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Summary 

The uncertainty associated with simulation input parameters for a nonlinear finite element 
structural dynamics model is estimated using a previously developed model updating algorithm. The 
utility of a model updating approach to estimate unmeasurable or unmeasured experimental parameters 
is demonstrated. 

Introduction 

Finite element model validation is a topic of current interest to many researchers in the field of 
linear and nonlinear structural dynamics. Model validation refers to “substantiation that a model, within 
its domain of applicability, possesses a satisfactory range of accuracy consistent with the intended 
application of the model.” [1]. Validation is accomplished primarily by comparison of simulation 
results to experimental results to confirm the accuracy of the mechanics models in the simulation and 
the values of the parameters employed in the simulation, and to explore how the simulation might be 
improved. 

The assessment of uncertainties in the simulation mechanics models and their associated 
parameters plays a critical role in the credible validation of nonlinear structural dynamics models. The 
study of the effects that these uncertainties produce is termed uncertainty quantification (UQ). A major 
issue in UQ is the determination of how the distributions of the model parameters (which essentially 
form a set of inputs to the simulation) should be represented in order to accurately reflect the real-world 
response of the structure. 

In the case of repeated experiments, it is sometimes adequate to monitor the values of the input 
variables (e.g. forces, temperatures, velocities, etc.) and estimate a distribution from these observations. 
However, in many structural dynamics experiments, there can be significant input variables that are 
either unmeasurable (such as the actual orientation of parts during an impact event) or unmeasured 
(such as the level of torque applied to an interface during assembly). In these cases, it is necessary to 
estimate the distributions of the key input variables by indirect means. 

In this paper, a previously developed model updating technique for nonlinear structural dynamics 
models is applied to data from repeated experimental trials to estimate the distributions of four key 
input parameters for a transient impact event. The model updating technique itself, along with the 
selection of the key simulation parameters, is not the focus of this paper, and so these issues are only 
addressed in summary form. 
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Nonlinear Finite Element Model Updating Using Metamodels 

Researchers at Los Alamos National Laboratory (LANL) have been exploring the issue of model 
updating as applied to nonlinear finite element structural dynamics simulations since about 1997. The 
approach focuses first on the selection of the response features of interest, which will be used to form 
the metric for the model updating optimization.  The term “features” applies to any characteristic of the 
model output that is of interest, is of relatively low dimension, and is experimentally observable. In the 
case of nonlinear structural dynamics, often the feature of interest is a peak acceleration, stress, or 
displacement magnitude. For linear structural dynamics, the feature of interest could be a modal 
frequency. 

The next step is the selection of the key parameters in the finite element model that exhibit 
significant influence on the response features. The parameter selection process begins with engineering 
judgment about which parameters will influence the features of interest the most, and have a significant 
chance of changing or varying over a range of experimental tests or physical units. Once a set of 
candidate parameters has been established, quantitative techniques are employed to downselect from 
this set of candidate parameters to a lower dimension set of parameters. This low dimension set of 
parameters will be better suited for model validation, sensitivity analysis, model updating, and 
uncertainty quantification. 

The selection of the smaller set of parameters is accomplished using metamodel (or response 
surface) analysis. A metamodel in this context refers to a relatively low-order function that relates 
several inputs to a single output. A common approach is to use a low-order metamodel to reduce the 
dimensionality of the parameter set, then run a larger set of levels for fewer parameters to form a higher 
dimension metamodel. This higher dimension metamodel can be used to understand the relationship 
between the parameters and the feature of interest. Typically one metamodel must be constructed for 
each response feature of interest. 

Model updating is then accomplished in the parameter space of the metamodel by searching for the 
combination of parameters that minimizes the error between the metamodel prediction and the 
experimental observation. Further details on the specific technique have been previously presented. [2] 

Experimental Apparatus & Computational Model 

In the summer of 1999 a series of impact experiments was performed LANL to provide a database 
of experimental results for the development of methodologies for nonlinear finite element model 
validation. A schematic of the experimental assembly is shown in Figure 1, and the details of the 
experiment have been previously presented. [2] The carriage is dropped and brought to a sudden stop 
resulting in the compression of the foam pad by the steel cylinder. The foam pad exhibits hyperelastic 
behavior and is similar in consistency to a common mousepad. 

