 
 τ = 1 τ = 3 

σ Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3 
1 2.11 15.36 1.75 2.37 15.00 1.88 
2 2.69 17.08 2.65 2.05 14.89 1.65 
3 3.40 19.16 3.36 2.04 15.24 1.93 

 
Table II shows the RMSE values averaged over 100 

repeated runs for different settings of the parameters. It can be 
seen from Table II that the estimation errors are larger than 
their counterparts in Table I. Clearly this is the consequence 
that the lane change effect was not taken into account in state 
equation (1). As expected, the estimation for the middle lane, 
lane 2, is particularly problematic as it was associated with a 
substantial number of lane changes.  

 

IV. SIMULATION STUDY FOR DENSITY ESTIMATION 
USING THE TRANSFORMATION 

In this section, simulation experiments will be conducted to 
examine the approach of transforming the observation 
equation from the nonlinear form (4) to the linear equation (8), 
and to investigate its impact on the traffic density estimation. 
For ease of comparison, the state equation in the comparison 
will be kept to be the same, i.e. equation (1), so that we can 
focus on the transformation for the observation equation. 
Specifically we will consider two state space models: (a) 
Model I with state equation (1) and the transformed 
observation equation (8); (b) Model II with state equation (1) 
and the untransformed observation equation (4). 
 

A. Simulation Description 
From a practical perspective, using state equation (1) in the 

simulation study implies that we restrict our interests to the 
scenario where lane change maneuvers are not common in the 
roadway segments under investigation. Hence, in the 
experiments conducted in this section, the ‘true’ traffic 
densities were simulated with an identity system matrix A. As 
it was assumed there was no interaction between lanes, we 
focused on a single lane with two roadway segments in 
tandem set equal to 400 and 600 meters long respectively. All 
the other experiment settings were kept to be the same as in 
the previous section. 
 

B. Simulation Results 
For the second roadway segment with λ=10, σ=3 and τ=1, 

Fig. 2 (upper) displays the ‘true’ vehicle counts (broken line) 
and the corresponding estimates (real line) in one run of the 
experiment using the transformation method. It can be seen 
that the transformation method performed well: the estimated 
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counts were close to the ‘true’ values. 

 
Fig. 2. The ‘true’ vehicle counts for segment 2 (broken line) and the estimated 
values (real line) using the transformation approach (upper graph) and using 
the method in [12] (lower graph). 

It is of interest to investigate the impact of the different 
error parameters σ and τ on the accuracy of estimation. Table 
III displays RMSE values for different settings using the 
transformation approach. It can be seen that overall the 
estimated traffic counts were quite accurate for small σ and τ. 
When σ and τ  became large, the average estimation error 
increased but still was within an acceptable level. 

 
Table III 

  Average RMSEs over 100 simulation runs for two roadway 
segments with λ=10 using the transformation approach  

 
 Segment  τ=1 τ =2 τ =3 

σ=1 1 
2 

0.64 
0.97 

0.97 
1.44 

1.27 
1.88 

 σ=2 1 
2 

0.62 
0.91 

0.98 
1.44 

1.29 
1.88 

σ=3 1 
2 

0.62 
0.88 

0.96 
1.39 

1.28 
1.87 

 

C. Comparison with the Existing Method 
Next the performance of the transformation approach will 

be compared with that used in [12] where no transformation is 
applied, i.e. vehicle counts are estimated using the extended 
Kalman filter. Table IV displays the RMSE values for 
different parameter settings.   

 
Table IV 

  Average RMSEs over 100 simulation runs for two roadway 
segments with λ=10 using the method in [12]  

 
 Segment      τ=1       τ =2  τ =3 

σ=1 1 
2 

0.94 
1.08 

1.15 
1.51 

1.41 
1.99 

 σ=2 1 
2 

4.66 
4.07 

3.62 
3.66 

3.21 
3.40 

σ=3 1 
2 

11.90 
9.03 

7.84 
7.31 

6.62 
6.82 

 

It can be seen that overall the estimation errors in Table IV 
were larger than their counterparts in Table III, in particular 
when the measurement errors were not small. This is not 
surprising. As pointed out earlier, the method in [12] is an 
approximate method. In the conducted simulation 
experiments, it was not unusual that it completely broke down 
(i.e. greatly deviated from the trajectory of actual vehicular 
density). 

To have a closer look at the performance of the method 
used in [12], the simulated traffic data used in the upper graph 
of Fig. 2 were re-analyzed using the method in [12]. The 
results are displayed in the lower graph of Fig. 2. It can be 
seen that the performance of the method in [12] was not 
stable: it can perform well but also can be completely off the 
track. Overall it was not robust against perturbations. 
Presumably this was the consequence of the linearization in 
the extended Kalman filter.   

