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Hamilton developed a technique for estimating financial market expectations of inflation based 
on the observed time-series properties of interest rates and inflation. The technique is based on 
a state-space representation derived from an underlying vector autoregressive process of the 
expected real interest rate and the expected inflation rate on lagged expectations and lagged 
values of the observed Treasury bill rate and the actual inflation rate. This article extends this 
work in two ways. First, we use monthly data, since the quarterly data used by Hamilton may 
obscure many interesting movements, especially for determining the role of inflationary expec- 
tations in stock price movements, and this is one of our primary interests. Second, we employ 
an alternative method developed by Burmeister and Wall for estimating the parameters of the 
model, and this method leads to a different identification proof. Both approaches share the use 
of the Kalman filter to estimate the unobserved variables, in this case, expected rates of inflation. 

KEY WORDS: Expected inflation; Unobserved variables; Kalman filter; State space. 

1. INTRODUCTION 

Hamilton (1985) developed a technique for estimating 
financial market expectations of inflation based on the ob- 
served time series properties of interest rates and inflation. 
The technique is based on a state-space representation de- 
rived from an underlying vector autoregressive process of 
the expected real interest rate and the expected inflation rate 
on lagged expectations and lagged values of the observed 
Treasury bill rate and the actual inflation rate. Hamilton 
applied this technique to postwar quarterly data to generate 
historical estimates of the rates of inflation anticipated by 
bond markets. [The formulation is quite general and includes 
previous work on expected inflation as special cases in which 
most of the parameters are restricted to zero values; see 
Hamilton (1985) for details.] 

This article extends this work in two ways. First, we use 
monthly data, since quarterly data may obscure many in- 
teresting movements, especially for determining the role of 
inflationary expectations in stock price movements, and this 
is one of our primary interests. Second, we employ an al- 
ternative method developed by Burmeister and Wall (1982, 
1984a,b) for estimating the parameters of the model, and 
this method leads to a different identification proof. Both 
approaches share the use of the Kalman filter to estimate the 
unobserved variables, in this case, expected rates of infla- 
tion. [The use of Kalman filtering techniques to estimate 
unobserved variables in economics was introduced by Bur- 
meister and Wall (1982).] 

The estimated monthly expected inflation series exhibits 
the properties one would hope for, as did Hamilton's quar- 
terly series; it is unbiased, rational, and efficient. In partic- 
ular, we found no noncontemporaneous economic variables 
in the relevant information set that help explain the difference 
between the actual inflation series and our monthly estimated 
expected inflation series. The standard error of agents fore- 
casting inflation one month ahead is approximately .3% at 
a monthly rate. 

Monte Carlo simulations were conducted to ascertain how 
much of the total econometric uncertainty (as defined in Sec. 
6) in our estimated inflation series is due to noise in the 
structural model and how much is due to parameter uncer- 
tainty. We found that the total econometric uncertainty is 
about .16% per month; about .13% of this is due to struc- 
tural noise and about .09% is due to parameter uncertainty 
[(.16)2 - (.13)2 + (.09)2]. These numbers are roughly what 
one would expect given Hamilton's quarterly estimates. 

One important application of our estimated expected in- 
flation series is presented. We found that both the error in 
expected inflation for period t and the change in expected 
inflation between periods t + 1 and t are statistically sig- 
nificant macroeconomic factors in the context of the Ross 
(1976) Arbitrage Pricing Theory (APT) for explaining se- 
curity returns in period t. 

The presentation proceeds as follows: The model is ex- 
plained in Section 2, and in Section 3 a state-space repre- 
sentation is derived. Identification is established in Section 
4, with parameter estimates given in Section 5. In Section 
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6 we discuss our estimated expected inflation series, and 
tests of this series are given in Section 7. Finally, an ap- 
plication of our expected inflation series to the Arbitrage 
Pricing Theory is presented in Section 8, and the article 
concludes in Section 9 with a brief discussion of further 
research suggested by our work. 

2. THE MODEL 

We introduce the following notation: 

p(t) = the price level in month t as measured by the 

implicit deflator for nondurable consumption; 

7r(t) = the rate of inflation between months t and t - 1 
in % 
{[p(t) - p(t - l)]/p(t - )} x 100; 

7e(t) = expected rate of inflation based on the available 
information at time t 

-E[n(t)ll(t)], where l(t) is the information set 
available to economic agents at the beginning of 
month t; 

i(t) = nominal return on Treasury bills expiring at the 
end of month t in %, assumed to be known at the 
beginning of month t; 

re(t) = expected (ex ante) real interest rate 

- i(t) - e(t); 

r(t) = actual (ex post) real interest rate 

- i(t) - 7r(t); 

e(t) = the inflation forecast error made by agents 

- n(t) - 7e(t). 

[One must be cautious to distinguish between the information 
set of the economic agents when they form the expectation 
7n(t) and the information set available to the econometrician 
who wishes to obtain an estimate of 7e(t). Intuitively, the 
Kalman filter produces the "best' estimate of n"(t) (given 
either data over the whole sample or at least data up to and 
including time t) that is consistent with the model. In other 
words, given a model of how expectations and actual real- 
izations interact, it produces the "best" estimate of unob- 
served expectations consistent with the other variables hav- 
ing their observed realizations.] 

