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State of a lunar orbiting space vehicle acted upon by unmodeled terms in the lunar 
potential and unmodeled mechanical forces such as those due to venting has been 
developed. The unmodeled accelerations are approximated by a first-order Gauss- 
Markov process. The estimation algorithm gives an estimate of the position and 
velocity of the space vehicle as well as the components of the unmodeled acceleration 
at each observation epoch. The results obtained by processing real-time tracking 
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provides more precise estimates of the vdi icle state than conventional orbit 
determination procedures and, hence, provides accurate input for navigation or 
guidance purposes. The question of the usefulness of the unmodeled accelerations 
for scientific experiments has not been established. This investigation considers 
the accuracy with which the algorithm can estimate the acceleration due to modeled 
lunar surface mascons by numerical simulation of the estimation process. It is 
shown that an accurate estimate of the history of the unmodeled acceleration can be 
Obtained. The investigation also considers the effects of the magnitude and location 
of the mascons, as well as the effect of the observation accuracy. 
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In previous investigations, a sequential estimation procedure for estimating the 
state of a lunar orbiting space vehicle acted upon by unmodeled terms in the 
lunar potential and unmodeled mechanical forces such as those due to venting has 
been developed. The unmodeled accelerations are approximated by a first-order^ 
Gauss-Markov process. The estimation algorithm gives an estimate of the position 
and velocity of the space vehicle as well as the components of the unmodeled ac- 
celeration at each observation epoch. The results obtained by processing real- 
time tracking data from the Apollo 10, 11, and 15 missions have indicated that 
the algorithm provides more precise estimates of the vehicle state than con- 
ventional orbit determination procedures and, hence, provides accurate input for 
navigation or guidance purposes. The question of the usefulness of the unmodeled 
accelerations for scientific experiments has not been established. 
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Introduction 

The problem of estimating the state of a nonlinear dynamical system in- 

fluenced by random forces using discrete observations which are subject to random 

error has received considerable interest during the past decade. Impetus for 

this interest has been derived from requirements for precise determination of the 

orbits and trajectories of space vehicles. The precise determination of the mo- 

tion of a space vehicle is necessary, first, so that the navigation functions 

required to establish a specified trajectory can be performed and, second, so 

that measurements of the satellites' motion can be used to infer properties of 

the physical medium in which the vehicle is moving. The requirements of deter- 

mining the motion of a lunar orbiting space vehicle have placed extensive demands 

on the conventional least squares orbit determination method. In particular, the 

problem of determining, simultaneously, precise estimates of the vehicle posi- 

tion and velocity while estimating the values for the coefficients of the lunar 

gravity field may require accuracies which exceed the capabilities of classical 

orbit determination methods. 
t  i 

The solution to the classical orbit determination problem involves linear- 

izing the nonlinear equations, which define the problem, about a specified 

reference trajectory and then applying linear estimation techniques. Once the 

problem has been reduced to a linear estimation problem, the estimation algorithm 

is obtained by applying the weighted least squares method or by use of statistical 

based estimation methods, such as minimum variance or maximum likelihood methods. 

Using the results from either of these approaches, the estimate may be obtained 

by using a batch data processing algorithm, in which all of the observations are 

processed simultaneously to obtain an estimate of the state at some reference 

epoch, or the state estimate may be obtained by processing each data point sequen- 

tially as it is obtained. 

mmsmnmmäMamMm^^m^mmm 



It is well known that errors of four basic types influence the accuracy of 

the estimate obtained by each of these procedures; i.e., 1) errors due to the 

linearization assumptions, 2) errors introduced in the computational procedure, 

3) errors which occur in the observation process, and 4) errors due to inaccuracies 