 

V. A REAL TRAFFIC STUDY  
In this section, we use real traffic data to illustrate the 

developed state space model.  
The real traffic data measured by two loop detector stations 

were collected on a normal weekday, Wednesday 13rd June 
2007. The loop detector stations are located near Seattle with 
three lanes in both the westbound and eastbound directions. 
For illustration purposes, we focused on the westbound lanes 
only for the time period from 16:00 p.m. to 19:00 p.m. 

 
Fig. 3. The net gains of vehicles entering and leaving the roadway segment 
(upper) and the speed measurements (lower) in the middle lane of the roadway 
segment. 
 

The segment of interest is defined by the two loop detector 
stations. The analysis was based on the net gains 𝐰(𝑡) of 
vehicles entering and leaving the roadway segment and the 
corresponding speed measurements 𝐯(𝑡). The upper and lower 
graphs of Fig. 3 display the net gains and the corresponding 
speed measurements in the middle lane. It can be seen that the 
traffic condition was stable during the time period of interest. 
The net gains fluctuated around 0 and the vehicle speed was 
stable at a relatively low level. The pattern for the innermost 
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and outermost lanes (not shown here) is similar.  
In the analysis, the data collected on 13rd June 2007 were 

treated as modeling data upon which the system matrix A in 
the state equation (5) was identified using MATLAB Systems 
Identification toolbox, as shown below: 

 

      𝐀 = �
0.77 0.22 0
0.23 0.62 0.17

0 0.16 0.83
�.       (9) 

 
Clearly, for all three lanes there were a considerable 
proportion of vehicles changing their lanes. For lane 2, for 
example, there were about 22% of vehicles in lane 2 changing 
to lane 1, and about 16% of vehicles changing to lane 3. 
Hence the lane change effect was not ignorable. 

To illustrate the developed method, we also collected the 
net gain data and speed measurements for the same time 
period one week later, i.e. Wednesday 20th June 2007. We first 
assumed that the pattern of lane-change was retained 
unchanged, as shown in (9). Using the developed state space 
model with equations (5) and (8), we applied the Kalman filter 
to estimate traffic densities on 20th June 2007. Here for 
illustration purposes we followed [12] to set the tuning 
parameters in the analysis. In practice, these parameters 
should be carefully tuned in order to achieve the best 
performance. The estimated traffic densities in the middle lane 
are displayed in Fig. 4.    

 
Fig. 4. The estimated traffic densities in the middle lane of the roadway 
segment using system matrix A in (9). 

 
To investigate the issue of robustness, we also estimated the 

system matrix using the data on 20th June 2007: 
 

𝐀� = �
0.79 0.20 0
0.21 0.66 0.15

0 0.14 0.85
�. 

 
Due to sampling error, it is not surprising that matrix 𝐀� 

differs from A given in (9). However, it is also clear that the 
difference is small and the general pattern is kept unchanged. 
This suggests that the lane change behavior was more or less 
stable and did not change much.    

We then applied the Kalman filter with matrix 𝐀� to estimate 
traffic densities for the same data. It turned out that the 

estimated traffic densities were close to that obtained earlier 
using matrix A in (9): the RMSE between them is 0.24, i.e. 
less than a quarter of one vehicle. Hence, the approach is not 
sensitive to small changes in the entries of the system matrix. 

 

VI. CONCLUSIONS AND DISCUSSION 
In this paper, we have investigated traffic flow modeling via 

the approach of state space model, and the application of 
Kalman filter to roadway traffic density estimation. We have 
used a Markov chain to describe lane change behavior so that 
the state equation can better reflect the movements of vehicles 
between lanes. In addition, in order to avoid the approximation 
in the extended Kalman filter, we have investigated a 
transformation approach which transforms the nonlinear 
observation equation to a linear form. The performance of the 
developed state space model was investigated in the 
simulation studies. It is shown that it has substantially 
increased the accuracy of the traffic density estimation.      

The developed approach has important practical 
implications. In practice, loop detectors are widely deployed 
in strategic roadway networks so potentially the developed 
methods can be widely applied to provide an effective 
approach to traffic surveillance.  The estimated traffic density 
can facilitate traffic management of networks, and also 
provide inputs for both long-term transport planning and 
short-term traffic control.  

It should be noted that the developed state space model in 
this paper has some limitations. First, it is assumed that 
relatively dense loop detector stations are deployed (for 
instance, they are about 500 meters to 1500 meters apart) to 
provide the required data for traffic density estimation. In 
practice when this is not the case, the develop approach must 
be used with care: the estimation errors can become larger 
when a segment is longer. Secondly, it is assumed that the 
traffic condition is stable so that the probabilities of lane 
change retain approximately constant. The assumption of a 
time-invariant system could go wrong in reality. This is 
because state equation (5) considered in this paper is simply 
an approximation of a more general time-varying system. 
Technically one possible approach to addressing this issue is 
to incorporate an adaptive algorithm to online update the 
coefficients of the system matrix in state equation (5). This 
approach will be explored in our future research. 
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