We note at the outset that there is a conceptual problem 
with the timing of rates because of the way in which the 
price level is measured. Price indices are constructed for 
month t by using data over the entire month, and hence they 
may be taken to measure the price level approximately at 
the middle of month t. Consequently, the rate of inflation 
7r(t) as defined measures the percentage rate of change in 
the price level from approximately the middle of month 
t - 1 to the middle of month t. The nominal interest rate 
i(t), however, is measured from the beginning to end of 
month t. 

Fortunately, however, with monthly data we found that 
our empirical results are robust with respect to 1-month 
timing changes in the inflation rate or nominal interest rate. 

Most important, when i(t) is replaced by i(t - 1) with 

everything else unchanged, there is essentially no alteration 
in our estimated expected inflation series. The empirical 
results reported subsequently match i(t) with 7r(t); hence the 

expected real rate of interest in month t is defined as the 
nominal rate of interest during month t minus the expected 
inflation rate from approximately the middle of month 
t - 1 to the middle of month t. Accordingly, if we take the 
index t to mean the beginning of month t, we assume that 
the information set contains 

I(t) = {n(t - 1), 7r(t - 2), .... e(t), ne(t - 1), ... 

i(t), i(t - 1), i(t - 2), . .. .}, 

and it could include other information as well. Even though 
p(t - 1) and 

(t - 1) [(t - 1) - p(t - 2)/p(t - 2) 

are not announced until sometime during month t, we assume 
that agents at the beginning of month t know the price level 
for month t - 1 and are not surprised by subsequent an- 
nouncements. 

Following Hamilton (1985), we postulate that the follow- 

ing vector autoregressive process characterizes the evolution 
of the expected real interest rate and the expected inflation 
rate: 

r'(t) = k, + (lr'(t - 1) + 2re(t - 2) 

+ 03r (t- 3) + 04r (t- 4) + ,ue (t - 1) 

+ /27re(t- 2) + t37r(t- 3) + W47e(t - 4) 

+ 1n7(t - 1) + ^7r(t - 2) + ,37E(t- 3) 

+ 474r(t 
- 4) + el(t) 

and 

71r(t + 1) = k + ailr(t) + a2re(t - 1) + a3r"(t - 2) 

+ a4r(t - 3) + ,r V(t) + 2r'r (t - 1) 

+ 337Te(t - 2) + fle(t - 3) + ',7r(t) 

+ Y17r(t - 1) + 37r(t - 2) 

+ '47r(t - 3) + e,(t). 

(1) 

(2) 

In what follows, we assume that e,(t) and e,(t) are un- 
correlated with re(t - j), 7"(t - j), and 7r(t - j) for all 
j > 1; thus the autoregressive dynamics of real interest rates 
and expectations of inflation are assumed to be stable and 
sufficiently simple to admit a low-order vector autoregres- 
sive representation of the form of (1) and (2). [For economic 
motivation of a simple autoregressive process for real interest 
rates, see Fama and Gibbons (1982) and Litterman and Weiss 
(1985).] The key innovation of Hamilton's technique, how- 
ever, is that it does not require EI(t) and E,(t) to be uncor- 
related with lagged values of other variables that may be 
known to agents but not to the econometrician. Thus Equa- 
tion (2) is not the rule used by agents to forecast inflation, 
but simply corresponds to the statistical projection of those 
forecasts re(t + 1) on a strict subset of the variables by 
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which they are actually determined. The central idea is to 

rely on the hypotheses (1) and (2) of stable, simple dynamics, 
and use ex post data on i(t + 1), 7z(t + 1) to draw inferences 
about the unobserved ex ante magnitude Ire(t + 1), as in a 
standard signal-noise extraction problem. Agents face a 
forecasting problem in formulating 7re(t + 1), for which 

i(t + 1) and i(t + 1) are not known. The econometrician, 
by contrast, faces a signal problem of inferring 7re(t + 1), 
and for this latter purpose, use of 7r(t + 1) and i(t + 1) 
may be helpful. Of course, one uncovers only an inaccurate 
estimate of agents' forecasts ne(t + 1) by this method, since 
the actual model used by agents in forecasting is presumed 
to be unavailable to the econometrician. Hamilton (1985) 
showed that standard filtering algorithms can be used to 

produce estimates of the degree of uncertainty associated 
with this problem of inference, which we refer to as "filter 

uncertainty" in the empirical results presented here. 
In addition to assuming that the dynamics of real interest 

rates are stable and relatively simple, we also assume that 
markets are efficient; that is, all available information is 
used by agents to form their expectations. As discussed in 
detail in Hamilton (1985), this efficiency assumption im- 

poses orthogonality conditions on (1) and (2) that imply that 

E{[el(t), 82(t), e(t)]'[El(r), ?2(T), e(r)]} 
2~ 0 0 

= 0 a5 0 if t = T 

0 0 ae 
_m 

= 0 if t # r. 

For some of the Monte Carlo simulations reported subse- 

quently, we also take [el(t), e2(t), e(t)] to be trivariate 
normal. 

