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Abstract

In previous investigations, a sequential estimation procedure for estimating the
state of a lunar orbiting space vehicle acted upon by unmodeled terms in the
lunar potential and unmodeled mechanical forces such as those due to venting has
been developed. The unmodeled accelerations are approximated by a first-order
Gauss-Markov process. The estimation algorithm gives an estimate of the position
and velocity of the space vehicle as well as the components of the unmadeled ac-
celeration at each observation epoch. The results obtained by processing real-
time tracking data from the Apollo 10, 11, and 15 missions have indicated that
the algorithm provides more precise estimates of the vehicle state than con-
ventional orbit determination procedures and, hence, provides accurate input for
navigation or guidance purposes. The question of the usefulness of the unmodeled
accelerations for scientific experiments has not been established.

This investigation considers the accuracy with which the algorithm can estimate
the acceleration due to modeled lunar surface mascons by numerical simulation
of the estimation process. ' It is shows that an accurate estimate of the history
of the unmodeled acceleration can be obtained. The investigation also considers
the effects of the magnitude and location of the mascons, as well as the effect
of the observation accuracy.
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Introduction

O L

The problem of estimating the state of a nonlinear dynamical system in- °
fluenced by random forces using discrete ouservations which are subject to random
error has received considerable interest during the past decade. Impetus for
this interest has been derived from requirements for precise determination of the
orbits and.trajectories of space vehicles. The precise determination of the mo-
tion of a space vehicle is necessary, first, so that the navigation functions
required to establish a specified tréjectory cén be performed and, second, so
that measurements of the satellites' motion can be used to infer properties of
the physicel medium in which the vehicle is moving. The reguirements of deter-
mining the motion of a lunar orbiting space vehicle have placed extensive demands
on the conventional least squares orbit determination method. In particular, the
problem - of determining, simultaneously, precise estimates of the vehicle posi-
tion and velocity while estimating the values for the coefficients of the lunar
gravity field may require accuracies which exceed the capabilities of classical
orbit determination methods. .

The solution to the classical orbit determination problem involves linear-
izing the nonlinear equations, which define the problem, about a specified
reference trajectory and then applying linear estimation techniques. Cnce the
problem has been reduced to a linear estimation problem, the estimation algorithm
is obtained by applying the weighted least squares method or by use of statistical
based estimation methods, such as minimum variance or maximum likelihood methods.
Using the results from either of these approaches, the estimate may be obtained
by using a batch data processing algorithm, in which all of the cbservations are
processed simultaneously to obtain an estimate of the state at some reference

epoch, or the state estimate may be obtained by processing each date point sequen-

tially as it is obtained.




It is well known that errors of four basic types influence the accuracy of
the estimate obtained by each of these procedures; i.e., 1) errors due to the
linearization assumptions, 2) errors introduced in the computational procedure,
3) errors which occur in the observation process, and 4) errors due to inaccuracies
in the mathematical model used to define the problem. The effect of these errors
on batch-type estimation algorithms is discussed in Ref. (1), (2), and (3). I¥
‘the extended form of the sequential estimation algorithm(“) is used, where the
estimate of the state at a time, ti s 1s used to define the reference trajectory
for propagsting the estimate from the observation epoch, t; s to the next ob-
servation epoch, tj’ the effects of the nonlinearities are minimized. TFurther-
more, in most orbit determination problems, sufficient accuracy can be obiained
during the computation process to eliminate the integration errors. Hence, using
the extended sequential estimation algorithm, the effects of the last two error
sources will be the primary factofs which limit the orbit determination accuracy
for near-earth or near-lunar satellites. While the effects of the observation
errors are an important factor, the increase in the accuracy of the doppler
tracking data coupled with the high precisién'laser rangiug data suggests that
errors in the data are less important in limiting the accuracy obtained with con-
ventional orbit determination procedures than are the errors due to model inac-
curacies. As a consequence of this fact, primary attention in this investigaticn
will be directed towards consideration of metheds for reducing the errors due to
inaccuracies in the dynamic model.

