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Transmittance spectra of fungi were estimated from seven band 
optical micrographs. The optical microscope adjusted with single 
-chip CCD camera with seven band filters was used for image 
acquisition. The Wiener method was applied to estimate the 
transmittance spectra of five species which belong to one genus of 
fungi. The Wiener estimation operator was calculated using 
transmittance spectra of sixteen color transparencies and the 
corresponding camera responses. The estimated transmittance 
spectra were used for segmentation of conidia and hyphae in 
fungal optical micrographs, then the competitive learning in 
artificial neural network was applied to the segmentation.  
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1. Introduction 
Genebanks play a leading role in the preservation and 
documentation of genetic resources related to agriculture 
worldwide.1 One of the most difficult issues in managing a 
genebank collection is accurate identification of conserved 
germplasm. The identification of fungi poses particular problems 
due to the lack of morphological characteristics to readily 
distinguish different species. Shape and color of fungi are 
important in correct identification of fungi. Since the numbers of 
accessions in a genebank are high in proportion to the number of 
experts who can identify them, it is necessary to develop a 
system which will enable fungi to be automatically identified. 

Transmittance spectra have been used as a criterion for 
identification of objects, since spectroscopic distribution reflects 
physical and chemical features of materials.2 On the other hand, 
the information of images with R, G and B channels is influenced 
by spectral characteristics of the imaging system and illuminant, 
as a consequence physical and chemical features are buried 
under these spectral characteristics. 

To estimate transmittance spectra, a multiband imaging 
system using interference filters has been developed,3,4 and an 
imaging system attached a spectral illuminant modulator using 
liquid crystal has been designed.2 Transmittance spectra of 
micrographs were successfully estimated using the proposed 
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imaging systems. However, in the system using interference 
filters, signal-to-noise ratio is low because of their narrow band 
characteristics and many band images are required for a wide 
range of wavelengths, in the later system, special equipment is 
required for filtering.  

Recently, color correction techniques based on an estimation 
of reflectance spectra have been proposed 5-9 using broad band 
filters. The techniques were applied to various imaging systems 
such as art painting reproduction 10-12, human skin reproduction 
13, internet shopping 14, and telemedicine 15. The color spectra of 
natural samples have smooth shapes.16,17 Thus high dimensional 
vectors of spectra are redundant to represent them, and the 
vectors will exist in limited vector subspace. This subspace can be 
represented by low dimensional basis. The low dimensional 
linear approximation method 5-9 or the Wiener method 11,18 are 
often used for the estimation of reflectance spectra from 
multiband images using several broad band filters. The 
signal-to-noise ratio is increased by the broad band characteristic 
of filters compared with interference filters.19 

In this paper, the spatial distributions of transmittance 
spectra in optical micrographs are estimated from multiband 
images taken by CCD camera with broad band filters. Wiener’s 
estimation method is used to estimate transmittance spectra of 
objects. In the next section, the image acquisition system and the 
Wiener estimation method are introduced. In section 3, we 
explain the process of estimating transmittance spectra from 
fungal micrographs. In section 4, segmentation of conidia and 
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hyphae using an artificial neural network is explained, and 
segmentation based on transmittance spectra is compared with 
segmentation based on RGB images. In section 5, our conclusions 
are presented. 
 

2. Image acquisition system  
The imaging system to take multiband images in optical 
microscope is shown (Fig. 1). A digital camera (Kodak DCS420m, 
1536x1024 pixels) is adjusted at the optical microscope 
(OLYMPUS BX50) with an objective (UPlanApo40 ), a 40× ×  

magnification. The digital camera is controlled by a personal 
computer. During the experiment, seven filters with broad band 
were used to take multiband images, and each filter is inserted in 
turn between condenser lens and light source (Halogen lamp). 
The transmittance spectra of seven filters are shown (Fig. 2). 

The principle of the image acquisition system and Wiener 
estimation method 11,18 are formulated as follows. 
 
A. Formulation of Image Acquisition 

The response v  at position (  of the digital camera 
with i-th color filter is expressed by 

i (x, y) x, y)

 

vi (x, y) = ti410

700
∫ (λ)E(λ)S(λ )o(x, y;λ)dλ , i=1,...,m,     (1) 

 
where λ is wavelength. ti (λ), E(λ), S(λ), and o(x,y;λ) denote 
spectral transmittance of i-th filter, radiance of light source, total 
sensitivity of camera and spectral transmittance of object at 
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position , respectively. We assumed that the number of 
bands m to take image is equal to seven and the noise in taking 
images can be ignored for the broad band filters. 