in the mathematical model used to define the problem. The effect of these errors 

on batch-type estimation algorithms is discussed in Ref. (1), (2), and (3). li- 

the extended form of the sequential estimation algorithm^1*' is used, where the 

estimate of the state at a time, t. , is used to define the reference trajectory 

for propagating the estimate from the observation epoch, t. , to the next ob- 

servation epoch, t., the effects of the nonlinearities are minimized. Further- 

more, in most orbit determination problems, sufficient accuracy can be obtained 

during the computation process to eliminate the integration errors. Kence, using 

the extended sequential estimation algorithm, the effects of the last two error 

sources will be the primary factors which limit the orbit determination accuracy 

for near-earth or near-lunar satellites. While the effects of the observation 

errors are an important factor, the increase in the accuracy of the doppler 

tracking data coupled with the high precision laser ranging data suggests that 

errors in the data are less important in limiting the accuracy obtained with con- 

ventional orbit determination procedures than are the errors due to model inac- 

curacies. As a consequence of this fact, primary attention in this investigation 

will be directed towards consideration of methods for reducing the errors due to 

inaccuracies in the dynamic model. 

It should be noted that there is some trade-off between the errors which oc- 

cur in the computational process and the errors due to an incomplete or inaccurate 

mathematical model. With a more complete mathematical model, it is mere difficult 

to obtain an accurate numerical solution to the relations which define the estim- 

ation procedure. On the other hand, if the mathematical model is simplified to 

-  ........ _..;_...,<_■....,:-. 



alleviate the computational problems, important physical effects may be neglected. 

The subsequent estimation procedure may "diverge" due to model error'1''5'. This 

difficulty may be encountered, also, if the actual dynamical process is not 

understooa well enough to allow a precise definition of the mathematical uodel. 

The effects of inaccuracies in the mathematical model on the accuracy and the 

stability of the linear sequential estimation procedures are discussed in Ref. (•<•), 

(5), and (6). A number of methods have been proposed to alleviate the problem of 

estimation divergence. These methods include additions to the state error co- 

variance matrix to account for noise in the differential equations which govern 

the motion^7', specification of a minimum bound on the estimation error covariance 

matrix^8', and the utilization of a finite'1*) or decaying^9' data set. While 

these methods lead to a more stable estimation algorithm, they suffer from the 

disadvantage that the accuracy of the estimate is determined by certain empirical 

parameters which must be specified "apriori" without knowledge of the disturbing 

process. In addition, the methods do not yield information directly related to 

the unmodeled accelerations. Such information is of considerable value in post- 

flight data analysis for improving the knowledge of the mathematical model. 

In the following discussion, a sequential estimation method which compen- 

sates for unmodeled effects in the differential equations of the dynamical process, 

is described. The method has two advantages: 1) it can be used to obtain an 

improved estimate of the vehicle state during real time estimation problems and 

2) the method will yield information which can be used in post-flight data 

analysis to improve the mathematical model. In the proposed method, the "un- 

modeled" accelerations are assumed to consist of the superposition of a time cor- 

related component and a purely random component and are approximated by a first- 

order Gauss-Markov process. This model has been used previously to compensate for 

üiiüfüfei&te 
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errors in inertial navigation devices'10', and to compensate for tra effects of 

random fluctuations in atmospheric drag^1 . 

In Refs. (10) and (11), a stationary Gauss-Markov process is assumed and 

the correlation time, or equivalently, the correlation coefficient is assumed to 

be constant and known, apriori. In Refs. (12) and (13), this assumption is 

relaxed and the correlation coefficients are regarded as unknown parameters and 

the best estimate of their values are determined during the estimation process 

In Refs. (12) and (13), this approach is used to develop a sequential estimation 

procedure for estimating the state of a lunar orbiting space vehicle acted upon 

by unmodeled forces due to an incomplete lunar potential and unmodeled mechanical 

forces such as those due to venting, water dumps, or translational forces due to 

unbalanced attitude control reactions. The estimation algorithm gives an estimate 

of the position and velocity of the space vehicle as well as the componen:s of 

the unmodeled acceleration at each observation epoch. The algorithm, referred 

to as the Dynamic Model Compensation (DMC) method, has been applied in further 

simulated studies in Refs. (1*0 and (15). The results of these studies along 

with the results from processing rea] time tracking data from the Apollo 10, 11, 

and 15 missions^*2''13' have indicated that the algorithm provides more precise 

estimates of the vehicle state than the conventional least squares batch or 

sequential orbit determination procedures and, hence, provides a more accurate 

input for navigation or guidance purposes. The results obtained in these 

studies indicate that the estimation procedure is stable in the sense that the 

error norm does not grow in an unbounded manner and that the norm of the covariance 

