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Estimation of tropical forest height and biomass dynamics

using lidar remote sensing at La Selva, Costa Rica
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[1] In this paper we present the results of an experiment to measure forest structure and
biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica
using a medium resolution lidar. Our main objective was to observe changes in forest
canopy height, related height metrics, and biomass, and from these map sources and sinks
of carbon across the landscape. The Laser Vegetation Imaging Sensor (LVIS) measured
canopy structure over La Selva in 1998 and again in 2005. Changes in waveform
metrics were related to field‐derived changes in estimated aboveground biomass from a
series of old growth and secondary forest plots. Pairwise comparisons of nearly coincident
lidar footprints between years showed canopy top height changes that coincided with
expected changes based on land cover types. Old growth forests had a net loss in height of
−0.33 m, while secondary forests had net gain of 2.08 m. Multiple linear regression
was used to relate lidar metrics with biomass changes for combined old growth and
secondary forest plots, giving an r2 of 0.65 and an RSE of 10.5 Mg/ha, but both parametric
and bootstrapped confidence intervals were wide, suggesting weaker model performance.
The plot level relationships were then used to map biomass changes across La Selva
using LVIS at a 1 ha scale. The spatial patterns of biomass changes matched expected
patterns given the distribution of land cover types at La Selva, with secondary forests
showing a gain of 25 Mg/ha and old growth forests showing little change (2 Mg/ha).
Prediction intervals were calculated to assess uncertainty for each 1 ha cell to ascertain
whether the data and methods used could confidently estimate the sign (source or sink)
of the biomass changes. The resulting map showed most of the old growth areas as neutral
(no net biomass change), with widely scattered and isolated sources and sinks. Secondary
forests in contrast were mostly sinks or neutral, but were never sources. By quantifying
both the magnitude of biomass changes and the sensitivity of lidar to detect them, this
work will help inform the formulation of future space missions focused on biomass
dynamics, such as NASA’s Deformation Ecosystem Structure and Dynamics of Ice mission.
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1. Introduction

[2] Forests are the focus of intense research in global
environmental change. The effects on carbon of natural and

anthropogenic forest structural changes and dynamics are of
particular interest. A major source of error in estimates of
land surface carbon and other biogeochemical fluxes arises
from uncertainty in prescribing initial forest carbon stocks,
and subsequent changes to these from growth, degradation
and deforestation [Brown, 1997;Houghton et al., 2001;Clark,
2004; Houghton and Goetz, 2008]. Furthermore, attempts
to understand and predict how tropical forests will respond
to continued global changes in climate will require refined
and spatially explicit estimates of biomass and other forest
structure changes [Clark, 2004].
[3] New remote sensing technologies have the potential to

provide these estimates by quantifying stocks, sources, and
sinks of land surface carbon [Houghton and Goetz, 2008].
Among these technologies is lidar remote sensing. Studies
using airborne and spaceborne lidar have validated its ability
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to retrieve many aspects of forest structure important for
carbon and ecosystem studies, including canopy height, leaf
distribution, and aboveground biomass stocks [Lefsky et al.,
2002; Drake et al., 2002a; Clark et al., 2004; Naesset and
Gobakken, 2005]. Three NASA missions have used lidar
as a central aspect of an observing strategy for forest struc-
ture. The first was the Vegetation Canopy Lidar (VCL)
which was never launched [Dubayah et al., 1997]. The sec-
ond is the ICESAT (Ice, Cloud, and land Elevation Satellite)
mission [Lefsky et al., 2005] currently in orbit. The third is the
planned DESDynI (Deformation, Ecosystem Structure, and
Dynamics of Ice) mission [Donnellan et al., 2008]. DESDynI
will combine a multibeam lidar with polarimetric and inter-
ferometric SAR capability to measure forest structure, bio-
mass, and their dynamics. One of the motivations of our
research is to explore the efficacy of lidar for capturing forest
structural changes to help inform planning of the DESDynI
mission.
[4] A major application of forest structure data from

DESDynI and other sources is for carbon flux modeling.
Forests are typically a heterogeneous mixture of stands of
different successional age and both ecosystem structure and
carbon fluxes vary strongly with successional status. This
heterogeneity is typically manifested through variability in
canopy height. Observations of these heights by lidar provide
large clues to the successional state of the vegetation. The
assumption is that taller trees are older and shorter trees are
younger. Using lidar‐derived heights under this assumption
in ecosystem modeling greatly constrains model estimates of
aboveground biomass and associated carbon flux between
the vegetation and the atmosphere [Hurtt et al., 2004; Thomas
et al., 2008].
[5] However, knowledge of canopy height alone is not

always sufficient to ascertain successional status and there-
fore the sign (source or sink) and magnitude of carbon fluxes
for particular areas, even when initial carbon stocks are cor-
rectly determined. This is because stands may be short not
because they are young, but rather because they are limited
by edaphic and climatic conditions [Clark and Clark, 2000].
Modeled fluxes will then vary greatly depending on the
prescribed successional state. One way to overcome these
obstacles is to directly measure canopy changes by acquiring
two or more sets of canopy structure observations separated
in time [Kellner et al., 2009]. Successional status may be
inferred, rates of regrowth and mortality directly observed,
and biomass accumulation and loss more directly modeled.
Given the difficulties of measuring canopy dynamics in the
field, there is considerable uncertainty about rates of regrowth
and mortality in tropical forests. Furthermore, the efficacy of
waveform lidar, such as used from spaceborne missions, to
determine such changes across a tropical land use gradient
has not been demonstrated.
[6] In this paper we present the results of an experiment to

measure canopy structure dynamics over the tropical forests
of La Selva Biological Station in Costa Rica between the
years 1998 and 2005 using a medium resolution (25 m
footprint) lidar. Our main objective was to observe changes in
forest canopy height, related height metrics, and estimated
aboveground biomass (hereafter “biomass”), and from these
map sources and sinks of carbon across the landscape. This
research further provides an assessment of the capability of
medium resolution, waveform lidar to determine canopy

changes over subdecadal time spans. By quantifying both the
magnitude of the changes, as well as the sensitivity of lidar to
detect them, this work will help inform the formulation of
future space missions focused on biomass dynamics, such as
DESDynI.

2. Lidar Remote Sensing at La Selva

[7] La Selva Biological Station is located in northeast
Costa Rica. The area is renowned for the depth, variety, and
history of its biological data sets, and is among the most
studied field sites in the humid tropics. The topography of
the area is varied but low lying (<150 m) and receives 4 m
of rain on average per year (see McDade et al. [1994] for
full overview of La Selva). The Station proper is a mix of
old growth and secondary lowland Tropical Wet Forest
[Hartshorn and Hammel, 1994], along with remnant plan-
tations and various agroforestry treatments. As part of a long‐
term study called the Carbono Project [Clark and Clark,
2000], all stems ≥10 cm diameter (at 1.3 m height or above
basal irregularities like buttresses) in a network of 180.5 ha
old growth plots are censused annually for growth, mortality
and recruitment. Plot‐level basal area and allometrically
estimated aboveground biomass (EAGB) are calculated
yearly [Clark and Clark, 2000]. We used EAGB data from
the September–October 1997 and September–October 2004
Carbono censuses to comparewith lidar data acquired in 1998
and 2005. Additionally, information including stand age,
basal area, EAGB, and tree density were collected for all
stems >5 cm diameter in two, 1 ha secondary forest plots
at La Selva during the study period [Chazdon et al., 2007].
Stem diameter is used to calculate EAGB using Brown’s
[1997] equation for tropical wet forests. These field data
are summarized in Table 1 and Figure 1.
[8] Lidar data were acquired over the La Selva region by