As observed by Hamilton (1985), Fama and Gibbons (1982, 
1984) employed a model that is a special case of Equation 
(1) with 01 = 1 and all other parameters set to zero, and 
Gessler (1981) estimated 0, with all other parameters set to 
zero. Similarly, we allowed for a more complex dynamic 
evolution of expected real interest and inflation rates than 
that in earlier work by Mishkin (1981). 

Indeed, the specification based on Equations (1) and (2) 
(presented in Sec. 3) entails 29 parameters in a nonlinear 
estimation problem, a task that pushed our available com- 
puting capacity near its limit. Thus further generality would 
be difficult to achieve at this time. 

3. THE STATE-SPACE REPRESENTATION 

Substitution of i(t) - 7e(t) = re(t) into (2) and (1), 
respectively, gives us the state equation and the first output 
equation, as follows: 

7 e(t + 1) = (fI 
- 

a1)re(t) + (/2 
- 

a2) e(t - 1) 

+ (f3 - a3) e(t - 2) + (f4 - a4)re(t - 3) 

and 

i(t) = 'e(t) + (VI - 01)7re(t - 1) 

+ (Y2 - $2)/ e(t - 2) + (/'3 - 43)/re(t - 3) 

+ (V/4 - 14) re(t - 4) + +,i(t - 1) 

+ 02i(t - 2) + 03i(t - 3) + 04i(t - 4) 

+ 17(t - 1) + 27r(t - 2) + 3r(t - 3) 

+ -47r(t - 4) + k, + Er(t). 

The second output equation is simply 

7r(t) = 7e(t) + e(t), 

(4) 

(5) 

which states that the difference between actual and expected 
inflation is the forecast error e(t). Our state-space application 
requires the assumption that e(t) in Equation (5) be zero 
mean and white noise, so it is here that we are implicitly 
imposing the assumption of rational expectations. Subse- 

quent tests on the estimated series e(t) will confirm that this 

specification is consistent with the data. 
Hamilton (1985) showed that Equations (3), (4), and (5) 

constitute a state-space representation of the vector autore- 

gressive model (1) and (2), as follows: 

x(t + 1) = Fx(t) + Gz(t) + w(t), 

y(t) = Hx(t) + Dz(t) + v(t), (6) 

where 

x(t) = [7re(t), 7ie(t - 1), /re(t - 2), 7re(t - 3), /e(t - 4)]', 

z(t) = [i(t), i(t - 1), i(t - 2), i(t - 3), i(t - 4), 

7r(t), 7(t - 1), 7r(t - 2), 7r(t - 3), 7r(t - 4), 1]', 

y(t) = [i(t), r(t)]', 

w(t) = [E2(t), 0, 0, 0, 0]', 

v(t) = [el(t), e(t)]', 

- a, #2 
1 

0 
0 
0 

I 

a1 
0 

G= 0 
0 
0 

- 1 H= 
1 

a, 
0 

0 
0 
0 

O 

Ca3 
0 
0 
0 
0 

O 

O 

0 

0 
0 

O 

Y4 

0 
0 
0 
0 

O 

O 

aC2 33 - 3 /4 - a4 

0 0 
0 0 
1 0 
0 1 

0 
0 
0 
0 
0 

Y\ 

0 
0 
0 
0 

I'2 

0 
0 
0 
0 

O 

O 

Y3 
0 
0 
0 
0 

O 

O 

VI - 01 2 - 0 02 3 - ?3 
0 0 0 

Y4 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 

0 , 
0 
0 

k" 
0 
0 , 
0 
0 

k2 

V4 
- 

04 

0 

+ ali(t) + a2i(t - 1) + a3i(t - 2) 

+ a4i(t - 3) + y,n(t) + y27(t 1) 
0 D = 
0 + y3r(t - 2) + y47r(t - 3) + k2 + 82(t) (3) 

01 02 0/3 4 0 1l 42 3 44 k, 
0 0 0 0 000000 

and 
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Note from the above that the last four state equations are 

simply re(t) = ne(t), e(t - 1) = 7e(t - 1), e(t - 2) = 

1e(t - 2), and ne(t - 3) = 7e(t - 3). 

4. IDENTIFICATION 

There are 29 parameters to be estimated from the state- 

space specification (6): ca,, . . ., a4; f, . . . . 4; ', . . . 

Y4; 41, . . . , 04; /i, . . , 4; 1I, . . , k4; kl, k2; and a, 

a,,, and ao. We must verify that the cross-equation restric- 
tions implicit in (6) from the underlying representations (1) 
and (2) are sufficient to identify these 29 parameters. In 
Hamilton (1985) the unknown parameters in (1) and (2) were 
identified and then estimated by maximum likelihood meth- 
ods based on the implicit restrictions that they impose on 
the vector autoregressive moving average (ARMA) repre- 
sentation for i(t), n(t). Here, however, we show that iden- 
tification can be established directly from the state-space 
representation (6). Thus we follow the approach of Wall 
(1984) and seek parameterizations that are unique in terms 
of their effect on the first and second moments of the ob- 
served dependent variables. This is exactly the approach 
taken by Hannan (1969, 1971, 1976), Kohn (1979), and 
others for vector ARMA model representations. The details 
are different, of course, because the characterization of the 
equivalence classes for state-space representations is differ- 
ent from that for vector ARMA representations. 