It should be noted that there is some trade-off between the errors which oc-
cur in the computational process and the errors due to an incomplete or inaccurate
mathematical model. Vith a more complete mathematical model, it is more difficult
to obtain an accurate numerical solution to the reletions which define the estin-

ation procedure. On the other hand, if the mathematical model is simplified to



alleviate the computational problems, important physical effects may be neglected.
The subsequent estimation procedure may "diverge" due io model error(1)(5),  Thig
difficulty may be en;ountered, also, if the actual dynamical process is not
understoou well enough to allow a precise definition of the mathematical iodel.
The effects of inaccuracies in the mathematical model on the accuracy and the

¥ stability of the linear sequential estimation procedures are discussed in Ref. (4),

(5), and (6). A number of methods have been proposed to alleviate the problem of

estimation divergefice. These methods include additions to the state error co-
variance matrix to account for noise in the differential equations which govern
the motion(7), specification of a minimum bound on the estimation error covariance
matrix(a), and the utilization of a finite(") or decaying(g) data set. While

these methods lead to a more stable estimation algorithm, they suffer from the

disadvantage that the accuracy of the estimate is determined by certain empirical
parameters which must be specified "apriori" without knowledge of the disturbing
process. In addition, the methods do not yield information directly related to

the unmodeled accelerations. Such information is of considerable value in post-

o
.

flight data analysis for improving the knowledge of the mathematical model.

In the following discussion, a sequential estimation method which compen-
sates for unmodeled effects in the differential equations of the dynamical process,
is described. The method has two advantages: 1) it can be used to obtain an
improved estimate of the vehicle state during real time estimation problems and
2) the method will yield information which can be used in post-flight data
analysis to improve the mathematical mcdel. In the proposed method, the "un-

modeled" accelerations are assumed to consist of the superposition of a time cor-

related component and a purely random component and are arproximated by a first-

order Gauss-!arkov process. This model has been used previcusly to compensate for
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errofé in inertial navigation devices(lo), and to compensate for tre effects of
random fiuctuations in atmospheric drag(ll).

In Refs. {10) and (11), a.staticnary Gauss-Markov process is assumed and
the correlation time, or equivalently, the correlation coefficient is assum2d to
be constant and known, apriori. In Refs. (12) and (13}, this assumption is
relaxed and the correlation coefficients are regarded as unknown parameters and

the best estimate of their values are determined during the estimation process

In Refs. (12) and (13), this approach is used to develop a sequential estimation
¥ procedure for estimating the state of a lunar orbiting space vehicle acted upon
$
by unmodeled forces due tc an incomplete lunar potential and unmodeled mechanical

forces such as those due to venting, water dumps, or translational forces due to

unbalanced attitude control reactions. The estimation algorithm gives an estimate
£ of the position and velocity of the space vehicle as well as the componen:s of
% the unmodeled acceleration at each observation epoch. The algorithm, referred
% to as the Dynamic Model Compensation (D¥C) method, has been applied in further
g simulated studies in Refs. (1%#) and (15). The results of these studies along
% with the results from processing real fime {récking data from the Apolle 10, 11,
; and 15 missions(127(13) have indicated that the algerithm provides more precise

estimates of the vehicle state than the conventional least squares batch or

PR e o 2

sequential orbit determination procedures and, hence, provides a more accurate
input for navigation or guidance purpcses. The results obtained in these

studies indicate that the estimation procedwre is stable in the sense that the

matrix provides a conservative bound on the error in the estimate. Finaily, the
estimates of the unmodeled accelerations obtained by processing range-rate tracking

data from the Lunar orbit phase of the Apollo 10 and 11 missions indicated a nigh

g error ncrm does not grow in an unbounded manner and that the norm of the covariance
%
&
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correlation with the location of lumar surface mass concentrations, as reported
in Refs. (12) and (13). In these séudies ibe observation residual was bounded
by the formal staniard ééviation assigned to the range-rate measurements and,
consequently, it is conjectured that the estimates of the unmodeled accelera-
tions are reasonahle representations of the true unmodeled accelerations acting
on the vehicle. However, since actual tracking data is used for the studies
reported in Refs. (12} and (13), the true acceleration history is not available
for comparison.