the Laser Vegetation Imaging Sensor (LVIS) [Blair et al.,
1999]. LVIS is a medium altitude, waveform digitizing lidar.
Footprint size can be varied, but it is usually flown in amedium
resolution format with diameters from 10 to 30 m. The return
signal is digitized to correspond to a vertical resolution of
30 cm that provides a vertical record of intercepted canopy
surfaces. From each waveform, canopy height, canopy ver-
tical metrics, and subcanopy topography may be directly
derived, relative to the WGS‐84 ellipsoid (see Hofton and
Blair [2002] and Hofton et al. [2002, 2006a] for more
details). Waveforms are geolocated generally to within 2 m
or better [Blair and Hofton, 1999].
[9] LVIS was flown over La Selva in March 1998 at an

altitude of 8 km. Nominal footprint diameters were 25 m,
with 80 footprints scanned across track (separated by 25 m),
and 9 m separation (overlapping) along track [Hofton et al.,
2002]. La Selva was then reflown by LVIS in March 2005 at
an altitude of 10 km. The swath width in 2005 was 2 km,
using 25 m footprints with 20 m spacing along track and
across track. The initial 1998 flight was a part of a cali-
bration and validation campaign for the VCL mission.
[10] Although LVIS is an imaging lidar, the images are

made up individual footprints. For various reasons, such as
cloud cover, flight path irregularities, pointing and noise,
among others, portions of the landscape may not be com-
pletely mapped. In addition, because footprints overlap and
there are often overlapping flight lines, some portions may
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be mapped several times during the same campaign. Thus a
given area on the ground may have varying numbers of
spatially irregular lidar observations (given in Table 1) either
between plots or between years.
[11] Although canopy height is a primary measurement,

other waveform metrics are calculated. Among these are the
relative height (RH) metrics associated with energy quan-
tiles (25%, 50%, and 75%). For example, the RH50 metric
or HOME (height of median energy) is the height above the

ground elevation at which 50% of the returned energy in the
waveform (including the ground portion of the return) is
above and 50% below. We calculate these metrics because
they have been shown to be useful predictors of biomass and
of canopy vertical structure [Drake et al., 2002a, 2002b,
2003; Duong et al., 2008].
[12] Some of the essential features of the waveform are

shown in Figure 2. The entire “extent” of the waveform is
first positioned in absolute elevation space relative to an
ellipsoid (such as WGS‐84). The extent goes from the first
return above a noise threshold (the “leading edge”) to the
last return above the noise threshold (the “trailing edge”).
The ground return is that portion of the waveform that ori-
ginates from reflectance off the ground underneath the
canopy and is found by starting at the trailing edge and
subsequently finding an inflection point or peak where the
slope of the waveform changes from positive to negative.
The strength of this return is dependent on several factors,
but most importantly on canopy cover, ground reflectance
and slope. The elevation of the ground return is specified as
the center of the ground return portion. The location of the
ground, in elevation space, must always be above the
trailing edge.
[13] The ground return ordinarily is strong and there is

usually little doubt about its elevation. However, for weak
returns there is often an element of interpretation. This
occurs for two reasons. The first is that weak returns seldom
show sharp central peaks, so that automated algorithms either
interpret other peaks as ground or have difficulty deciding

Table 1. Estimated Aboveground Biomass Data From La Selvaa

ID

Biomass (Mg/ha)
Biomass

Change (Mg/ha),
2005–1998

Number of Lidar
Observations

1998 2005 1998 2005

a1 176.11 181.06 4.95 35 65
a2 135.32 150.26 14.94 35 16
a3 166.87 157.59 −9.28 23 34
a4 178.20 186.26 8.06 25 33
a5 180.79 197.81 17.02 26 27
a6 161.71 177.27 15.56 11 51
l1 134.66 120.91 −13.75 20 38
l2 135.84 119.63 −16.22 25 32
l3 180.37 163.70 −16.67 13 46
l4 133.45 118.99 −14.46 20 50
l5 157.96 151.61 −6.35 17 63
l6 160.34 169.28 8.94 21 63
lep* 144.67 175.62 30.95 62 40
lsur* 90.73 142.08 51.34 20 38
p1 105.53 123.52 17.99 26 26
p2 137.94 137.71 −0.22 17 20
p3 162.15 163.43 1.28 23 49
p4 172.23 182.12 9.89 9 45
p5 194.95 192.94 −2.00 29 54
p6 160.61 143.47 −17.14 19 40

aLidar observations refer to the number of lidar footprints that fell within
a plot in a particular year. Plots labeled “a” are on flat inceptisols, “l” plots
are on flat ultisols, and “p” plots are on steep ultisol slopes. Plots lep* and
lsur* are 1.0 ha secondary forest plots. All others are 0.5 ha old growth
plots of the Carbono project.

Figure 1. Changes in EAGB for 18 old growth Carbono
plots and two secondary forest plots. Over the 7 year period,
changes in EAGB for the Carbono plots were mostly bal-
anced between those that gained and those that lost biomass
(sinks and sources, respectively), whereas the two secondary
plots were strong sinks.

Figure 2. Components of a return lidar waveform. The
endpoints of the waveform extent are positioned in elevation
space relative to the WGS‐84 ellipsoid. The RH metrics are
the quantiles of the cumulative return (the monotonically
increasing curve) starting at the trailing edge, but expressed
as a height above the interpreted ground return. RH100 corre-
sponds to height above the ground of the highest reflecting
surface that triggers a return above the noise level. Because
of canopy penetration, this height may be below the actual
tallest leaves in the canopy. The ground portion of the return
is shown as bold.
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exactly where the center of an extended bump is in elevation
space. The second reason is that the last detectable return may
be in the canopy because insufficient numbers of photons
penetrated to the ground, as can happen in canopies with very
high cover. In this case, even though the waveform extent
from leading to trailing edge is correctly located in elevation
space to within tens of centimeters, the canopy will be mis-
interpreted as ground.
[14] The canopy return is that portion of the waveform

that originates from the canopy components themselves. The
top of the canopy return is found by starting at the leading
edge of the return until a signal greater then some noise
threshold is found. Maximum canopy height above the
ground (RH100) is found by subtracting the elevation of the
leading edge of the waveform from the determined ground
elevation. This maximum height is more properly viewed as
the “highest reflecting surface height” because it is depen-
dent on sufficient canopy material (about 0.5 m2 in the case
of LVIS) to enable a reflectance above the noise threshold.
[15] Canopy height metrics are energy based, and other

than RH100, are not generally validated because they are
viewed as fundamental measurements (e.g., like measures of
radiance for passive optical sensors), simply measuring the
height where that amount of energy has been accumulated.
These heights are all given relative to the ground, so that if
the ground is found incorrectly, the RH metrics will have
corresponding errors.
[16] Areas of dense canopy with high canopy cover as

found in La Selva may sometimes present a challenge for
lidar. LVIS was designed to be sensitive enough to detect a
ground pulse in canopy cover of up to 99% and comparisons
with small‐footprint systems have shown this to be true
[Hofton et al., 2002]. However, certain environmental con-
ditions such as slope or low‐lying canopy material such as
shrubs can weaken already weak ground returns to the point
where automated ground finding algorithms misidentify the

ground and assign an elevation that is either too high or too
low. As will be shown, some lidar data at La Selva show
signals of ground finding errors, evidenced by an apparent
change in the ground elevation between acquisition years.
[17] One approach when considering canopy height change

is to compare the change in the ranges (distances) to the top of
canopy from the sensor, which are readily converted to ele-
vations above the ellipsoid. We call this range‐based canopy
top elevation RHE100 where the subscript now denotes the
height is relative to the ellipsoid. Thus a change in height may
be found by subtracting two RHE100 measurements. The
other RH metrics may also be defined in elevation terms
relative to their height above the ellipsoid as well. Even though
the RHE metrics are integrals (except for RHE100), their
starting point is always defined relative to the trailing edge,
not the ground (i.e., the integration does not start from the
center of the ground peak, but below it as shown in Figure 2).
Their elevation will be correct even if the ground is found
incorrectly in the waveform as long as the last detectable
return originates from the ground portion and not the canopy.
If on the other hand, there is insufficient energy reaching the
ground, the trailing edge will originate in the canopy and this
canopy return will be misinterpreted as ground, even though
the waveform is correctly located in elevation space. This
would result in and both the RH and RHE metrics (except for
RHE100) having some degree of error. RHE100 will never
have errors caused by ground finding and should thus be a
better predictor of canopy change. The other RHE metrics
should also be better than their RH counterparts as it is more
common to have errors that arise from misidentification of
the location of the ground in a weak return than it is to have
no return from the ground at all.
[18] Additional possible sources of error in determining