Foam Pad

Threaded Bolt

Steel Cylinder

Carriage
(Impact Table)

Figure 1. Impact Test Assembly Schematic 
 

Figure 2: Impact Test Assembly Photo 
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Four acceleration measurements were collected during each test. The input acceleration was 
measured on the top surface of the carriage and three output accelerations were measured on top of the 
steel cylinder. The tightening of the threaded bolt that hold the assembly together results in a preload in 
the foam pad that turns out to be of critical importance to the simulated system response, but was not 
measured during the experiment. The carriage is dropped from an initial height of 13 inches (0.33 
meters) and the hyper-foam pad used in this configuration is 0.25 inch thick (6.3 mm). The impact tests 
were repeated 10 times to provide multiple sets of feature measurements for the purposes of validation.  

A three-dimensional finite element model of this assembly was developed, as shown in Figure 3. 
An initial analysis of the system indicated that eight parameters were expected to exhibit significant 
uncertainty or variability and have potentially significant influence on the features of interest. These 
parameters are: angle of impact of the cylinder (two values), bolt preload, stiffening of the stress-strain 
model of the foam pad (two values), input acceleration magnitude, friction coefficient between the steel 
cylinder and bolt, and linear bulk viscosity (a numerical convergence parameter).  

 
Figure 3: 3D Model of Drop Test Assembly 

Feature Extraction and Construction of Metamodel 

The feature of interest is typically driven by the engineering considerations that motivate the 
modeling in the first place. In this experiment, the features of interest are the peak acceleration response 
of each channel and the arrival time of the impulse (the delay between the acceleration input from the 
carriage and the acceleration response of the cylinder.) Acceleration signals measured during the ten 
experimental trials at sensor #1 are shown in Figures 4. A close-up of the peak acceleration signals 
collected during these ten ‘identical’ trials is shown in Figure 5. 
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Figure 4: Measured Accelerations 
 

Figure 5: Variability of the Peak Acceleration 
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A linear metamodel was constructed over the eight simulation parameters mentioned above. Two 
values were selected for each parameter, and a full factorial set of simulations was executed. The linear 
metamodel was used to perform hypothesis testing on each of the coefficient values. [3] Based on these 
screening results, the number of parameters was reduced from eight to four. A full factorial simulation 
was then performed on these four parameters using four levels for each parameter. A quadratic model 
with interactions was fit to these results. (It is acknowledged that in practice with large simulation 
models full factorial designs are not practical. The issues associated with using partial factorial designs 
will be addressed in future publications. However, the full factorial results are used in this study.) These 
four parameters, along with their ranges of interest, are shown in Table 1. In the model updating 
process, the variables are encoded with reference letters and scaled to the range [-1,1] to eliminate 
numerical scaling incompatibilities. (Uniform distributions were assumed for all parameters at this 
point.) All four of these parameters were unmeasured in the experiments. 

Table 1: Four Parameters for Model Updating 

Parameter Name Parameter Code Min Value Max Value 

Angle #1 A 0 deg 1 deg 

Angle #2 B 0 deg 1 deg 

Bolt Preload C 0 lb 500 lb 

Input Scaling D 0.9 1.1 

Parameter Updating using the Metamodel 

The four parameters in the metamodel will be updated to establish estimates of their true values 
during the experiment. Using these results, an uncertainty bound can be established on these parameters 
for future replications of the experiment. The model updating process begins with the definition of an 
objective function, J , which in this case is the 2-norm of a vector formed using the error in peak 
accelerations iP�  between measured and simulated values, along with the perturbation values of the 
simulation parameters. (The parameter values are included in the objective function to avoid non-
uniqueness in the solution, as demonstrated below.)  