(x, y)

The spectral characteristics of each element from 410 to 700 
nm were sampled at 10 nm interval. Consequently, the number 
of elements l for discrete spectral data becomes 30. Using the 
vector-matrix notation, Eq. (1) can be expressed as, 

 

v=Fo,                                                                   (2) 
 

where v denotes a column vector with m elements representing 
the camera responses and o denotes a column vector with l 
elements representing the spectral transmittance of object. The 
coordinate (x,y) in v and o is eliminated for simplicity. These two 
vectors are related by a linear system matrix F with m × l 
components. The matrix F is expressed as 

 

F=TES,                                                                (3) 

 

where 

 

T=[t1, t2 ,..., tm]t.                                                        (4) 

 

The vector ti , i = 1,2, …, m, denotes a column vector representing 

the transmittance of i-th filter and [.]t represents transposition. 
The matrices E and S denote l × l diagonal matrices 
corresponding to the spectral radiance of the light source and the 
spectral sensitivity of the camera, respectively. 
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B. Wiener estimation 

Estimated spectral transmittance oest is given by the following 
linear operation of the Wiener method. 

 

oest=Gv.                                                                  (5) 

 

The matrix G is determined to minimize the ensemble average of 
the square error ε  between the original and estimated 
transmittance spectra, 

 

ε =<(o-oest)t(o-oest)>.                                      (6) 
 

Here <.> represents ensemble average. The matrix G is explicitly 
expressed by 

 

G=RovRvv
-1,                                               (7) 

 

where Rov and Rvv denote correlation matrices defined as 

 

Rov=<ovt>, Rvv=<vvt>.                                    (8) 
 

Equations (5) to (8) show that the Wiener estimation requires 
second order statistics with respect to original transmittance 
spectra and camera response. In this study, these correlation 
matrices were approximated by using the transmittance spectra 
of sixteen color transparencies and the corresponding camera 
responses. 
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3. Estimation of transmittance spectra from micrograph 
Transmittance spectra of sixteen color transparencies were 
measured by a spectral photometer in advance, and the seven 
band images of the color transparencies were taken by the image 
acquisition system. The transmittance spectra of the sixteen 
color transparencies are shown (Fig. 3). The Wiener operator G in 
Eq. (7) was calculated using these measured transmittance 
spectra and camera responses. The estimated transmittance 
spectra by five to seven band filters for the sixteen color 
transparencies were compared with the original ones using 
normalized root mean square error (NRMSE) (Table 1). From the 
Table 1, we can see the efficiency of seven band images. 
Therefore, seven band images of fungi were taken by the 
proposed imaging system and the transmittance spectra of these 
images were estimated. Due to experimental limitations the 
number of band filters and color transparencies used are 
determined empirically. 

In this study, we cultivated five species; longibrachiatum, 
hamatum, harzianum, viride, polysporum which belong to the 
genus Trichoderma 20,21 on four kinds of media; potato dextrose 
agar (PDA), special nutrient agar (SNA), corn meal dextrose agar 
(CMD), malt extract agar (ME). Transmittance spectra of fungi 
were calculated from camera responses in each pixel and the 
above estimation operator G. A schematic diagram of the above 
estimation process is shown (Fig. 4). In each pixel, spectral 
transmittance can be estimated from each camera response 
vector using the Wiener operator G. In this paper, we call this 
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2-dimensional distribution of transmittance spectra a 
transmittance spectra image. 

Figures 5(a),(b) show examples of transmittance spectra 
extracted from conidia, hyphae, and medium of T. 
longibrachiatum on PDA and T. hamatum on CMD, respectively. 
The transmittance spectra of each constituent, that is conidia, 
hyphae, and medium, is different from each other, and there is a 
difference between transmittance spectra of the two species. 
Slices of transmittance spectra image of T. longibrachiatum at 
450 nm and 600 nm are shown (Fig. 6). 
 
4. Segmentation using artificial neural network 
The information on the estimated transmittance spectra was 
used for the segmentation of fungal micrographs. Segmentation 
of conidia and hyphae is required to identify Trichoderma, 
because the criterion is defined by the shape and color of conidia 
and hyphae, respectively.20,21 In this study, an artificial 
competitive learning neural network 22 was applied to the 
segmentation from fungal optical micrographs. As input vectors 
to the artificial neural network, color vectors of transmittance 
spectra and RGB values were considered in each pixel of the 
fungal image with 301 × 361 pixels. The architecture of the 
artificial neural network used in this experiment is shown (Fig. 
7). When the dimensions of the input vector is n, the i-th neuron 
has n-dimensional weight vector wi. All weight vectors are 
initialized at the center of all color vectors in the image.  