the RHE metrics mainly are related to geolocation and range
inaccuracies. These would be expected to produce precision
errors of a few tens of centimeters for canopy range retrievals
[Hofton et al., 2002, 2006b], i.e., repeated measurements of
the canopy at the same location are precise to this level. The
accuracy (as opposed to the precision) of the range retrieval
is based primarily on the amount of leaf material near the top
of the canopy (a result of canopy shape and architecture) and
the background noise level. The background noise level
includes both system‐level noise, as well as the noise from
the solar background (the amount of reflected solar irradi-
ance in the near‐infrared in the sensor field of view).
[19] The range measurements from LVIS were validated

at La Selva in 1999 using a discrete return small‐footprint
system [Peterson, 2000]. The maximum canopy elevation
within each LVIS footprint obtained from the small footprint
system was compared to RHE100 (Figure 3). The agree-
ment was excellent (r2 = 0.97, RMSE = 3.22 m) consid-
ering the differences in spatial scale and seasonality (dry
versus wet season) that were involved. Our emphasis here
is that regardless of whether the system is small or medium
resolution, waveform or discrete return based, the funda-
mental measurement is range, and this is determined both
precisely and accurately from airborne systems.

3. Methods

[20] Three types of analyses were performed using the
1998 and 2005 data sets. In all cases, because of potential

Figure 3. Comparison of discrete return small footprint
lidar canopy elevations with LVIS over La Selva [Peterson,
2000]. There is a small (0.43 m) bias between the two data
sets that may be the result of canopy penetration by LVIS or
seasonality. LVIS data were acquired during the dry season
when some deciduousness occurs, while the small footprint
data were acquired in the wet season.
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ground finding errors, the RHE metrics were used. First,
footprint‐to‐footprint changes were assessed by comparing
differences in RHE100 for lidar footprints with centers that
were within 2 m of each other (the maximum likely geo-
location error [Hofton et al., 2002]). Figure 4 shows an
example of two sets of coincident waveforms, one illustrating
apparent growth and the other apparent loss. Because there
is a Gaussian drop in sensitivity (energy) in the waveform
from the center outward, comparisons are best done between
waveforms that are illuminating approximately the same
location. There were no field estimates of height available
for 2005 to use as direct validation of observed changes in
height. Peterson [2000] validated LVIS heights using field‐
measured heights as well as the previously discussed small‐
footprint discrete return lidar data and found good agreement
in both. Kellner et al. [2009] validated a later small‐footprint
acquisition (from 2006) using field‐based measures of can-
opy for trees ≤15 m and found good agreement as well.
[21] Second, footprint level changes were compared to

field‐based calculations of changes in EAGB in the Carbono
and secondary plots. The RHE metrics derived from LVIS
footprints that fell within the plots were averaged for each
year and associated with changes in biomass using linear
regression. Most of the plots were heavily oversampled in
each year (see Table 1) by the lidar instrument because of
overlapping flight lines. For example, some 0.5 ha plots had
over 60 LVIS footprints, for a combined area of some 6 times
greater than the plot area. None of the waveforms are identical
because they image slightly different areas (that is the foot-

prints are never exactly coincident). Therefore, all footprints
fully contained within a plot were used to obtain the average.
One secondary forest plot (ID = “lep” in Table 1), a 1 ha plot,
was not imaged uniformly in 2005 leading to unrepresenta-
tive measures of mean RHE change metrics.
[22] Last, landscape‐level canopy height changes and

EAGB changes were mapped. A 1 ha grid was placed over
La Selva and changes in RHE metrics were calculated for
each grid cell. This grid size corresponds to modeling grids
used for carbon estimation at La Selva using the Ecosystem
Demography model [Hurtt et al., 2004]. It further avoids the
problem of needing coincident footprints to estimate change.
Additionally, RHE height changes were stratified by land
cover class, including old growth, secondary, and plantation
(Organization of Tropical Studies, unpublished data, 2000).
Changes in EAGB were mapped across the entire landscape
using the relationship developed at the plot level and the 1 ha
RHE metrics.

4. Results

4.1. Footprint to Footprint Comparisons

[23] Lidar footprints with centers within 2 m of each other
were selected for analysis. This resulted in a comparison of
5595 footprint pairs. For each of these, RHE metrics and
their changes were found between years. The relationships
among select RH and RHE metrics, and apparent elevation
changes are shown in Figure 5. Note that the RH metrics are
negatively correlated with elevation changes. An apparent
gain in elevation would lead to an apparent loss of height.
Conversely, RHE100 shows no correlation with elevation
changes because ground finding is avoided. The other
metrics, such as RHE50, should show a similar improvement;
however, as discussed, ground‐finding errors caused by mis-
identifying canopy as ground may not be entirely eliminated.
Figure 6 shows histograms of changes for all of La Selva
and Table 2 summarizes these changes by land cover class.
Average canopy top height change between years was
0.57 m ± 4.64 (SD = standard deviation). Old growth
forests showed a change of −0.33 m ± 4.09 (SD). In contrast,
secondary forests had a positive change of 2.08m ± 3.71 (SD).
Plantations underwent the greatest average change in canopy
top height of 6.22 m, an expected result as these are
fast growing areas. Interestingly, selective logged forests
showed a slight positive change (0.34 m). All land cover
types showed positive changes for all RHE metrics, except
for old growth forests and an essentially zero term for
RHE75 for selectively logged forests. Only RHE25 showed a
positive change for old growth forest. As upper canopy is
lost, this increase may be indicative of the lower, formerly
suppressed canopy growing.
[24] The distributions shown in Figure 6 for metrics other

than RHE100 show a mild negative skewness, while RHE100
is positively skewed, relative to a normal distribution. This
seems reasonable given that the large amount of secondary
forests at La Selva should have positive canopy top height
changes. The distributions of changes additionally become
increasingly leptokurtic from RHE25 to RHE100.
[25] The number of RHE100 pairs that had changes

greater than 5 m was 19.9%, with about 60% (12.1% of total
pair comparisons) of these showing positive changes and
about 40% (7.9% of comparisons) showing negative changes.

Figure 4. Two LVIS waveforms from La Selva are shown
for 1998 (dashed line) and 2005 (solid line). The waveforms
show the vertical distribution of leaves and branches from
the top of canopy to the ground where the amplitude is pro-
portional to the amount of canopy material at that height.
(left) An apparent loss of upper canopy with subsequent
regrowth of the lower canopy or lateral in‐growth into the
gap from the surrounding canopy. (right) An example of
apparent growth. Note that if the regrowth or lateral filling
is rapid itmay be difficult to detect such losses through changes
in overstory canopy height. However, the great advantage of
waveform lidar is that it provides a vertical record of changes
throughout the canopy.
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The spatial distribution and magnitude of changes in canopy
top height as found using RHE100 is shown in Figure 7. As
can be seen, some secondary forest areas grew over 10 m,
consistent with known growth rates of for young forests at
La Selva.
[26] Kellner et al. [2009] performed an analysis of canopy

height and gap transitions over old growth forests in the
eastern half of La Selva proper using discrete return lidar
data separated by 8.5 years. Using the average height of all
intercepted canopy elements in 5 m cells, they found a
mean change of height for the same approximate period of
−0.32 ± 6.80 (SD), a result almost identical to ours found
using RHE100. They also report that 39% of the old growth
landscape at La Selva had changes that exceeded 5 m, and
these were evenly balanced between height gains and losses.
We see a similar pattern of balanced changes in old growth
forests in our pairwise comparisons of maximum canopy
heights (Figure 7). However, for La Selva as a whole we

found that about half as much of the landscape had such
large changes (19%), with positive changes outweighing neg-
ative changes (for differences greater than 5 m). We expect
more positive changes because our analysis includes sec-
ondary forests and plantations. We also expect to find fewer
cases of large canopy changes because the scale of our
analysis is coarser (5 m versus 25 m).
[27] A height transition matrix was constructed using