matrix provides a conservative bound on the error in the estimate. Finally, the 

estimates of the unmodeled accelerations obtained by processing range-rate tracking 

data from the lunar orbit phase of the Apollo 10 and 11 missions indicated a nigh 
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correlation with the location of lunar surface nass concentrations, as reported 

in Refs. (1.2}  and (13). In these studies Lhe observation residual was bounded 

by the formal standard deviation assigned to the range-rate measurements and, 

consequently, it is conjectured that the estimates of the unmodeled accelera- 

tions are reasonable representations of the true unmodeled accelerations acting 

on the vehicle. However, since actual tracking data is used for the studies 

reported in Refs. (12) and (13), the true acceleration history is not available 

for comparison. 

The primary objective of the investigation described in the following 

sections is to determine the accuracy with which the unmodeled accelerations can 

be estimated using the Dynamic Model Compensation (DHC) method proposed in 

Refs. (12) and (13). The question is answered by simulating numerically the 

orbit determination procedure for a space vehicle in an Apollo-type lunar orbit. 

In the simulated study, consideration is given to the effects of the accuracy and 

density of the observations, as well as the magnitude of the unmodeled accelerations, 

on the accuracy of the estimate. 

v-* ,-.'«•> ■.•VW;1 
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The Estimation Algorithm 

The equations which describe the motion of a lunar satellite can be ex- 

pressed by the following system of first-order differential equations: 

r = v, v = a +a +ra 
c   p 

(1) 

where r is a three-vector of selenocentric position components, v is a three- 

vector of selenocentric velocity components, a  is the acceleration due to the 

central body, a  is the modeled acceleration due to other sources, gravitational 

or otherwise, and, the three-vector, m , represents the effects of all accelera- 

tions not accounted for in the mathematical model used to describe the motion of 

the satellite. In the subsequent consideration, m will be referred tr as the 

"unmodeled acceleration". 

In the Dynamic Model Compensation procedure described in the following 

discussion, the unmodeled acceleration m is approximated as an adaptive, 

first-order, Gauss-Markov process,    e(t) , which satisfies the following vector 

differential equation , 

e(t) = Be(t) + u(t) (2) 

where e(t) is a three-vector whose components approximate the values of the 

unmodeled accelerations at the time, t , and u(t) is a three-vector of 

Gaussian noise whose components are assumed to satisfy the apriori statistics: 

ECu(t)] * 0 , ECu(t)uT(i)] - q(t)6(t - x) (3) 

where 5(t - x) is the Dirac "Delta" function and where q(t) is assumed to be 

a diagonal matrix. This assumption implies that the components of u are not 

correlated.  The coefficient matrix, B , is defined by the components B.. = 

tf.6jj (i, j = 1, 2, 3) where the ß^ are assumed to be unknown parameters whose 

miEasxsäL nsmmmmumammmmmmmkmmmmmmmimMm^mm  . ^_^i_m^^_^_^m______^___ 



values are to be determined during the estimation process by the inclusion of the 

equation ß = 0, where ß - [ß,ß-ß.J . If e is substituted for m in Eq. (1) 
T23 

and if the state vector X is defined as 

JT      r  T   T   T  eT, X -  [r : v : e : ß J 00 

then Eqs. (1), (2), and the relations ß = ü can be combined to obtain the fol- 

lowing differential equations for the state of the dynamical system: 

X = F(X, u, t) , X(tQ) = XQ (5) 

T T T T 
where    F    = [v    :  (a    + e)    :  (Be + u)     : 0]    and where a    = a    + a    , i.e., th*> m m   c   p 

components of the modeled acceleration. In the usual orbit determination problem, 

the initial conditions, X , are unknown. 