The primary objective of the investigation described in the following
sections is to determine the accuracy with which the unmodeled accelerations can
be estimated using the Dynamic Model Compensation (DMC) method proposed in
Refs. (12) and (13). The question is ansﬁered by simulating numerically the
orbit determination procedure for a space vehicle in an Apollo-type lunar orbit.
In the simulated study, consideration is given to the effects of the accuracy and

density of the observations, as well as the magnitude of the unmodeled accelerations,

on the accuracy of the estimate.
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The Estimation Algorithm
The equations which describe the motion of a lunar satellite can be ex-
pressed by the following system of first-order differential equations:
r=v, v= a, + a, +m (1)

where r is a three-vector of selenocentric position components, v 1is a three-
vector of selgnocentric velocity components, a, is the acceleration due to the
central body, aP is the modeled acceleration due to other sources, gravitational
or otherwise, and, the three-vector, m , represents the effects of all accelera-
tions not accounted for in the gathematical model used to describe the motion of
the satellite. In the subsequent consideration, m will be referred tc as the
"unmodeled acceleration™.

In the Dynamic Model Compensation procedure described in the following
discussion, the unmodeled acceleration m is approximated as an adaptive,
first-order, Gauss-Markov process, e(t) , which satisfies the following vector

differential equation -
e(t) = Be(t) + u(t) . (2)

where €(t) 1is a three-vector whose components approximate the values of the
urmodeled accelerations at the time, t , and u(t) is a three-vector of

Gaussian noise whose components are assumed to satisfy the apriori statistics:
Eu(t)] = 0 , Efu(t)u (1)] = q(t)6(t - 1) | (3)

where 6(t - 1) 1is the Dirac "Delta" function and where q(t) is assumed to be
a diagonal matrix. This assumption implies that the components of u are not

correlated. The coefficient matrix, B , is defined by the components Sij =

B éij (i, j =1, 2, 3) where the B; are assumed to be unknown paranmeters whose




values are to be determined during the estimation process by the inclusion of the
equation 8 = 0, where BT = [818263] . If ¢ is substituted for m in Eq. (1)

and if the state vector X 1is defined as

XT =z [rT q i eT : BT] (u)

then Eqé. (1), (2), and the relations B = 0 can be combined *o cbtain the fol-

lowing differential equations for the state of the dynamical system:

i S BX, uw, £ 4 Ht)= X (5)
o] 0

where FT = [vT 2 (am + e)T : (Be + u)T : 0] and where a =a, " dp s i.e., the
components of the modeled acceleration. In the usual orbit determination problem,
the initial conditions, Xo , are unknown.

For t > ti , Wwhere ti is some reference epoch, the solution *o Eq. (5)

can be expressed in integral form as follows:

- r(t) = v, + v,it + r a(t)[t - 11dt
.._:: 1 by &
4 K .
‘;3 . t
v(t) = v At + I a(t)dr
: A
! :' t.
& i
: ! e(t) = E(t)ei t e, B(t) = ei (6)
E where At = t - ti and a(t) = am(t) + ¢{t) . The matrices E(t) and zi are
defined as
£
B a 0 0
: X
1 E(t) =]0 o O (7)
y
= k 0 0 Gx

;
¢
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tf = fo N0e2u ‘0 N-e?v 0 V1-a?2u ] (8)
i X X X .y y ¥y oz z z

where a = exp [-Bx(t - ti)] with similar definitions for ay and a .

Further details on the development of the third of Eqs. (6) are given in Ref. (16).

Using the definition in Eq. (4), the solution to Egs. (5) can be expressed

as
x(t)=e(xi, t.s 'c)+ni » 2t (9)
T_ .. T T T ' : :
where ng = [nr LN 0]. The components of the state noise matrix, N s

are due to the purely random components of the unmodeled accelerations and can be

defined as follows:

.t '
‘= J li(t - 1)dr , n, = J lidr » M= L. _ (10)

In view of Egs. (3), the random process ng will satisfy the conditions

(11)

- Ta |

LY

where Gij is the Kronecker delta. Eg. (9) is used to propagate the state vector
from an observation point ti to an observation point tj
The relationship between the p-dimensional observation vector Yi » the

p-vector of observation noise, Vo znd the state at the time, ti , is
Yi = G(Xi, ti) + Vi o (12)

In the following discussion, it is assumed that the observation noise, Vi -

satisfies the following conditions:

Elv,1= 0, E[v.v.] = R.6,. , E[v.X.] =0 (13)

i3 e oy i
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where Gij is the Kronecker delta.

The préblem considered then is posed as follows: Given the relation for
propagating the state, Eq. (38), the observation-state relation, Eq. (12), the
sequence of observations Yi’ i=1, ..., k, and the statistics on the state noise,
Eq. (3), and the observation noise, Eq. (13), find the best estimate, in the min-

A

imum variance sense, of the state, Xk , at the time tk.