RHE100 to examine the probability of height changes from
one class to another over the 7 year period between LVIS
flights (see Kellner et al. [2009] for discussion of a matrix
constructed from the small‐footprint data above). The col-
umns in this matrix (Table 3) give the probability of a height
transition from a 1998 height class to a 2005 height class
using the footprint pair data. Values along the diagonal of this
matrix give the probability that no net change occurred (that
is, the 1998 and 2005 RHE100 heights remained in the same
height class). Reading across rows gives the likelihood that

Figure 5. Pairwise comparison of changes in select RH and RHE metrics, and apparent elevation
changes caused by differences in ground finding between years. Note that the RH metrics are negatively
correlated with apparent changes in ground elevation. RHE100 is determined without the use of ground
finding, and should be uncorrelated with elevation errors. The units on all axes are in meters.
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an observed height in 2005 originated from the height class in
that column from 1998. In general, the diagonal shows an
increasing trend: the larger the canopy height in 1998, the
more likely it was to remain in that class. For shorter canopy
heights (<30 m) transition probabilities are strongly weighted
toward positive height gains. For the shortest canopies in
1998, observed canopy top height changes could be 20 m or
more reflecting the large growth changes young secondary
forests can exhibit. For 1998 heights in presumably older
forests in the 30–40 m class, transition probabilities are rel-
atively equally weighted between changes to higher and lower
height classes. These areas appear to be in a type of balance on
the whole, where transitions to higher height classes through
growth are about as likely as transitions to lower height classes
through disturbance and mortality. As we reach the limits of
canopy height at La Selva, transitions must necessarily be
more likely into lower height classes.
[28] Our data suggest that footprints from the shortest

height class can transition to a much higher class (see the
first column of Table 3). However, this does not require that
the canopy grows vertically but can also happen as a gap
fills in laterally from the sides and above. Conversely, we do
not see cases in the smallest height class in 2005 that were
transitions from height classes greater than >20 m (see the
first row of Table 3). This does not mean that there was no

large tree mortality but rather that such mortality did not
produce a gap that extended through the canopy at the scale
of LVIS and persist to 2005.
[29] Kellner et al. [2009] reported a median gap area of

25 m2 in the old growth forest. Gaps of this size are far
smaller than the area of an LVIS footprint (∼500 m2) and
would be difficult to detect as changes in RHE100, and thus
may explain why we do not see such transitions.
[30] There were a large number of footprint pairs that had

significant height loss (>5 m). Approximately 9% of the
footprints in the old growth forest had such losses. Published
rates of mortality for very large trees (DBH ≥ 70 cm) for this
area are about 1% per year [Clark and Clark, 1996]. Thus,
over a 7 year time span we would expect about 7% of the
footprint pairs to show a large (>5 m) height loss caused by
mortality. Our number of 9% for old growth forests is rea-
sonably close to this. We do not expect all such height losses
can be explained only through mortality events, nor do we
require that when a mortality of a tree does occur, that there
is a collapse of the entire canopy to ground level within the
25 m footprint observed by LVIS. In addition, trees smaller
than those at the DBH cutoff limit will undergo mortality but
will affect RHE100 only if they are canopy‐forming com-
ponents. This is because RHE100 detects a maximum height.
Loses reported in the transition table always refer to loses in
the canopy top, and not, by definition, in the understory. The
loss of understory trees would not appear as a lowering of
canopy top height, but would affect the other energy quan-
tiles, such as RHE50. There is also the issue of the timing
of the mortality event. If it occurs early in the observation
period, even if a gap were formed, it is likely that through
canopy growth or lateral filling, significant canopy materials
would be found at height, limiting the change detection.

4.2. Plot‐Level Biomass Dynamics

[31] We related changes in EAGB in the old growth and
secondary plots to changes in the RHE metrics. Because
there are only two secondary plots, our results are heavily
weighted toward old growth plots. We used a Bayesian
model averaging approach to pick the best set of predictors
among the four RHE metrics and selected RHE50 and
RHE100. The relationship was DEAGB = 4.58 + 3.17
*DRHE50 + 6.37 *DRHE100, with a standard error (RSE)
of 10.54 Mg/ha, an adjusted r2 of 0.65 (p value < 0.002).
The intercept term was not significant (p = 0.08), but the
remaining terms were significant (p < 0.01). Figure 8 shows
predicted DEAGB versus allometric DEAGB. The para-
metric 95% confidence interval for r2 was (0.50–0.86). This
interval may be optimistic given the few data points and
colinearity of RHE50 and RHE100. We subsequently per-
formed a bootstrap with 1000 iterations. The 95% confidence

Table 2. RHE Metric Change Statistics From 1998 to 2005 for Nearly Coincident Footprint Pairs by Land Cover Type

Land Cover

RHE100 RHE75 RHE50 RHE25

NMean SD Mean SD Mean SD Mean SD

Plantations 6.22 5.07 5.27 5.1 4.85 5.14 3.47 3.98 238
Secondary forest 2.08 3.71 1.67 3.66 2.44 3.94 2.69 4.24 855
Selectively logged forest 0.34 4.37 −0.03 4.25 0.99 4.53 1.49 4.9 466
Primary forest −0.33 4.1 −0.98 4.1 −0.08 5.03 0.86 5.65 3069
All La Selva 0.57 4.64 −0.12 4.54 0.63 5.09 1.24 5.3 4628

Figure 6. Histograms of RHE metrics for all of La Selva.
See Table 2 for statistics as a function of major land cover
types.
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intervals obtained using an adjusted bootstrap percentile
method were (0.22–0.80) for r2 and (9.70–13.47 Mg/ha) for
the RSE. As can been in Figure 8, the model did not predict
changes in secondary forest plots well and may lack sensi-
tivity to small changes in biomass.

[32] The model was able to correctly predict the sign of
the biomass change (source or sink) in 16 out of 20 cases
(80%) (see Figure 8). However, when the mean regression
95% confidence intervals are used to determine the sign (i.e.,
does the interval encompass zero?) 10 of the plots (all with

Figure 7. The distribution of footprint‐to‐footprint canopy top elevation (RHE100) changes from 1998
to 2005 for nearly coincident waveform centers. The largest growth changes are seen in the secondary and
plantation areas (top left). In contrast, the old growth forests show a mix of loss and growth. Only foot-
prints with centers within 1 m of each other are shown in this plot for clarity (statistical analysis discussed
in the text included all footprints within 2 m).