For t > t. , where t. is some reference epoch, the solution to Eq. (5) 

can be expressed in integral form as follows: 

r(t) = r. + v.it +   a(t)[t - t]di 
1   x   't. 

t . 

v(t) = v. a(x)dr r.At + 
1    it. 

l 

e(t) = E(t)e. + I.   , ß(t) = ß. 
l   1 i 

(6) 

where At = t - t. and a(t) = a (t) + e(c) . The matrices E(t) and I.    are 
i a i 

defined as 

E(t) = 

a  0  0 
x 

0  a  0 
y 

0  0  a 

(7) 
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l.  = [o A-o.2  u 
1     X     XX 

A—9 
/1-Ü2 u 

y y 
4-a2 u ] z z (8) 

where a * exp [-ß (t - t.)] with similar definitions for a  and a    . 
x   r   x    I y      z 

Further details on the development of the third of Eqs. (6) are given in Ref. (16), 

Using the definition in Eq, (4), the solution to Eqs. (5) can be expressed 

as 

X(t) = 8(X., t., t) + n. , t > t. 
i  I      l    — i 

(9) 

T    T   T   T where r\.  -  [n : n : n : 0]. The components of the state noise matrix, n. , i   r   v   e i 

are due to the purely random components of the unmodeled accelerations and can be 

defined as follows: 

v      }t    1 V  J  1      e   i 
i i 

(10) 

In view of Eqs. (3), the random process n. will satisfy the conditions 

E[n.3 = o , E[n.nt] = Q. 6.. 
l l j   ii] 

t  i 

(11) 

where 5.. is the Kronecker delta. Eq. (9) is used to propagate the state vector 

from an observation point t. to an observation point t. . 

The relationshio between the p-dinensional observation vector Y. , the 

p-vector of observation noise, v. , and the state at the time, t. , is r £ x 

Y. = G(X., t.) + v.  . 
l     li    l 

(12) 

In the following discussion, it is assumed that the observation noise, v. , 

satisfies the following conditions: 

E[v.] = 0 , E[v.vT] = R.6.. , ECv.xT] = 0' (13) 

immmmmmtammmm 
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where 6.. is the Kronecker delta. 

The problem considered then is posed as follows: Given the relation for 

propagating the state, Eq. (9), the observation-state relation, Eq. (12), the 

sequence of observations Y., i = 1, ..., k, and the statistics on the state noise, 

Eq. (3), and the observation noise, Eq. (13), find the best estimate, in the min- 

fmum variance sense, of the state, X. , at the time t . 

Under the conditions given in tue previous problem, the estimate at the 

time, t, , can be obtained using the following algorithm^1*': 

\ - 6(xk-i' Vr  V 

p
k = 

P.    = 

*(V Vi)pk-i * (V Vi>+ \-i 

K ..Tr T ft * 

VkCHk \ K+ \rl (14) 

where    ^ =  [30/3X^3*,    5^ = ECX^   | Y^   ..., Y^]    and    ^ = ED^   |  Y±t   ..., Yk3. 

The covariance matrices P,  and P,  are associated with the state estimates 
k      k 

A 

X,  and X , respectively. The state transition matrix, ^(^v.» "t, ,) satisfies 

the following differential equation 

*(t, tk) = A(t) $(t, tk) ; 4(tk, tfc) = I (15) 

where A(t) = [3F/3X]5'1 . The symbol [ ]* indicates that the quantity in the 

bracket is evaluated on the solution, X(t) = 9(X, . , t. . , t), t, < t. The 

solution 9(X, . , t  , t) is obtained from Eq. (9) using the condition that 

I  = EU 1 Y , ..., Y  ] = 0 . The algorithm given by Eqs. (14) and (15) is the 
X        K— X 

extended form of the usual linear sequential estimator or the Kalman-3ucy filter 

"rVrrn itMMriiiWTir MtEiii.-.iSi^..w.-...'.  ....-.,.   :■.;.._:   _,;'*«.4« 
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as discussed in Ref. (U). The covariance matrix P,  is associated with the best 

estimate of X.  based on k-observations while P.  is the covariance matrix as- 

sociated with the best estimate of JC  based on (k-l)-observations. 

It should be recalled that the estimate X. , includes an estimate at the 

time, t, , of the components of the position, the velocity, the unmodeled ac- 

celeration, e , and the correlation coefficients, ß , ß , and ß . The algorithm ii '  x  y     z 

requires apriori or "initial" estimates of each of these quantities as well as 

the apriori covariance matrices, P , Q., and R., associated with the initial 

state error and with the state noise and the observation noise, respectively. 