Under the conditions given in tlie previous problem, the estimate at the

time, t, s can Le obtained using the following algorithm(“):

=05 1 fopr ®)

T
¢(tk, te Py $ e, t

= T = T -1

Pka[Hk PE +R] | (1)
ik + K Y - G(?k, t,)]

e %R

ot
~
n

) +1Q

k-1 k-1

e R S -
7\‘?<'
i

al

AT

o
]

where H_= [36/3% 1%, X = E[X_ l Yo eees Yk-lj and X = E[X | Yo, eees Y1

The covariance matrices Pk and Pk are associated with the state estimates

ik and Xk , respectively. The state transiticn matrix, Q(tk, tk—l) satisfies
the following differential equation
. o(t, t) = A(t) o(t, £) 5 o4, t) =1 (15)

B T S TR TN S R TS ST AT ST B LA A

where A(t) = [3F/3X]* . The symbol [ J* indicates that the quantity in the

AT

bracket is evaluated on the sclution, X(t) = S(Xk_l, L t), t <t. The

é‘ -~

‘ solution e(xk 1° Yeopo t) is obtained from Eq. (9) using the condition that

g " E

% 1= E[2 | Yl, sy Yk—I] = 0 . The algorithm given by Egs. (1u) and (15) is the
£ extended form of the usual linear sequentlal estirator or the Kalman-Bucy filter
:
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as discussed in Ref. {4). The covariance matrix Pk is associated with the best

estimate of Xk based on k-observations while ?k is the covariance matrix as-
sociated with the best estimate of Xk based on (k-1)-observations.

It should.be recalled that the estimate ik , includes an estimate at the
time, tk , of the components of the position, the velocity, the unmodeled ac-
celeration, € , and the correlation coefficients, Bx’ By’ and Bz. The algorithm
requires apriori or "initial" estimates of each of these quantities as well as
the apriori covariance matrices, Po"Qi’ and'Ri, associated with the initial
state error and with the state noise and the observation noise, respectively.

The development of the algorithm and the computational procedure required to im-
plement the algorithm are discussed in greater detail in Refs. (12) and (13).

In addition to processing the tracking data from the Apollo 10 and 11 mis-
sions, the investigation described in Refs. (12) and (13) evaluate the char-
acteriséics of the estimation algorithm using simulated data. It is concluded
from the simulated studies that in the presence of the wnmodeled accelerations,
the algorithm is stable and the covariance matrix provides a reasonable, but con-
servative estimatc of the actual error. Puftﬂermore, the estimate of the posi-
tion and velocity is more accurate than the estimate obtained using the usual
sequential estimator or Kalman Filter, modified as discussed in Ref. (4), to
account for the effects of state process noise. In the simulated study which fol-
lows, the accuracy with which the unmodeled acceleration components can be es-

timated by the DMC procedure is investigated.
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i? Generation of the éimulated Observations

; ' The simulated observations are genergted by the integration of the system

L : of equations

:%'é 5T = Voo GT =a +m (16)

where rT(to), Vf(to) and m(t) are specified and where in the simulated study

LN represents a three-vector of the true position components, Vo is a three-

vector of the true velocity components, a represents the terms modeled in the

estimation algorithm, and m represents the terms not directly included in the

dynamic model used in the estimation algorithm. The term m will define the true

] model error and is approximated by a first-order Gauss-Markov process in the DMC
estimation algorithm. The model error is simulated in the following study by
assuming that m is the acceleration due to several point masses at various
locations on the lunar surfa-->. In the simulation, the term a includes the
central body acceleration of the moon and the acceleration due to a point-mass
earth. The effects of the sun and the other planets were neglected.

The numerical integration of Eq. (16) yields a solution for the "true"

motion of the satellite which is used in generating simulated observations. The
computer program ascertains which fracking stations can observe the satellite

and a range-rate observation, 5, is generated using the position and veloccity of
the satellite relative to a topocentric earth-fixed tracking station. The

"true" value of the range-rate observation is corrupted to simulate the actual
observation by adding the quantity oék s where o‘3 is the standard deviation

of the obs=vrvation noise and 2 1is a Gaussian distributed random variable with

zero mean and unit variance.
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The numerical integration used in both the simulations and the estimation
proceQure is a variable step Runge-Kutta rethed forrulateu in Ref. (18). As
implemented, integrators of two different orders can be used. During periods in
which observations are generated, a fixed step size is used to simulate a fixed
abservation interval. This interval is normally sufficientiy small to allow use
of a lower order integrator, namely, the Runée—Kutta—Fehlherg 4(5). 1iIf the ob-
servation interval results in a step size which is too large and the 4(5) is
inadequate for maintaining accuracy, a higher order 7(8) method can be used.