More specifically, if we let R denote the variance-co- 
variance (var-cov) matrix for v(t) and Q denote the var-cov 
matrix for w(t), then the first two moments of y(t) are given 
by 

E{v(t)} = /(t) 

and 

E{[y(t) - E{y(t)}][y(s) -E{y(s)}]'}= r(t, s), 

where 
t-1 

p(t) = HFE{x(O)} + E F'-'-iGz(i) + Dz(t) 
i=0 

and 

r(t, s) = HF'- s(s)H' 

= HP(t)H' + R 

= HP(t)(F'-s)'H' 

if t > s 

if t = s 

if t < s. 

Here we employ fl(t) to denote the var-cov matrix for the 
state x(t); it evolves according to 

fl(t + 1) = FfI(t)F' + Q, (7) 

with f(0) = E{x(0) - E{x(0)}][x(0) - E{x(0)}]'}. By fo- 

cusing on the expressions for u(t) and F(t, s), we can as- 
certain how observational equivalence arises and thereby 
understand the basic cause of any identification problems in 
our state-space model. 

We will first restrict ourselves to state-space representa- 
tions that are minimal [i.e., completely controllable with 
respect to z(t) and w(t) and completely observable]. [This 

is completely analogous to the left-prime condition imposed 
on vector ARMA models for the purpose of establishing 
identification; see Hannan (1969, 1971), Kohn (1979), or 
Rosenbrock (1970).] Then we know that all observationally 
equivalent structures are related through an n x n nonsin- 

gular matrix T, as follows: 

F2 = T- 'FT; G2 = T-'G,; Q2 = T-'Q,(T-')'; 

H2 = HIT; D2 = Di; R2 = R,. 

Under such a relationship, the model structure specified by 
F2, G2, Q2, H2, D2, and R2 is indistinguishable from that 

given by Fl, G,, Ql, H1, D,, and R,, using only first- and 
second-moment information. In fact, the n x n matrix T 
defines a family of equivalence classes in the space of all 

state-space models of dimension n. To obtain an identified 
model, we must select a structure (parameterization) that 
selects one and only one member from each equivalence 
class. Thus it is sufficient for identification that enough a 
priori structure in F, G, Q, H, D, and R has been specified 
to preclude any but the trivial transformation T = I. 

In Appendix A, we show that the specification (6) admits 
only T = I and hence is identified. 

5. ESTIMATION OF PARAMETERS 

The parameter and state variable estimations were carried 
out using standard Kalman-filtering techniques as described 
in Burmeister and Wall (1982, 1984a,b) and the references 
cited therein. To make this article self-contained, however, 
Appendix B, which describes the Kalman-filtering algorithm 
we used, is included. 

Our sample of p(t) and i(t) covered January 1964-May 
1983; because of lagged variables, the estimation was carried 
out over a sample from July 1964 to May 1983, containing 
239 monthly observations. An initial guess of the 29-element 

parameter vector, 0, was made, and the initial var-cov ma- 
trix of the state vector, x(t), was 20I5. Similarly, we set 
7e(- r) = r( - z) for r = 1, . . .,4; that is, out-of-sample 
expected inflation rates were set equal to actual values. With 
these initial conditions, the value of the negative log-like- 
lihood function after one iteration was -611.17, and after 
36 iterations it was -621.173. At this point, however, the 

gradients were between - 1.4 and + 1.5, too large to be 

acceptable. We then reinitialized the system with the value 
of 0 obtained from 36 iterations, but with the var-cov matrix 
for x(t) again set at 2015. Convergence was obtained after 
another 32 iterations, with the final gradients bounded 
by -.00044 and +.00058 and with a final value of the 

negative log-likelihood function equal to -621.178. The 
final 0 estimates and their standard errors are reported in 
Table 1. The Durbin-Watson statistics for the two output 
equations, (5) and (6), are 2.005 and 2.008, respectively. 
(Of course, these statistics must be interpreted with care 
because of the presence of lagged variables.) 

On observing the pattern of significant parameters in Table 
1 and referring to Equations (1) and (2), it becomes im- 
mediately evident that both the expected real interest rate, 
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Table 1. Estimated Parameter Values and Standard Errors (SE) 

Parameter Value SE Parameter Value SE 

al .23192 .44520 1 .38766 .48763 
a2 - .77227 .58946 2 - .25976 .58121 
a3 1.4758 .55312* 3 - .93821 .49609 
a4 - .99328 .28952* ' 4 .90838 .28423* 

1l .37327 .45798 1 - .34229 .18519* 
P2 .12408 .55324 <2 .22746 .24515 
/3 1.0941 .48001* ' 3 .044058 .12864 
,4 -.88155 .26457* 4 -.029353 .11214 

Y,1 .39605 .19150* k1 -.021115 .025813 
72 -.18591 .23459 k2 .055672 .025023* 
Y3 -.019142 .11849 
Y4 -.013813 .10590 

4)1 .66293 .44700 :2 .044201 .034483 
02 .66047 .58373 ae .30410 .029041* 
03 -1.3512 .58677* ao1 .066367 .021898* 
04 1.0228 .31502* 

*Significant at the 95% level. 