2321 DCBAPPPJ ����  (2) 

For each update result described below, the parameters are each assigned an initial value of 0, and the 
optimization is run until J  converges with an error tolerance of 1e-12. The measured peak 
accelerations at each sensor i for each trial j are denoted 

ijP̂ , and the mean values over all 10 trials are 

denoted iP , where ��
j

iji PP ˆ . 

The first update result is obtained by using the mean of the measured values 
iP . This update yields 

“mean” updated encoded values for the parameters of 

� � � �040100061610 .... ����DCBA  (2) 

The surface of the metamodel over C  and D  for 1P  at these values of A  and is shown in Figure 6. 
To illustrate the range of combinations of C and D that produce iP  values equal to the measurements, a 
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plane is plotted at 11 PP � . The line of intersection between these two planes represents a continuum of 
C, D combinations that satisfy 11 PP � . The inclusion of the � �DCBA  values in the objective 
function of Eqn. (1) ensures that the point on this line closest to the origin is selected. (The rationale 
being that the point with minimum perturbation from the assumed nominal values of � �DCBA  
deviates the least from the best judgment-based estimate of the parameter values, and so is the “most 
likely” solution.) A contour plot of the line of intersection, along with the nominal parameter values 
(the origin) and the updated parameter point is shown in Figure 7. 

  
Figure 6: Metamodel of 1P  vs. C and D with 

Plane at 1P  
Figure 7: Line of Intersection from Figure 1 

with Nominal and Updated Parameter Values 

To understand the variability in A,B,C,D from test-to-test, the update is performed on each of the 
10 experimental measurement results. Overlaying these results with their corresponding experimental-
metamodel contours yields the results shown in Figure 8. All of the updated C,D combinations lie 
precisely on their corresponding line contours, except for trial #9. Examining Figure 9 indicates that the 
optimized point for Trial #9 does not produce 1P  predictions that are as accurate as the other 9 trials. 
This is possibly a result of influences of other variables that have not been included in the update set. 

 
Figure 8: Lines of Intersection for Each 
Experimental Trial With Corresponding 

Updated Parameter Values 

 
Figure 9: Error Between Updated 1P  

Predictions and 1P  measurements 

#9 
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Finally, the updated values of A,B,C and D can be analyzed to assess the variability from test-to-
test. Figure 10 shows a scatter plot of the A, B, C, D updates for each experimental trial. The spread of 
these values gives a range of variability that can be expected for each parameter for a repetition of this 
experiment. The sample mean and sample standard deviation for each parameter is shown in Table 2. 
Thus the uncertainty associated with each of these 4 parameters has been estimated. 

 
Figure 10: Updated Parameter Values for 

Each Experimental Trial 

Table 2: Encoded and Decoded Mean and STD Values for Updated Parameters 

Parameter Encoded 
Mean 

Encoded 
STD Mean STD 

Impact Angle 1  -0.54 0.24 0.23 deg 0.12 deg 

Impact Angle 2  0.63 0.91 0.81 deg 0.45 deg 

Bolt Preload -0.18 0.17 203.90 lb 41.3 lb 

Input Scaling -0.071 0.065 0.99 0.0064 

References 

1 Schlesinger, S., et al., 1979, “Terminology for Model Credibility,” Simulation 32(3), 103-104. 

2 Schultze, J.F., Hemez, F.M., Doebling, S.W., and Sohn, H., 2001 “Statistical Based Non-linear 
Model Updating using Feature Extraction”, in Proceedings of IMAC-XIX, Society for 
Experimental Mechanics, Bethel, CT. 

3 Myers, R.H. and Montgomery, D.C., 1995, Response Surface Methodology, Wiley & Sons. 


	Estimation of Uncertainty Bounds on Unmeasured Variables via Nonlinear Finite Element Model Updating
	Summary
	Introduction
	Nonlinear Finite Element Model Updating Using Metamodels
	Experimental Apparatus & Computational Model
	Feature Extraction and Construction of Metamodel
	References