Table 3. Matrix of Height Transitions From 1998 to 2005a

2005 Height

1998 Height

N<5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 >45

<5 0.19 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 19
5–10 0.25 0.16 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 38
10–15 0.25 0.35 0.17 0.02 0.02 0.00 0.00 0.00 0.00 0.00 80
15–20 0.12 0.23 0.35 0.30 0.06 0.01 0.00 0.00 0.00 0.01 226
20–25 0.12 0.17 0.31 0.42 0.43 0.10 0.02 0.02 0.01 0.00 622
25–30 0.00 0.02 0.07 0.21 0.39 0.59 0.15 0.05 0.02 0.01 1251
30–35 0.00 0.02 0.00 0.02 0.09 0.25 0.60 0.22 0.08 0.02 1531
35–40 0.06 0.00 0.00 0.01 0.01 0.04 0.19 0.56 0.24 0.11 1128
40–45 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.13 0.57 0.20 516
>45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.65 184
n 16 92 150 325 600 1081 1505 1161 494 171 5595

aColumns give the probability a footprint of that particular canopy height class transitioned to a new, future class in 2005 given by the row. Diagonals
give the probability that there was no net change in canopy height. Reading across rows gives the probability that the footprint in that height class
originated in the column height class in the past. Diagonal of the matrix is shown in bold.
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low biomass changes) had predicted changes that were sta-
tistically indistinguishable from zero.
[33] When the two secondary plots were removed from

the analysis the relationship was DEAGB = 2.23 +
2.3*DRHE50 + 4.9*RHE100, with a standard error of
8.86 Mg/ha, and an adjusted r2 of 0.50 (p < 0.001). Again,
the intercept term was not significant (p = 0.33), but the other
terms were (p = 0.04 and p = 0.02, respectively). The para-
metric 95% confidence interval for r2 was (0.33–0.80), and
bootstrap intervals were (−0.01–0.69) for r2 and (7.47–
12.17 Mg/ha) for the RSE. The wide bootstrap confidence
intervals suggest that in the absence of more plot data from
which to build a relationship, there may not be enough vari-
ation in the old growth plots by themselves over the time
period to enable more robust estimates.

4.3. Landscape‐Level Patterns

[34] Previous carbon modeling work has taken place at a
1 ha grid spacing [Hurtt et al., 2004] using maximum
canopy heights derived from lidar; it is therefore of consid-
erable interest to map landscape‐level changes at this reso-
lution. In addition, this enables an estimate of change using all
footprints, not just those that are within 2m. A 1 hamap of the
change in canopy height (2005–1998) was derived using
RHE100 (Figure 9). Secondary forests showed increases in
height with some areas exceeding 5m, consistent with known

Figure 8. Changes in EAGB (2005–1998) as predicted
from lidar metrics. Bars are the 95% confidence interval of
the regression shown along with the 1:1 line. The regression‐
adjusted r2 was 0.65, with a standard error (RSE) of
10.54 Mg/ha.

Figure 9. Change in canopy top height (RHE100) for La Selva (2005–1998). Old growth areas (see inset)
are a mixture of height gains and losses, while secondary forests areas show consistent growth.
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rates of growth for younger forests at La Selva. In contrast old
growth forests were a mix of both height gain and loss.
[35] The regression equation derived for combined sec-

ondary and old growth plot data was used to map DEAGB
into 1 ha cells across the landscape (Figure 10). Average
change in biomass for secondary forests was 25.2 Mg/ha ±
15.0 (SD). Old growth forests had an average biomass change
of 1.9 Mg/ha ± 12.5 (SD).
[36] The map in Figure 10 is spatially consistent with

known land use history: secondary forests appear as rela-
tively uniform sinks of carbon and old growth forests appear
as a heterogeneous mixture of sources, sinks, and neutral
areas. Recall, however, that there is uncertainty in our model
equation and that we have extrapolated far beyond our initial
plot data, which included only two examples of secondary
forests and no plantations or other land cover types. For these
reasons, there is uncertainty in this map. One way to quantify
this uncertainty in a manner relevant to carbon flux applica-
tions is to examine the signs of the biomass change across the
landscape, that is to map areas that are likely sources, those
that are sinks, and those where we cannot tell. We calculated
the 95% prediction interval (which is much wider than the

95% regression confidence interval) for each cell andmapped
these as source, sink, and neutral areas (Figure 11). The
secondary forests appear again uniformly as sinks or neutral
areas. In contrast, the old growth areas are classified as mostly
neutral, with widely scattered source and sink areas at the 1 ha
scale. Thus, even with the limitations of the data used to
create the relationship between changes in EAGB and the
RHE metrics, a map of source and sinks areas may be pro-
duced that mirrors the expected distribution of these across
the known land use gradient at La Selva.

5. Discussion

[37] The goal of our study was to explore the efficacy of
using changes in lidar metrics over time to map changes in
height, biomass and interior canopy structure, as reflected by
RHEmetrics, over time. We can summarize our major results
as follows:
[38] 1. Pairwise comparisons of nearly coincident lidar

footprints between years showed canopy top height changes
that coincided with expected changes based on land cover

Figure 10. Changes in EAGB from 2005 to 1998 at 1 ha scale. Each cell is a prediction from a regres-
sion equation created by relating plot‐level biomass changes to changes in RHE50 and RHE100. This
equation was then used with 1 ha averages of the RHE metrics to map EAGB change across the landscape.
Note that the secondary forests show uniformly positive changes in biomass, while old growth forests
appear as mixture of positive, negative, and neutral changes (see Figure 9).
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types: plantations > secondary forests > selectively logged
forests > old growth forests
[39] 2. Canopies that were shorter in 1998 had greater

probability of a transition to a taller canopy height class in
2005. Conversely, canopies that were taller in 1998 had
transition probabilities that were increasingly weighted
toward neutral changes in 2005.
[40] 3. About 20% of the pairwise comparisons showed

height changes in excess of 5 m, with positive changes
outweighing negative ones.
[41] 4. The lidar RHE100 and RHE50 metrics were linearly

related to biomass changes for combined old growth and
secondary forest plots, with an r2 of 0.65 and an RSE of
10.5Mg/ha, but both parametric and bootstrapped confidence
intervals were wide, suggesting weaker model performance.
[42] 5. Landscape‐level mapping at a 1 ha scale of canopy

height changes matched expected spatial patterns for the
distribution of land cover types at La Selva. Mean changes
were 0.57 m for all La Selva, and −0.33 m and 2.08 m for
old growth and secondary forests, respectively.

[43] 6. Landscape‐level mapping at 1 ha scale of biomass
changes matched expected spatial patterns for the distribution
of land cover types at La Selva. Mean changes were about
25 Mg/ha for secondary forests and about 2 Mg/ha for old
growth forests.
[44] 7. When prediction intervals were calculated to

classify 1 ha areas as biomass source and sinks, the resulting
map showed most of the old growth areas as neutral (statis-
tically indistinguishable from zero), with widely scattered
and isolated sources and sinks. Secondary forests in contrast
were mostly sinks or neutral, but never sources.
[45] To understand these results and place them in a

context for future analysis, both airborne and spaceborne,
requires discussion of several issues relating to the limita-
tions, errors and ultimate efficacy of the data and methods
presented. We begin by first noting that the experiment at
La Selva was arguably under some of the most difficult
conditions that will be experienced. First, as will be dis-
cussed, there were no large‐scale changes in structure and
biomass because there were no recent anthropogenic or

Figure 11. Map of sources, sinks, and neutral areas for La Selva. The 95% prediction interval was created
for changes in EAGB. Those cells from Figure 10whose intervals were positive weremapped as sinks; those
that were negative were mapped as sources. If the interval spanned zero, the cell was mapped as neutral.
Secondary forests again appear uniformly as sinks or neutral areas, whereas old growth areas now appear
mostly neutral with scattered source and sinks areas at the 1 ha scale.
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natural disturbances. As a result there were no data on large
negative biomass changes, such as would occur through
deforestation. Second, the majority of secondary forests were
at least 15 years into their recovery in 1998, so that the change
in signal between years was not large on the positive side for
canopy structure and biomass at the landscape scale. Our
study also was limited by having only two secondary plots for
building a model relationship. Thus, we were left with
changes that were mostly related to isolated losses and
incremental gains at the plot level.
[46] One confounding aspect of our analysis was the

changes in apparent ground elevation experienced between
years. Our approach was to use the range measurements for
canopy top height changes instead of using heights found
relative to the ground. Other change studies with LVIS have
not shown these apparent elevation differences in closed
canopy deciduous forests in the northeast United States and
conifer forests in the western United States [O’Dell, 2006].
Some ground finding errors are always present in lidar data,
but these are generally rare enough that they do not limit the
usefulness of lidar, even in tropical forests.
[47] We hypothesized that the elevation errors seen