The development of the algorithm and the computational procedure required to im- 

plement the algorithm are discussed in greater detail in Refs. (12) and (13). 

In addition to processing the tracking data from the Apollo 10 and 11 mis- 

sions, the investigation described in Refs. (12) and (13) evaluate the char- 

acteristics of the estimation algorithm using simulated data. It is concluded 

from the simulated studies that in the presence of the unmodeled accelerations, 

the algorithm is stable and the covariance matrix provides a reasonable, but con- 

servative estimate of the actual error. Furthermore, the estimate of the posi- 

tion and velocity is more accurate than the estimate obtained using the usual 

sequential estimator or Kaiman Filter, modified as discussed in Ref. (4), to 

account for tbo effects of state process noise. In the simulated study which fol- 

lows, the accuracy with which the unmodeled acceleration components can be es- 

timated by the DMC procedure is investigated. 

vs^-ääsm^s^mM^^ 
■■   - 
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Generation of the Simulated Observations 

The simulated observations are generated by the integration of the system 
i 

of equations 

*• = v_ » v„ = a + m 
T   T *  T   m 

(16) 

where r (tQ), ^T(tQ) and m(t) are specified and where in the simulated study 

r_ represents a three-vector of the true position components, v is a three- 

vector of the true velocity components, a represents the terms modeled in the 

estimation algorithm, and m represents the terms not directly included in the 

dynamic model used in the estimation algorithm. The term m will define the true 

model error and is approximated by a first-order Gauss-Markov process in the DHC 

estimation algorithm. The model error is simulated in the following study by 

assuming that m is the acceleration due to several point masses at various 

locations on the lunar surfa ^. In the simulation, the term a  includes the 
m 

central body acceleration of the moon and the acceleration due to a point-mass 

earth. The effects of the sun and the other, planets were neglected. 

The numerical integration of Eq. (16) yields a solution for the "true" 

motion of the satellite which is used in generating simulated observations. The 

computer program ascertains which tracking stations can observe the satellite 

and a range-rate observation, p, is generated using the position and velocity of 

the satellite relative to a topocentric earth-fixed tracking station. The 

"true" value of the range-rate observation is corrupted to simulate the actual 

observation by adding the quantity CJ.X , where o. is the standard deviation 

of the observation noise and X is a Gaussian distributed random variable with 

zero mean and unit variance. 

/  _'_;■■ :.:».-..,  .... ......  . . .;.    ..._  „._„._..._ . __ 
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The numerical integration used in both the simulations and the estimation 

procedure is a variable step Runge-Kutta r.ethod formulate^ in Ref. (18). As 

implemented, integrators of two different orders can be used. During periods in 

which observations are generated, a fixed step size is used to simulate a fixed 

observation interval. This interval is normally sufficiently small to allow use 

of a lower order integrator, namely, the Runge-Kutta-Fehlberg 4(5). If the ob- 

servation interval results in a step size which is too large and the 4(5) is 

inadequate for maintaining accuracy, a higher order 7(8) method can be used. 

The estimation program requires the numerical integration of Eqs. (5) and 

(15), whereas the observation generation requires the integration of Eq. (16), only. 

The state vector for Eq. (5) consists of 12 elements, while Eq. (16) involves six 

elements. The state transition matrix, defined in Eq. (15), consists of 144 

elements; however, the order of the system can be reduced by noting that a number 

of elements can be integrated analytically. 