At every learning step, an n-dimensional input vector p is 
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randomly extracted from all color vectors in the image, and the 
i-th neuron produces an internal value i according to the 
following equation. 

c

c

 

i = − || p − wi || + bi ,                                   (9) 
 

where ||.|| is the operation of the Euclidean vector norm, and bi is 
the bias in the i-th neuron.  

The internal values compete in the layer, then the neuron 
which has the highest internal value in the layer is selected as a 
winner neuron. This neuron is given the value 1. All other 
neurons are given a value of 0.  

The bias of the winner neuron is decreased and the weight 
vector is modified as follows. 

 

w’ = w + lr ×  ( p - wi ),                                (10) 
 

where w’ is the modified weight vector, lr is the learning rate. 
The biases of the other neurons are increased, and the weight 
vectors are not modified in this learning method. The biases are 
modified so that all neurons have the similar opportunity to win. 

An example of learning step is shown (Fig. 8). It is 
considered that the dimension of weight vector is two, the 
number of neurons is three, and weight vector w1 is the closest to 
the input vector p. When the biases are the same in all neurons, 
the neuron with the closest weight vector to the input vector 
becomes the winner neuron. 

The number of times the learning step is repeated is decided 
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prior to an experiment. After the repeated learning steps are 
performed, final weight vectors, which are a cluster feature of 
some input vectors, are generated.  

In this study, the number of neurons was set at three to 
separate it into three clusters, there were 150,000 learning steps, 
and learning rate was 0.1. The dimension of color vector was 21 
for transmittance spectra sampled from 450 nm to 650 nm at 10 
nm intervals and three for RGB values. The range of wavelength 
less than 450 nm and more than 650 nm is strongly influenced by 
noise, so this range was not used as a color vector.  

At the end of the neuron learning steps, each color vector in 
the image is assigned to the neuron whose final weight vector is 
the closest to the color vector. Figures 9(a),(b) show segmentation 
images of T. longibrachiatum based on transmittance spectra and 
RGB values, respectively. In Fig. 9(a), black, gray, and white 
parts correspond to conidia, hyphae, and medium, respectively. 
In Fig. 9(b), black and white parts correspond to conidia and 
medium, respectively, however, the gray part include both 
hyphae and medium, namely, medium is segmented into hyphae. 
Segmentation based on transmittance spectra is more accurate 
than that based on RGB values.

 
 
5. Conclusions 
A method to estimate transmittance spectra in optical 
micrograph  has been proposed. The Wiener estimation operator 
was calculated from transmittance spectra of sixteen color 
transparencies and the camera responses, then transmittance 
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spectra of all pixels in the micrograph were estimated from 
multiband images. The method was applied to analyze a fungal 
micrograph, and the estimated transmittance spectra were 
successfully used for segmentation of the micrograph. 
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Figure captions 
 
Fig. 1. Multiband imaging system for microscopy. 
 
Fig. 2. Transmittance spectra of seven filters. 
 
Fig. 3. Transmittance spectra of sixteen color transparencies. 
 
Fig. 4. Schematic diagram for the estimation of transmittance 

spectra image. 
 
Fig. 5. Examples of transmittance spectra extracted from 

conidia, hyphae, and medium; (a)T. longibrachiatum on 
PDA, (b)T. hamatum on CMD. 
 

Fig. 6. Slices of transmittance spectra image at 450nm and 
600nm. 
 

Fig. 7. The architecture of the neural network used in the 
competitive learning method, where the highest internal 
value is c2 . 

 
Fig. 8. Example of learning step with two dimensional weight 

vector w, three neurons, and input vector p. and w1 is the 
closest to input vector.
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Fig. 9. (a) Segmentation image of T. longibrachiatum based on 
transmittance spectra. Black part: conidia, gray part: 
hyphae, white part: medium. (b) Segmentation image of T. 
longibrachiatum based on RGB value. Black part: conidia, 
gray part: hyphae and medium, white part: medium. 
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Table 1. Normalized root mean square error (NRMSE) between 
the original and estimated spectral transmittance of sixteen 
transparencies. 
 
 
Number of band           5            6            7 
 
NRMSE               0.0400       0.0369       0.0352 
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