The estimation program requires the numerical integration of Eqs. (5) and
(15), whereas the observation generation requires the integration of Eq. (16), only.
The state vector for Eq. (5) consists of 12 elements, while Eq. (16) involves six
elements. The state transition matrix, defined in Eq. (15), ¢onsists of 1luu
elements; however, the order of the system can be reduced by noting that a number
of elements can be integrated analytically.

To simulate the real-world, the nominal or reference orbit initial con-
ditions were assumed to be different from those used in the generation of the
observations. The differences between the {wé sets of initial conditions for

all orbits considered, were as follows:

Ax = -305.8 meters , A% = 0.0542 meterc/sec
Ay = -304.7 meters , Ay = -0.3682 meters/sec
Az = - 71.9 meters , Az = 0.3135 meters/sec

Two orbit inclinations were considered, i.e., I = 180° and I = 150°. For both
cases, the satellite starts at approximately 20° East selenographic longitude,
with altitude of 100 km, and with an eccentricity of zerc. For the case I = 180°,

the satellite will be in a lunar equatorial orbit. The lunar groundirack of the




inclined orbit is shown in Fig. 1. Fig. 1 also shows the locations of four mascons
whose effect was included in the generation of the simulated observations, but was
not included in the dynamic model, a s for the estimation algorithm. The figure
on vhich the simulated groundtrack is drawn (Fig. 1) was provided by W. L.
Sjogren of the Jet Propulsion Laboratoryle.

The simulated mascons shown in Fig. 1 are given in Ref. (18). (See also
Table I). It should be noted that the gravity contours in Ref. (18) are line-of-
sight accelerutions between the satellite and the ground station. These line-of-

sight accelerations are normalized to 100 km above the mean lunar surface.

Table I
Lat. Long. Mass
Mascon Name (Deg.) (Deg. ) : (x10-% Lunar Xass)
1. Imbrium +38 . -18 20
2, Serenitatis +28 +18 20
3. Crisiun . 416 +58 10
4. _Nectaris -16 +34 | 9

The DMC method estimates the gnmodéled acceleration vector which is plotted in
the local spacecraft coordinzte system shown in Fig. 2. In this figure, A is
the selenographic longitude and ¢ 1is the latitude. The unit vector Er lies
along the selenocentric pesition vector of the satellite, unit vector Er is

directed due east, and €, is along the spacecraft latitude meridian. The lo-

$
cations of the tracking stations coincide with those used in the Apollo missionms.
Generally, between four and seven stations can observe the satellite simultaneously.

In all cases, the initial covariance matrix, Po , was assumed to be diagonal

with the following initial values: P =P =P =02 = 9 x 10% (meters)? ,
XX vy 2z r
= P.. = P,. = 2 - 2 p = = S -8
P** Pyy Pzz (cv) .25 (meters/sec)?, £t Peyey ; PEZEz 4 x 10
(meters/sec?)? and PB e P8 g ° PB g = 2.25 x 10™"% sec?. The initial value of
zz

X% Yy
€ is assumed to be zero. Finally, an observation interval of six seconds was used.




Numerical Results

The results obtained in thé simulated study compare the behavior of the
extended Kalman-Bucy filter with no model compensation with the behavior of the DUC
method for both an equatorial orbit and an inclined orbit. The effect of the cb-
servation accuracy and the unmodeled acceleration magnitude are considered. As
described in the previous secticn, the true model error is due to the four lunar

surface mascons.