occurred in areas of high canopy cover or steep slopes.
Both will weaken ground returns and hinder the accurate
retrieval of ground elevation. Slope will also be a factor if
the footprint comparisons have centers that are far apart (as
these will have truly different elevations, not just apparent
elevation changes). There are a significant number of slopes
that exceed 10° at La Selva, however we found no statistically
significant relationship between slope and apparent elevation
error. A similar study in the rugged terrain of the Sierra
Nevada of California found no relationship between errors
in LVIS heights versus field‐measured heights and slope as
well [Hyde et al., 2005]. We also found no relationship
between apparent elevation changes and canopy cover. The
difficulty is that canopy cover, as derived from lidar, is
explicitly linked with finding the ground correctly (so that
the relative energies in the canopy portion of the return and
the ground portion of the return may be found). Those
areas that would have the highest canopy cover, and thus
the highest elevation errors, would also be the same ones
where canopy cover was most in error as well, complicating
attempts to infer causation directly from the lidar data. Thus,
we are unsure of the relative importance of each of the above
factors for the appearance of ground finding errors in our data
sets. We do know that there is a complex interaction between
sensor sensitivity, both spatially and vertically within foot-
prints, canopy shape, canopy structure and topography that
will require more research to resolve for relevance to change
studies.
[48] The issue of validation of lidar‐derived height changes

is a difficult one. We did not have field‐validated changes in
height for both years. As discussed, the 1998 heights were
validated by Peterson [2000] who found accuracies that were
comparable to other lidar studies [e.g., seeMeans et al., 1999;
Hyde et al., 2005; Anderson et al., 2006] that have generally
shown height retrieval accuracies in the 3–5 m range, but
much of the reported error may be attributable to the diffi-
culties in accurately determining height from the ground (a
daunting task in closed canopy forests). Small‐footprint
data may be used as a type of validation for canopy height
and more directly, for canopy top elevation (height above

ellipsoid) as shown in Figure 3. The use of small‐footprint lidar
for validation assumes that these data are correct or otherwise
validated. Again, such validationmay not be simple, especially
when multiple platforms acquire observations separated in
time, as biases and errors may creep into the process at several
points. The great advantage of space‐based missions, such as
DESDynI, is that they provide stable measurement platforms
that allow for more direct intercomparison of data sets within
a common observational framework.
[49] What do our results tell us about the magnitude of

canopy height changes required for detection as a function
of the spatial scale of observation? Validations of height
might suggest 3–5 m as these brackets commonly reported
accuracies from field studies. However, these may be too
conservative because of the difficulties of field validation.
[50] Measuring changes in the range to canopy top

(RHE100) may be more accurate than measuring heights (as
done in field studies). For example, consider a 0.5 m2 panel of
leaf material (about the minimum detectable area for LVIS),
oriented horizontally. LVIS would measure changes in the
range to this panel with centimeter to tens of centimeters‐
level accuracy. This repeatability of successive height mea-
surements is essentially random measurement error and what
we would characterize as instrument error.
[51] If canopies were composed of architectures like these,

decimeter accuracies for changes in height using RHE100
would be achievable. However, canopy architectures and the
environments they occur in are variable and lead to height
errors that are not easily categorized as “instrument error.”
Slopes accentuate pointing errors that lead to errors in the
horizontal locations of the range measurements, and thus in
turn to errors in the absolute vertical elevations of returns
used to find differences in elevation. The systematic errors
in pointing are generally accounted for and are included in
the instrument error. Random errors in pointing do occur as
well, however. Slopes may produce additional errors that
may be viewed as some combination of both systematic and
random. Consider a 25 m footprint with an even height
stand on a slope. The instrument will systematically measure
the range to trees that occur at the edge of the upslope
portion of the footprint. As long as trees grow uniformly in
the entire footprint over time, a difference of ranges remove
this effect. If trees do not grow uniformly, or if the stand has
an uneven height structure within the footprint, then errors
in range difference will occur.
[52] Canopy architecture and its changes over time are

another source of error. Pointing errors are less important for
flat canopies than they are for steep‐sided canopies, such as
conifer forests. This could then translate into errors in range
retrieval as a function of forest type. Changes in canopy
architecture over time can also be important. For example, if
a canopy becomes more closed over time so that there is less
penetration of the beam into the canopy, the change in range
may be inferred as growth, when actually none occurred.
[53] Attributing these types of errors, whether from slope

or canopy conditions into instrument or environmental, and
into random or systematic, is difficult because of the inter-
actions that occur between sensor and the landscape, but is
the subject of continued study. However, the distinction
between random and systematic errors is important because
the former can be overcome by increased sampling, as will
be discussed, but the latter leads to a bias that cannot.
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[54] Thus, characterizing the magnitude of the changes
required for detection is complex. For footprint‐to‐footprint
comparisons, the most conservative answer is to assume that
(1) field‐based estimates of height errors are correct, and
(2) the errors are not random between years, so that the
errors do not cancel when calculating a change. In this worse
case, an estimate of the expected error would be s = √(s1

2 + s2
2),

where s1 and s2 are the overall validation errors from each
year. So within year errors of 3–5 m would yield RMS errors
of about 4–7 m. However, this is overly conservative, espe-
cially for mission design, as it conflates errors in field mea-
surements, sensor errors and their interaction with canopy and
environmental conditions. A more reasonable estimate for
within year errors is likely around 1–2 m, which would yield
RMS errors of about 1.5–3 m. This suggests that changes
might need to exceed this range to be detectable by an indi-
vidual footprint‐to‐footprint comparison between years.
[55] As we increase to the 1 ha scale and beyond, sam-

pling issues arise and our errors will also now be a function
of how many observations are available. We have more
observations in a cell from which to calculate a cell mean for
a particular year than we do footprints between years that
are coincident. We can thus calculate a difference of means
between years using all the observations that fall within a
cell. To determine if there is a difference in the mean canopy
height requires that we have an estimate of the height var-
iance at that scale, an estimate of sensor error, and sufficient
numbers of observations. We have a variance contributed by
the natural variability of the landscape and that induced by

sensor measurement error. An estimate of the variance in a
particular year is sTOTAL

2 = (ssensor
2 + sheight

2 ), where ssensor is
our estimated sensor measurement error and sheight is the
height variability within a cell. The second term, sheight, may
also include the interaction of sensor pointing variability
with the spatial variability of canopy height (a variation in
pointing on a homogenous canopy will exhibit no height
variance, whereas the same variation on spatially varying
canopy will produce an additional height variance compo-
nent). Alternately, this type of interaction could be book kept
as an additional error term in the equation given above. The
average RHE100 (canopy top) variability at La Selva varied
as a function of cell size and location, with a mean value of
about 6 m at the 1 ha scale and was constant between years.
If we assume an average sensor error of about 2 m (in the
middle of our 1.5–3 m range above), the total variability is
sTOTAL = 6.3 m. This number expresses the combined
uncertainty of the measurement process and the sampling
process.
[56] The height requirement for DESDynI observations

within cells of varying size is that the estimate of the mean
must be within 1 m about 68% of the time (i.e., ±1 standard
deviation and referred to as a “one meter, one sigma”
requirement). The error associated with a difference of means,
assuming the same number of observations and the same
total variability in each year for simplicity, can be expressed
as d = ±ta* √(2sTOTAL