re(t), and the expected rate of inflation, ,e(t + 1), appear 
to be influenced more significantly by lags in their expec- 
tations of 3 and 4 months than by 1- and 2-month lags. By 
contrast, actual inflation is significant in both equations at 

only its shortest lag. 
Although one might be tempted to infer that the most 

recent 2 months of expectations are not relevant for forming 
current expectations, this conclusion is probably wrong. High 
parameter correlations, several exceeding .95 in absolute 
value, prevent us from distinguishing the separate influence 
of many parameters, and it is wrong to conclude that vari- 
ables associated with statistically insignificant parameter val- 
ues are economically unimportant. Given the multicolli- 

nearity problems inherent in monthly data, we must be satisfied 
with estimating an economically reasonable and useful series 
for expected inflation. [We note, however, that there may 
be more significant parameters in the state-space represen- 
tation (6). For example, the H13 element of the matrix H is 
/2 - 02, and the standard error for Y2 - 02 = -.92023 

is .2510, indicating a high level of significance for H13. 
Moreover, the forthcoming discussion associated with Table 
2 reveals that the total parameter uncertainty is much less 
than the uncertainty due to additive errors.] Moreover, a 
focus on parameter values is especially uninteresting in view 
of the fact that (1) and (2) only represent the statistical 
projections of re(t) and zte(t + 1) on a strict subset of the 
relevant economic variables. 

6. ESTIMATION OF THE STATE VARIABLE 
(EXPECTED INFLATION) 

Given that we have estimated the true parameter vector 
0, a straightforward application of the Kalman filter provides 
optimal (maximum likelihood) estimates of the unobserved 
state variable x,(t) = 7e(t); this procedure is sketched in 

Appendix B. 
The true 0 is unknown, however, and we have only the 

estimate 0 and the associated var-cov matrix E. Adopting 
the (asymptotic) Bayesian perspective that 0 is itself a 
random variable distributedN(0, ,), Hamilton (1985) showed 
that our estimate f'(t) of the true expectations ze(t) has a 

variance given by 

var[ie(t)] = Eo var[ee(t) I 0] + varoE[Ie(t) I 6]. (8) 

The first term on the right side of (8) is the expected value 
of the variance of "e(t) associated with different draws of 
0 from the distribution N(O, E). For each draw of 0, we 
have that the filter uncertainty is 

var[e(t) 1 0] = Pl(t), 

where Pl,(t) denotes the leading element in the var-cov 
matrix P(t) defined in Appendix B. This filter certainly arises 
because the true model used by agents to forecast inflation 
is unknown to the econometrician. Similarly, for each draw 
of 0, the expected value of re(t 0) is simply our estimate 
of the first state variable x1(t). Thus by calculating the var- 
iance of x,(t) estimates for different draws of 0, we can 
calculate the parameter uncertainty equal to the second term 
on the right side of (8). The total econometric uncertainty 
in our estimate 7'e(t) is the sum of the filter uncertainty and 
the parameter uncertainty. 

In Table 2 we report the results of using the Kalman filter 
to estimate e(t), using the 0 values reported in Table 1. In 
Table 3 we report the results from 200 Monte Carlo simu- 
lations for the Kalman filter estimates, with 0 drawn from 
N(0, ). 

A first examination of our results reveals that our esti- 
mated expected inflation series is plausible: 

1. The mean of the forecast error e(t) = 7r(t) - e(t) 
is -.0002, sufficiently close to zero to be consistent with 
rational expectations. 

2. The error e(t) is not autocorrelated (P,(,, (t- = -.0056), 
again consistent with rational expectations. The complete 
correlogram is given in Figure 1. 

3. The variance of the fte(t) is smaller than that of n(t), 
but it is more autocorrelated; these results are consistent with 
the economically intuitive notion that expectations are smoother 
than realizations. 

4. The forecast error made by agents is e(t) = zt(t) - 
te(t), and our estimate of the forecast error standard error 
from Table 1 is .3041 and from Table 2 is (.0769)"12 = 

.2773. The larger value, however, is the maximum likeli- 
hood estimate, and thus 95% of the 1-month-ahead forecasts 
of inflation were incorrect by no more than .596% (= 1.96 
x .3041) or 59.6 basis points. 

5. The standard deviations of the total monthly econo- 
metric errors (due to both filter and parameter uncertainty) 
in fe(t), our estimate of the actual expectations z7(t), are 

given in column 4 of Table 4. A "worst" case is approxi- 
mately .27%, and "best" and "typical" cases are .13% and 
.15%, respectively. 

In the next section we turn to a more careful examination 
of our estimated expected inflation series. 

7. TESTS OF THE ESTIMATED EXPECTED 
INFLATION SERIES 

Acceptance of the estimated expected inflation series, 
7r(t), as economically reasonable requires further scrutiny. 