To simulate the real-world, the nominal or reference orbit initial con- 

ditions were assumed to be different from those used in the generation of the 

observations. The differences between the two sets of initial conditions for 

all orbits considered, were as follows: 

Ax = -305.8 meters , 

Ay = -304.7 meters , 

Az = - 71.9 meters  , 

Ax = 0.0542 meters/sec 

Ay = -0.3682 meters/sec 

Az = 0.3135 meters/sec 

Two orbit inclinations were considered, i.e., I = 180° and I = 150°. For both 

cases, the satellite starts at approximately 90° East selenographic longitude, 

with altitude of 100 km, and with an eccentricity of zero. For the case I = 180°, 

the satellite will be in a lunar equatorial orbit. The lunar groundtrack of the 

äas^m^^sakaäiMäa Sliü-i  TT .— .....-.» ._.■_ ..:  
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inclined orbit is shown in Fig. 1. Fig, 1 also shows the locations of four uascons 

whose effect was iucluded in the'generation of the simulated observations, but was 

not included in the dynamic model, a , for the estimation algorithm. The figure 

on which the simulated groundtrack is drawn (Fig. 1) was provided by W. L. 

Sjogren of the Jet Propulsion Laboratory18. 

The simulated mascons shown in Fig. 1 are given in Ref. (18). (See also 

Table I). It should be noted that the gravity contours in Ref. (18) are line-of- 

sight accelerations between the satellite and the ground station. These line-of- 

sight accelerations are normalized to 100 km above the mean lunar surface. 

Mascon Name 

1. Imbri urn 

2. Serenitatis 

3. Crisium 

U, . Nectaris 

Table I 
Lat. 
(Deg.) 

Long. 
(Deg.) 

+38 -18 

+28 +18 

+16 +58 

-16 +31* 

Mass 
(xlQ-6 Lunar Mass) 

20 

20 

10 

9 

The DHC method estimates the unnodeled acceleration vector which is plotted in 

the local spacecraft coordinate system shown in Fig. 2. In this figure, X is 

the selenographic longitude and <fc is the latitude. The unit vector e  lies 

along the selenocentric position vector of the satellite, unit vector IE  is 

directed due east, and e, is along the spacecraft latitude meridian. The lo- 

cations of the tracking stations coincide with those used in the Apollo missions. 

Generally, between four and seven stations can observe the satellite simultaneously. 

In all cases, the initial covariance matrix, P , was assirned to be diagonal 
■ o 

with the following initial values: P  =P  = P  = a2 = 9 x 101* (meters)2 , & xx   yy   zz   r 

P.. = P.. = P.. = (a )2 = .25 (meters/sec)2, P    =P    = P    = 4 x 10~8 
xx   yy   zz    v Vj|   eyey . t^ 

(meters/sec2)2 and P0 , = P„ „ = P„ „ = 2.25 x 10~'4 sec2. The initial value of 
b  P        P  P        P  D ^x x    yy   e

z  z 
E is assumed to be zero. Finally, an observation interval of six seconds was used. 

'". ■'"" ■.^..... . .. 
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Numerical Results 

The results obtained in the simulated study compare the behavior of the 

extended Kalman-Bucy filter with no model compensation with the behavior of the DHC 

method for both an equatorial orbit and an inclined orbit. The effect of the ob- 

servation accuracy and the unmodeled acceleration magnitude are considered. As 

described in the previous section, the true model error is due to the four lunar 

surface mascons. 

1. Behavior With No Model Compensation 

For this case, the observations were generated by including the mascons; 

however, in the estimation algorithm, they were neglected in the model used for 

a . The effects of the unmodeled accelerations were not accounted for through 
m 
the use of the state noise covariance matrix Q in Eq. (15). This case then 

represents the application of the extended form of the Kalman-Bucy filter with no 

model compensation. The observation accuracy is 1.5 mm/sec. For the retrograde 

equatorial orbit (I = 180°), the position and velocity error norms are shown in 

Fig. 3. Since this is a simulation, the actual error in the estimate is known 

from 

Ar = /(x - Xp)2.+ (y - yT)
2 + U - z^)

2 

where the (*) indicates estimated values, and ( ) indicates true values used in 

generating the observations. Fig. 3 also shows a plot of the square root of the 

trace of the first three diagonal el ;ments of the covariance matrix ? , i.e., 

iT  + P  + P xx   yy   zz 

Note that the actual erorr is not bounded by the covariance matrix. With no model 

compensation, the actual position error norm reaches a maximum of over 600 meters 

and the velocity error norm has a peak at ,5 meters/sec. The orbit with 

iUlliJa4lagj^iiiii)»irMiiiii<»tw»-»-*^' 
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I = 150° passes directly over two of the simulated mascons. With no model com- 

pensation, the error norms are shown in Fig. 4. The position error reaches a value 

of 10,000 meters. The estimation procedure has diverged for this case. 