2 /n), where d is the error or detectable
difference, ta is the t statistic for a given significance level,
and n is the number of observations in a given year.
[57] We can vary the magnitude of sTOTAL to approxi-

mate the required sample size (number of lidar observations)
to detect a specific height change d under the same assump-
tions as given above. Figure 12 shows the relationship for
sTOTAL ranges from 4–14 m, and with t ≈ 1 (as in the
DESDynI requirement). As can be seen the number of
observations required to get relatively small errors (and
thus small detectable changes) is large. If we assume we
have an 8 m variability and 16 observations, say in a 1 ha
cell, the error would be ±2.93 m. For the greater than 5000
observations of footprint pairs we have for La Selva our
estimate of the difference of means for the entire landscape
between years should be accurate to within ±0.13 m. If sensor
error can be shown to be closer to 1 m, then these accuracies
would increase and the number of observations required
would decrease. Likewise, fewer observations would be
required for more even‐aged stands that have smaller
spatial variability. Note that systematic errors or biases are
not necessarily removed by increased sampling. A more
complete analysis of errors would include an n and sTOTAL
that vary in each observation year, as well as a desired level
of b or “Type II” error, in addition to the a level, to determine
a priori the required numbers of observations to detect a
change of a given level. Such an analysis would also include
modeling the effects of using nonpoint (areal lidar footprint)
sampling on spatially autocorrelated fields of height struc-
ture, but is beyond our scope here.
[58] Assigning an error to the other RHE change metrics is

not easily done using field observations. Our approach is to
assume these have small errors when expressed in elevation
space. As discussed earlier, the waveform as defined by its
vertical extent is a fundamental measurement that gives the
record of intercepted surfaces. Errors appear when the

Figure 12. Number of lidar observations required to detect
a given difference of mean canopy height within an area.
Each line gives the total variability sTOTAL (within cell height
variability and sensor error) varying from 4 to 14 m (from
bottom line to top line). For example, with sTOTAL = 4 m,
a change in mean of ±1 m would require about 30 observa-
tions. Note the logarithmic scale on the x and y axes.
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waveform is interpreted, and such interpretation is minimal if
the waveform is kept in elevation space. In practice, however,
most users would prefer RH metrics interpreted as a height
above the ground, and thus any errors in ground finding may
again appear. There has been little evaluation of the effects of
geolocation errors, topography, off‐nadir pointing, and can-
opy penetration on these metrics, either for RH or RHE. If the
use of these metrics for change analysis continues, studies
should be done that attempt to define their accuracy relative to
vertical canopy structures.
[59] We developed two linear regression equations to

predict biomass change. Their form was consistent, with
the coefficient for DRHE100 about twice that for DRHE50.
The intercept term was rather large, but statistically not
significant. The equations, as models of the relationships
between canopy structure variables and biomass are physi-
cally reasonable. As canopies grow and accumulate biomass
we expect both variables to positively increase. The opposite
is also true: as biomass decreases, both of these metrics will
decrease. However, it is possible, as our model suggests, to
have alternate signs for these variables, and depending on
their magnitude, achieve either a positive, negative or neutral
change in biomass. To a first approximation, changes in
canopy top height must be related to changes in biomass; it is
more likely that large changes in this height will lead to
changes in biomass than it is these height changes will occur
but that biomass stays the same. This would happen if positive
or negative changes in RHE50 take place that are approxi-
mately twice that of the RHE100, but have opposite signs. If
the changes in RHE50 are large enough relative to RHE100,
they will drive the biomass toward the direction of that

change. How these changes occurred at La Selva is given
essentially in Figure 10, which maps our regression equation
using the actual cooccurrences of DRHE50 and DRHE100.
At the 1 ha scale, positive/positive changes (both DRHE100
andDRHE50 are positive, respectively) occurred 50% of the
time; negative/negative changes occurred 28% of the time;
negative/positive and positive/negative changes occurred at
a frequency of 12% and 10%, respectively. This suggests
that it is far more likely for changes in both metrics to occur
in the same direction (78% of time). It further suggests that
for the landscape of La Selva, the most likely changes in
structure were positive for both metrics. This is a reasonable
result given the area of secondary forests and plantations. We
find similar results at the footprint scale as well: 68% of the
changes were in the same direction with 43% positive‐
positive. Figure 13 shows the relationship of these metrics
to biomass changes for the 20 plots used in our study.
[60] The small number of total plots and limited number

of secondary plots hindered the development of our combined
old growth/secondary regression equation. Our equation did
not predict the secondary changes well. One secondary plot,
“lep” (see Table 1), had low values for both DRHE100 and
DRHE50 (0.58 m and 1.7 m) even though the change in
biomass was large (31 Mg/ha). The reason for this, discussed
earlier, was that the plot was not sampled uniformly each
year. In 2005 only about 1 half of the plot had usable lidar
returns, and this half was composed of taller trees that did not
grow as much as the half that was not sampled again. The
result was little change in metrics as compared to the other
secondary plot and even some old growth plots.
[61] Judging from Figures 8 and 13, small changes in

biomass were difficult to model at the plot scale. This was
reinforced by the weaker regression relationship found using
only old growth plots. This may be because such changes at
the scale of 0.5 to 1 ha plots may occur from many small
changes in canopy structure, each of which is hard to detect.
A forest far along in its successional trajectory may accu-
mulate biomass slowly, with occasional mortality events. As
can be seen from the height transition matrix (Table 2), 25 m
footprints detect these changes at the footprint level across
La Selva (for 5 m height classes, many transitions away
from the previous height class occurred), but average
changes to these metrics at the plot scale may be difficult to
establish accurately unless the changes are large. The metrics
for many plots used in this study had relatively small (0–2 m)
changes over the 7 year period. For the 0.5 ha Carbono
plots it seems unlikely that average changes less than 2 m in
RHE100 are detectable by LVIS based on our error analysis.
[62] The regression equations themselves had RSE values

(around 10Mg/ha) that were significant fractions or exceeded
in some cases the magnitude of the changes being modeled,
with the exception of the secondary plots. Because of these
large errors, we explored whether the lidar data could at least
be used to map source and sink areas with confidence. Our
results suggest that maps of source/sink areas inferred from
lidar growth changes are possible at the 1 ha scale. Using the
95% prediction interval to find cells with biomass changes
significantly different from zero gave spatially meaningful
results that matched known land use types. Again, the
changes observed at the plot level were not large at La Selva
because of the lack of recent disturbance and recovery. If the
old growth forest biomass change rates at La Selva are rep-

Figure 13. Relationship between changes in RHE100 and
RHE50 heights and EAGB for the Carbono and secondary
forest plots. The vertical line gives the distance between
the changes in RHE100 and RHE50, and the symbols give
the change for that particular metric. The signs of the changes
are generally the same: when both metrics are positive, bio-
mass change is positive, and vice versa. Note that often the
change in RHE50 was larger than that for RHE100. Addition-
ally note the small changes (less than 2 m) in the metrics for
many of the plots. The secondary plot “lep”was incompletely
sampled and has metric changes that are not representative.
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resentative of the tropics as a whole, it may be difficult to go
beyond source/sink designation and quantitatively assess
accumulation and loss over these forests if they are under-
going no changes other than normal mortality and growth at
the 1 ha scale. If footprint based biomass equations can be
developed with suitable accuracy (as in the work of Drake et
al. [2002a]), footprint‐scale changes may be easier to assess.
As the scale gets even smaller (as in the work of Kellner et al.
[2009]), changes should be even more evident.
[63] Our results as compared with those of Kellner et al.