151 
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Table 2. Results From the Kalman Filter Estimation, Using the Parameter Values in Table 1 

MonthlYear i(t) 7(t) e(t) P(t) 6(t) MonthlYear i(t) 7r(t) e(t) Pe(t) e(t) 

July 1964 .300 .132 .132 .1684 .0005 June 1971 .370 .520 .320 .0499 .2002 
Aug. 1964 .280 .000 .023 .2568 -.0232 July 1971 .400 .104 .291 .1085 -.1880 
Sept. 1964 .280 .264 .218 .0615 .0454 Aug. 1971 .470 .517 .323 .1468 .1939 
Oct. 1964 .290 .000 .072 .2179 -.0721 Sept. 1971 .370 .103 .336 .0344 -.2327 
Nov. 1964 .290 .132 .190 .1003 -.0581 Oct. 1971 .370 .308 .296 .0739 .0122 
Dec. 1964 .310 .131 .119 .1913 .0127 Nov. 1971 .370 .205 .412 -.0417 -.2068 
Jan. 1965 .280 .000 .169 .1113 -.1687 Dec. 1971 .370 .511 .280 .0900 .2312 
Feb. 1965 .300 .000 .105 .1947 -.1053 Jan. 1972 .290 .102 .368 -.0777 -.2660 
March 1965 .360 .394 .270 .0903 .1240 Feb. 1972 .250 .610 .269 -.0193 .3405 
April 1965 .310 .261 .194 .1165 .0679 March 1972 .270 .000 .410 -.1399 -.4099 
May 1965 .310 .522 .348 -.0380 .1735 April 1972 .290 .101 .158 .1320 -.0570 
June 1965 .350 .908 .470 -.1199 .4380 May 1972 .300 .303 .319 -.0186 -.0159 
July 1965 .310 .000 .380 -.0703 -.3803 June 1972 .290 .101 .188 .1018 -.0876 
Aug. 1965 .330 -.257 .224 .1059 -.4812 July 1972 .310 .302 .348 -.0377 -.0462 
Sept. 1965 .310 .000 .205 .1054 -.2046 Aug. 1972 .290 .301 .261 .0293 .0399 
Oct. 1965 .310 .258 .194 .1163 .0640 Sept. 1972 .340 .699 .446 -.1062 .2531 
Nov. 1965 .350 .257 .322 .0284 -.0645 Oct. 1972 .400 .397 .434 -.0341 -.0373 
Dec. 1965 .330 .385 .279 .0506 .1052 Nov. 1972 .370 .395 .423 -.0527 -.0274 
Jan. 1966 .380 .383 .386 -.0061 -.0030 Dec. 1972 .370 .394 .420 -.0500 -.0263 
Feb. 1966 .350 .763 .420 -.0701 .3433 Jan. 1973 .440 .784 .563 -.1230 .2213 
March 1966 .380 .379 .469 -.0891 -.0903 Feb. 1973 .410 .876 .574 -.1636 .3019 
April 1966 .340 .377 .428 -.0878 -.0504 March 1973 .460 1.254 .737 -.2766 .5174 
May 1966 .410 .000 .370 .0402 -.3698 April 1973 .520 1.048 .845 -.3250 .2030 
June 1966 .380 .125 .316 .0643 -.1904 May 1973 .510 .848 .762 -.2520 .0863 
July 1966 .350 .000 .229 .1212 -.2288 June 1973 .510 .841 .793 -.2832 .0479 
Aug. 1966 .410 .751 .430 -.0196 .3213 July 1973 .640 .185 .723 -.0829 -.5375 
Sept. 1966 .400 .373 .412 -.0117 -.0390 Aug. 1973 .700 2.313 .929 -.2285 1.3845 
Oct. 1966 .450 .248 .405 .0446 -.1579 Sept. 1973 .680 .090 .902 -.2217 -.8113 
Nov. 1966 .400 .124 .350 .0496 -.2269 Oct. 1973 .650 1.084 .800 -.1503 .2837 
Dec. 1966 .400 .000 .273 .1265 -.2735 Nov. 1973 .560 1.340 .976 -.4159 .3641 
Jan. 1967 .430 .123 .324 .1057 -.2010 Dec. 1973 .640 1.146 .950 -.3100 .1960 
Feb. 1967 .360 -.123 .172 .1876 -.2956 Jan. 1974 .630 1.482 1.069 -.4390 .4130 
March 1967 .390 .000 .216 .1736 -.2164 Feb. 1974 .580 1.890 1.019 -.4388 .8712 
April 1967 .320 .000 .165 .1548 -.1652 March 1974 .560 1.433 1.241 -.6813 .1917 
May 1967 .330 .370 .204 .1260 .1659 April 1974 .750 .582 1.004 -.2542 -.4223 
June 1967 .270 .491 .313 -.0429 .1785 May 1974 .750 1.074 .974 -.2242 .0998 
July 1967 .310 .245 .269 .0406 -.0249 June 1974 .600 .491 .706 -.1061 -.2155 
Aug. 1967 .310 .366 .340 -.0300 .0259 July 1974 .700 .407 .889 -.1887 -.4819 
Sept. 1967 .320 .122 .217 .1028 -.0957 Aug. 1974 .600 1.297 .764 -.1639 .5331 