The position and velocity error norms are shown in lieu of observation 

residuals. The residuals show the effect of a systematic error and will hava a 

pseudo-periodic behavior. Due to the number of stations involved, the residuals 

would require several plots whereas the error norm requires only two plots. 

Finally, it should be noted that application of the batch processor to these two 

orbits will yield residuals of comparable magnitude and pseudo-periodic character. 

See, for exampxe, the results given in Ref. (14). 

2. Behavior Using the DHCMethod 

Application of the DMC method to the I = 180° case yields the results shown in 

Fig. 5. Figure 5a shows the radial-component of the unmodeled acceleration com- 

pared with the estimate provided by the DMC algorithm. The smooth line is the 

true acceleration and the uneven line is the estimate of the true acceleration. 

Figures 5b and 5c show the Z.  and £.  components. The acceleration unit used in 
X 9 

these plots is the milligal (ragal). Note that the DHC method provides a very good 

estimate of the unmodeled acceleration. The position error norm is illustrated 

in Fig. 5d and the velocity error norm in Fig. 5e. It can be seen from Fig. 5d 

that the smooth line, the square root of the trace of the first three elements in 

the covariance matrix, P, represents a conservative estimate of the position error 

and that the estimate of the state of the satellite is improved considerably 

over the estimate obtained in the preceding case, i.e., with no model compensation. 

The observation noise standard deviation used in both the simulation and estimation 

computations was 1.5 mm/sec as in the preceding case. 

m^urr\mmmm^m       _..   .....    ..... s._i_ :.'L 
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For the I = 150° case, the acceleration estimates are shown in Fig. 6a to 

6c. Since the satellite passes almost directly over the location of two of the 

simulated mascons, the unmodeled ac:eleration is almost 100 times larger than for 

the equatorial orbit. The acceleration estimates again yield accurate approxima- 

tions of the true acceleration. Furthermore, it can be seen from Fig. 6d that the 

covariance matrix provides a conservative estimate of the actual error. In Fig.6e, 

the true velocity en*or norm is scattered about the covariance matrix, thus the 

covariance is indicative of the actual velocity error. The observation standard 

deviation for this case was 1.5 mm/sec. 

3. Effect of Improved Observation Accuracy on the DHC Method 

To evaluate the influence of observation accuracy, the case, I = 150°, was 

recomputed with an observation error standard deviation of 0.15 mm/sec, i.e., an 

improvement over the previous case of an order of magnitude. Tht results are 

given in Fig. 7. In Figs. 7a through 7c, a dramatic improvement in the accuracy 

of the estimate of the unmodeled acceleration can be seen. Furthermore, as one 

would expect, an improvement in the estimate of the position and velocity of the 

satellite also occurs. Similar behavior occurs for the I = 180° orbit. 

ecfcaEä „—  
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Summary and Conclusions 

The results of the preceding section demonstrate that the DMC algorithm 

can provide more accurate estimates of the state than can be obtained with the 

non-compensated algorithms. Furthermore, the method provides estimates of the 

unmodeled acceleration time-history which are representative of the true un- 

modeled acceleration. The accuracy of the acceleration estimate depends on the 

magnitude of the unmodeled acceleration, the accuracy of the observations and 

density of the observation data set, i.e., the number of tracking stations ob- 

serving the satellite. 

For a sufficiently large value of the ratio of the magnitude of the un- 

modeled accelerations to the accuracy of the observations and for a sufficiently 

dense observation data set, a precise estimate of the components of the unir.odeled 

accelerations can be obtained by the Dynamic Model Compensation algorithm described 

in this investigation. The estimates of the components cf the unmodeled accelera- 

tions can be used to improve the knowledge of the lunar gravitational potential 

representation. 

MÜtettOMM 
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Lunar 
Equator 

FIGURE 2.     UNMODELED ACCELERATION  COORDINATE SYSTEM 
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