[2009] show differences, such as the percentages of areas
undergoing positive versus negative changes. These may be
attributed to the nonidentical domains of analysis, with our
study including land cover types other than old growth.
Others may have to do with the differences in spatial scale
of the lidar footprints and subsequent aggregation scales. For
example, we found higher probabilities of canopy observa-
tions remaining in the same height class between years (i.e.,
the diagonal of Table 3 has higher probabilities). One reason
for this may be that canopy changes at the 5 m scale, in
particular gaps, are either too small or otherwise average out
at 25 m scales, and thus are harder to detect. Interestingly, we
found identical changes in canopy height (DRHE100) for old
growth forests (−0.33 m) as Kellner et al. [2009] who report
−0.32 m, even though different definitions of height were
used. Kellner et al. [2009] calculated the average height
above ground of all lidar returns within 5m cells for each year
and subtracted these. For canopies that are somewhat open,
using an average height derived from small footprint lidar will
result in a mean height that is below the top of the canopy as
returns will go back to the sensor from the entire depth of
canopy.With larger footprint systems, there will also be some
penetration into the canopy until enough signal is generated to
get above the noise level. That these two different types of
measurements using different definitions of height observed
an identical change is not intuitive. We doubt, though it is
possible, that such close agreement is by chance. One
explanation may lie with the canopy structure of the old
growth forests at La Selva. These forests are quite closed and
much of the leaf material is concentrated near the top of the

canopy [Clark et al., 2008]. Thus a small‐footprint system
utilizing a last‐return technology would have many of its
returns from the outer canopy surface.We also note that LVIS
was biased low (−0.43 m, see Figure 3) relative to small‐
footprint maximum returns within LVIS footprints, suggest-
ing that some canopy penetration may have occurred with
LVIS (however, this difference may also have been caused by
dry season leaf drop during the LVIS acquisition). It may be
then, that for these closed forests, average small‐footprint
height and LVIS canopy top heights are similar enough, that
when averaged over thousands (in the case of LVIS) and
hundreds of thousands of observations (in the case of Kellner
et al. [2009]), the same average change is measured. This
theory potentially could be tested by following the method of
Blair and Hofton [1999] that creates “pseudowaveforms”
from small footprint data. Pseudowaveforms could be
created for each year and changes in these compared to
changes observed by LVIS.
[64] The magnitude of changes in biomass mapped spa-

tially at fine scales provides important information for future
space missions, such as DESDynI, whose central goals include
observing changes in biomass. We have limited knowledge
of the spatial and temporal variability of such changes across
the globe. Efforts using airborne lidar such as presented here
can help provide this information. In addition, these types of
results serve as benchmarks for establishing and predicting
mission performance. Science considerations have estab-
lished a DESDynI accuracy requirement for biomass changes
of ±2–10MgC/ha/y (or 20%, whichever is larger) annually at
500 m to 1000 m resolution. The largest of these changes,
and most important, will be from deforestation events and the
subsequent rapid regrowth that occurs within a nominal
5 year mission length. However, the changes associated
with small‐scale disturbance, such as mortality events, and
later stages of regrowth may be more difficult to detect. At
La Selva there have been no recent large‐scale disturbances
(and the magnitude of changes present there reflect this). For
example, in 2000, only about 95 ha of secondary forest out of
the 1600 ha of La Selva were in the age class of 1–12 years.
The remaining 250 ha of secondary forest were in the age
class of 13–34 years, well into their recovery period. There-
fore, only a small portion of La Selva observed in 1998 by
LVIS was recently (<5 years) disturbed. Only eight of the
18 Carbono plots exceeded the rate of 2 Mg/ha/yr according
to field‐based estimates (Table 1), and only one exceeded
2.5 Mg/ha/yr. Assuming 50% of the change of biomass is
carbon, none of the plots had rates that would be detected
by DESDynI.
[65] We can get an approximate sense of the rate of

change across the landscape by using the predictions shown
in Figure 10. About 20% of the 1 ha cells had rates that
exceeded 2 MgC/ha/yr (Figure 14). This is an uncertain
estimate however, because of the errors in the regression
equation used to estimate change. If we use a 95% prediction
interval again, we can be certain that only 30 cells had ranges
that exceeded the DESDynI requirement, and of these only
one was negative. This does not mean that such changes did
not occur, only that we cannot confidently predict these rates
with the data used in this study. Nonetheless, the combination
of our model results along with the actual changes measured
in the field suggests rates of change below what DESDynI
will measure, except for secondary forests and other rapidly

Figure 14. Estimated rates of change in aboveground car-
bon for 1 ha cells. The dashed vertical lines give the lower
change requirement for DESDynI (2 MgC/ha/yr).
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changing land cover types. However, the very fact that such
areas would appear neutral under DESDynI observations
would identify these forests as likely old growth areas, and
when taken together with the larger changes associated with
disturbance and regrowth, should enable a greatly improved
accounting of the flux of carbon between the land surface
and the atmosphere.
[66] Another aspect of our study with relevance to DES-

DynI is that more variability was observed when footprint
level changes are estimated (Table 3 and Figure 7) as opposed
to averages over plots. DESDynI will have billions of
“crossovers,” places on the Earth where orbital paths cross
and footprints overlap. The planned geolocation accuracy is
10 m, on average. Even though many of these footprint pairs
will be much closer together than 10 m, we may not have a
posteriori knowledge of the distance between specific foot-
print pairs to better than this distance. Nonetheless, these will
provide valuable information on mortality rates and height
dynamics. As we look at slightly larger areas around the
crossover points, geolocation errors become less important,
and the increased numbers of observations will enable more
accurate determination of change within these.
[67] Last, some consideration must be given to the diffi-

culties of field validation. We have already discussed issues
related to validation of lidar remote sensing. A much larger
problem exists with the validation of biomass. In tropical
regions all such field estimates are done via generalized
allometric equations that are derived from a remarkably
limited number of trees. This problem is well known but
widespread: no study that aims to predict tropical biomass can
avoid it. The precision of biomass estimates at La Selva is
high, so that year‐to‐year changes should be well character-
ized. But there remains the possibility that lidar captures
structure that is well related to biomass and biomass changes,
but that the dbh‐based allometries are in error, and therefore
lidar model failures to accurately predict changes actually
may be failures to match another model’s estimates that in
itself has errors of the same magnitude.
[68] A solution to this problem is better allometry. Field‐

based estimates of biomass will be essential to relate global
observations of structure from DESDynI to biomass and
improved allometry is key. Additionally, a global network
of plot data is required. This is especially true for biomass
dynamics. There are very few sets of permanent plots similar
to the Carbono project globally, yet even this unmatched data
set was not ideal because the range of biomass changes was
narrow, and consequently limited our analysis. Even if bio-
mass changes are found by year‐to‐year differences of bio-
mass in DESDynI, these will require actual measurements of
change for validation and error analysis. In the coming years,
if methodologies such as presented here can be improved and
extended, then limited field data can be used with airborne
lidar data to make spatially extensive maps of change in
different biomes that can then be used to both calibrate and
validate measurements from DESDynI.

6. Conclusion

[69] Our results at La Selva reveal a landscape under
constant change as a result of growth, mortality, recruitment,
and recovery from disturbance. When the effects of anthro-
pogenic changes are superimposed, along with climatic and

edaphic factors, determining the true successional status of a
landscape required for accurate estimation of carbon stocks,
fluxes and other ecosystem functions is a daunting challenge.
Our basic premise in initiating this research was that inference
of successional state and measurement of net terrestrial car-
bon flux between the land surface and the atmosphere may be
approached by directly observing changes in canopy structure
over time. This would enable the spatial mapping and quan-
tification of the magnitudes of carbon source and sink areas.
However, because spatially explicit maps of canopy and
biomass dynamics over tropical forests at fine scales are rare,
the ability of lidar and other remote sensing technologies to
capture this variability over relatively short time spans and
within their measurement accuracies was unknown. Thework
presented here suggests that lidar remote sensing is a viable
method for quantifying short‐term tropical forest dynamics.
While changes in old growth biomass may be hard to
detect at the plot scale over these time spans because they
are small, larger changes associated with disturbance and
recovery should be measureable. Even over slowly evolving
old growth forests, footprint‐level changes in canopy struc-
ture associated with small‐scale disturbance, mortality and
regrowth are observable. The ability of lidar to capture tran-
sitions across the entire spectrum of canopy structure and
height is unprecedented and will provide a valuable new tool
for deepening our understanding of how forest structures
respond through time to changes in land use and climate.
[70] Our results also suggest that the mission concept of

DESDynI, combining both lidar and radar to observe source
and sink dynamics from space should be effective in mea-
suring the larger changes in biomass for which it is designed:
those that occur from deforestation and subsequent regrowth.
The combination of the spatially complete coverage of radar
and the tens of billions of detailed lidar profiles expected
from the DESDynI should revolutionize our understanding
of forest dynamics and its effect on carbon cycling and
habitat structure.
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