Oct. 1967 .390 .243 .339 .0508 -.0965 Sept. 1974 .810 1.120 .973 -.1634 .1466 
Nov. 1967 .360 .363 .261 .0989 .1021 Oct. 1974 .510 .712 .777 -.2674 -.0654 
Dec. 1967 .330 .362 .362 -.0318 .0001 Nov. 1974 .540 .786 .709 -.1691 .0764 
Jan. 1968 .400 .481 .412 -.0121 .0687 Dec. 1974 .700 .624 .950 -.2504 -.3269 
Feb. 1968 .390 .359 .420 -.0299 -.0610 Jan. 1975 .580 .155 .379 .2011 -.2240 
March 1968 .380 .238 .333 .0474 -.0942 Feb. 1975 .430 .232 .514 -.0837 -.2817 
April 1968 .430 .476 .457 -.0267 .0189 March 1975 .410 .077 .366 .0441 -.2887 
May 1968 .450 .473 .419 .0311 .0545 April 1975 .440 .308 .449 -.0087 -.1403 
June 1968 .430 .236 .427 .0031 -.1913 May 1975 .440 .308 .259 .1811 .0486 
July 1968 .480 .235 .394 .0857 -.1593 June 1975 .410 .920 .469 -.0590 .4505 
Aug. 1968 .420 .352 .402 .0183 -.0500 July 1975 .480 1.443 .626 -.1463 .8167 
Sept. 1968 .430 .467 .391 .0390 .0763 Aug. 1975 .480 .449 .704 -.2243 -.2552 
Oct. 1968 .440 .465 .502 -.0620 -.0369 Sept. 1975 .530 .000 .416 .1137 -.4163 
Nov. 1968 .420 .347 .372 .0479 -.0249 Oct. 1975 .560 .671 .552 .0077 .1183 
Dec. 1968 .430 .346 .450 -.0202 -.1042 Nov. 1975 .410 .222 .359 .0509 -.1370 
Jan. 1969 .530 .345 .407 .1233 -.0619 Dec. 1975 .480 .517 .548 -.0676 -.0306 
Feb. 1969 .460 .115 .370 .0902 -.2553 Jan. 1976 .470 .147 .435 .0355 -.2875 
March 1969 .460 .458 .330 .1303 .1280 Feb. 1976 .340 -.514 .160 .1804 -.6732 
April 1969 .530 .570 .556 -.0265 .0130 March 1976 .400 -.148 .172 .2283 -.3192 
May 1969 .480 .453 .385 .0950 .0680 April 1976 .420 .148 .188 .2319 -.0404 
June 1969 .510 .676 .548 -.0383 .1281 May 1976 .370 .590 .205 .1647 .3847 
July 1969 .530 .336 .483 .0468 -.1473 June 1976 .430 .220 .365 .0649 -.1452 
Aug. 1969 .500 .335 .440 .0603 -.1049 July 1976 .470 .293 .306 .1638 -.0136 
Sept. 1969 .620 .556 .496 .1240 .0602 Aug. 1976 .420 .511 .333 .0871 .1777 
Oct. 1969 .600 .221 .470 .1302 -.2486 Sept. 1976 .440 .363 .378 .0620 -.0152 
Nov. 1969 .520 .773 .414 .1056 .3582 Oct. 1976 .410 .362 .398 .0118 -.0367 
Dec. 1969 .640 .548 .662 -.0225 -.1149 Nov. 1976 .400 .216 .317 .0832 -.1007 
Jan. 1970 .600 .436 .475 .1248 -.0395 Dec. 1976 .400 .216 .347 .0526 -.1317 
Feb. 1970 .620 .434 .497 .1233 -.0629 Jan. 1977 .360 .430 .293 .0672 .1376 
March 1970 .570 .000 .415 .1547 -.4153 Feb. 1977 .350 .857 .452 -.1019 .4052 
April 1970 .500 .540 .363 .1367 .1767 March 1977 .380 .283 .439 -.0594 -.1561 
May 1970 .530 .322 .462 .0684 -.1394 April 1977 .380 .494 .408 -.0282 .0862 
June 1970 .580 .000 .325 .2545 -.3255 May 1977 .370 .422 .402 -.0321 .0195 
July 1970 .520 .321 .281 .2393 .0405 June 1977 .400 .560 .458 -.0584 .1014 
Aug. 1970 .530 .107 .281 .2492 -.1741 July 1977 .420 .278 .442 -.0218 -.1634 
Sept. 1970 .540 .426 .356 .1842 .0706 Aug. 1977 .440 .486 .427 .0126 .0584 
Oct. 1970 .460 .425 .302 .1580 .1266 Sept. 1977 .430 .000 .395 .0348 -.3952 
Nov. 1970 .460 .211 .349 .1108 -.1378 Oct. 1977 .490 .207 .348 .1416 -.1412 
Dec. 1970 .420 .317 .298 .1225 .0190 Nov. 1977 .500 .758 .472 .0281 .2862 
Jan. 1971 .380 -.105 .207 .1735 -.3117 Dec. 1977 .490 .274 .434 .0559 -.1605 
Feb. 1971 .330 .105 .160 .1695 -.0552 Jan. 1978 .490 .682 .525 -.0348 .1573 
March 1971 .300 .316 .190 .1099 .1254 Feb. 1978 .460 .339 .475 -.0146 -.1358 