1. Behavior With No Model Compensation

For this cuose, the observations were generated by including the mascons;
however, in the estimation algorithm, they were neglected in the model used for
a - The effecis of the unmodeled accelerations were not accounted for through
the use of the state noise covariance matrix Q in Eq. (15). This case then
represents the applicaticn of the extended form of the Kalman-Bucy filter with no
model compensation. The observation accuracy is 1.5 mm/sec. For the retrograde
equatorial orbit (I = 180°), the position and velécity ervor norms are shown in

Fig. 3. Since this is a simulation, the actual error in the estimate is known

from

Ar = /(; = xT)2,+ (y - yT)2 + (z - zT)z

where the (*) indicates estimated values, and ( )T indicates true values used in

generating the observations. Fig. 3 also shows a plot of the square root of the

trace of the first three diagonal el .ments of the covariance matrix P , i.e.,

Pr=£XX+P}’y+PZZ

Note that the actual erorr is not becunded by the covariance matrix. With no model
compensation, the actual position error norm reaches a maximum of over 600 meters

and the velocity error norm has a peak at .5 meters/sec. The orbit with



I = 150° passes directly over two of the simulatecd mascons. With no model com-
pensation, the error norms are shown in Fig. 4. The position error reaches a value
of 10,000 meters. The estimation procedure has diverged for this case.

The position and velocity error norms are shown in lieu of observation
residuals. The residuals show the effect of a systematic error and will have a
pseudo-periodic behavior. Due to the nuiber of stations involved, the residuals
would require several plots whereas the error norm requires only two plots.
Finally, it should be noted that application of the batch processor to these two
orbits will yield residuals of comparable magnitude and pseudo-periodic character.

See, for exampie, the results given in Ref. (14).

2. Behavior Using the DMC Method

lepplication of the DMC method to the I = 180° case yields the results shown in
Fig. 5. Figure 5a shows the radial-component of the unmodeled accelération ;om-
pared with the estimate provided by the DMC algorithm. The smooth line is the
true acceleration and the uneven line is the estimate of the true acceleration.
Figures 5b and 5¢ show the EA and E¢ components. The acceleration unit used in
these plots is the milligal (mgal). Note tﬁaé the DMC method provides a very good
estimate of the unmodeled acceleration. The position error norm is illustrated
in Fig. 5d and the velocity error norm in Fig. Se. It can be seen from Fig. 54
that the smooth line, the square root of the trace of the first three elements in
the covariance matrix, P, represents a conservative estimate of the position error
and that the estimate of the state of the satellite is improved considerably

over the estimate obtained in the preceding case, i.e., with no model compensation.

The observation noise standard deviation used in both the simulation and estimation

computaticns was 1.5 mm/sec as in the preceding case.
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For the I = 150° case, the acceleration estimates are shown in Fig. €a to
6c. Since the satellite passes almost directly over the location of two of the
simulated mascons, the unmodeled ac:eleration is almost 100 times larger than for

the equatorial orbit. The acceleration estimates again yield accurate approxima-

tions of the true acceleration. Furthermore, it can be seen from Fig. 6d that the
covariance matrix provides a conservative estimate of the actual error. In Fig.6e,

‘the true velocity error norm is scattered about the covariance matrix, thus the

covariance is indicative of the actual velocity error. The obseryation standérd
deviation for this case was 1.5 mm/sec.

3. Effect of Improved Observation Accuracy on the DMC Method

To evaluate the infliuence of cbservation accuracy, the case, I = 150°, was
recomputed with an observation error standard deviation of 0.15 mm/sec, i.e., an
improvenent over the previous case of an order of magnitude. The results are
given in Fig. 7. In Figs. 7a through 7c, a dramatic improvement in the accuracy
of the estimate of the unmodeled acceleration can be seen, Furthermore, as one
would expeét, an improvement in the estimate of the pcsition and velocity of the

', .
satellite also cccurs. Similar behavior occurs for the I = 180° orbit.




Vg 19

Summary and Conclusions

The results of the preceding section demonstrate that the DMC algorithm
can provide more accurate estimates of the state than can be obtained with the
non-compensated algorithms, Farthermore, the method provides estimates of the
unmodeled acceleration time-history which are representative of the true un-
modeled acceleration. The accuracy of the acceleration estimate depends on the
magnitude of the unmodelad acceleration, the accuracy of the observations and
denéity of the rbservation data set, i.e., the puﬁber of tracking stations ob-
serving the satellite.

For a sufficiently large value of the ratio of the magnitude of the un-
modelied accelerations to the accuracy of the observations and for a sufficiently
dense observation data set, a precise estimate of the'ccmponents of the unmodeled
accelerations can be obtained by the Dynamic Model Compensation algorithm described
in this investigatioa. The estimates of the components cf the unmodeled accelera-

tions can be used to improve the knowledge of the lunar gravitational potential

representation.
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Figure 7.
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