April 1971 .280 .419 .241 .0395 .1788 March 1978 .530 .608 .521 .0092 .0869 

May 1971 .290 .313 .258 .0321 .0553 April 1978 .540 1.208 .632 -.0921 .5759 
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Table 2 (continued) 

MonthlYear i(t) i(t) ie(t) re(t) 6(t) Month/Year i(t) n(t) ?e(t) Pe(t) e(t) 

May 1978 .510 1.061 .700 -.1901 .3609 June 1981 1.350 .099 .445 .9047 -.3461 
June 1978 .540 .787 .764 -.2245 .0229 July 1981 1.240 .595 .486 .7537 .1083 

July 1978 .560 .456 .659 -.0985 -.2028 Aug. 1981 1.280 .246 .412 .8682 -.1655 

Aug. 1978 .560 .389 .563 -.0032 -.1743 Sept. 1981 1.240 .590 .627 .6131 -.0372 

Sept. 1978 .620 .452 .564 .0558 -.1123 Oct. 1981 1.210 .049 .311 .8990 -.2621 
Oct. 1978 .680 .900 .642 .0379 .2576 Nov. 1981 1.070 .244 .399 .6710 -.1549 
Nov. 1978 .700 .637 .664 .0360 -.0271 Dec. 1981 .870 .244 .129 .7407 .1142 
Dec. 1978 .780 .443 .663 .1170 -.2200 Jan. 1982 .800 .972 .421 .3792 .5510 
Jan. 1979 .770 1.386 .764 .0059 .6219 Feb. 1982 .920 -.433 .172 .7475 -.6056 
Feb. 1979 .730 1.305 .886 -.1563 .4187 March 1982 .980 -.145 .036 .9443 -.1807 
March 1979 .810 .798 .936 -.1257 -.1382 April 1982 1.130 -.242 -.071 1.2007 -.1713 

April 1979 .800 1.096 .858 -.0581 .2379 May 1982 1.060 .340 .084 .9758 .2554 

May 1979 .820 1.023 .861 -.0413 .1617 June 1982 .960 1.161 .288 .7319 .9329 
June 1979 .810 1.073 .904 -.0940 .1690 July 1982 1.050 .239 .520 .5301 -.2809 

July 1979 .770 .767 .819 -.0489 -.0524 Aug. 1982 .760 -.143 .052 .7085 -.1946 

Aug. 1979 .770 .878 .821 -.0508 .0569 Sept. 1982 .510 .191 .041 .4688 .1498 

Sept. 1979 .830 .870 .808 .0222 .0623 Oct. 1982 .590 .477 .194 .3964 .2830 
Oct. 1979 .870 .805 .781 .0890 .0241 Nov. 1982 .630 -.047 .054 .5762 -.1013 
Nov. 1979 .990 .742 .778 .2123 -.0361 Dec. 1982 .670 -.285 -.156 .8257 -.1291 
Dec. 1979 .950 .736 .751 .1986 -.0153 Jan. 1983 .690 .143 -.029 .7190 .1718 
Jan. 1980 .800 1.068 .722 .0776 .3456 Feb. 1983 .620 -.285 -.100 .7200 -.1852 
Feb. 1980 .890 .834 .907 -.0167 -.0724 March 1983 .630 .286 .044 .5859 .2419 
March 1980 1.210 1.489 .993 .2167 .4957 April 1983 .710 .665 .202 .5080 .4634 

April 1980 1.260 .435 .841 .4192 -.4060 May 1983 .690 .567 .249 .4407 .3173 

May 1980 .810 .541 .504 .3059 .0370 June 1983 .670 -.047 .192 .4780 -.2389 
June 1980 .610 .592 .734 -.1244 -.1424 July 1983 .740 .470 .266 .4739 .2036 

July 1980 .530 .589 .654 -.1241 -.0655 Aug. 1983 .760 .327 .275 .4850 .0523 

Aug. 1980 .640 1.117 .576 .0641 .5411 Sept. 1983 .760 .140 .232 .5280 -.0922 

Sept. 1980 .750 1.105 .634 .1162 .4712 Oct. 1983 .780 .000 .240 .5396 -.2404 
Oct. 1980 .950 .520 .575 .3748 -.0549 Nov. 1983 .700 -.279 .098 .6019 -.3773 
Nov. 1980 .960 .776 .624 .3361 .1525 Dec. 1983 .730 .420 .181 .5489 .2389 
Dec. 1980 1.310 .822 .765 .5446 .0564 Jan. 1984 .760 1.022 .393 .3673 .6293 
Jan. 1981 1.040 .764 .762 .2778 .0019 Feb. 1984 .710 -.184 .261 .4486 -.4454 
Feb. 1981 1.070 .708 .652 .4182 .0560 March 1984 .730 .323 .247 .4832 .0758 
March 1981 1.210 1.004 1.112 .0977 -.1083 April 1984 .810 -.230 .225 .5853 -.4544 

April 1981 1.080 .000 .422 .6578 -.4222 May 1984 .780 -.276 .038 .7423 -.3139 

May 1981 1.150 .199 .658 .4916 -.4596 

NOTE: The means of i(t), n(t), e(t), and e(t) are .561, .442, .442, and -.0002, respectively. The variances of i(t), n(t), ie(t), and e(t) are .059, .169, .063, and 0769, respectively. The 

autocorrelations of i(t), 7(t), iet, and 6(t) are .920, .456, .847, and -.0053, respectively. 

In particular, we wish to test whether the expectations re(t) Stochastic stability of (9) necessitates that the characteristic 
and 7e(t), generated by the underlying vector autoregressive polynomial 
processes (1) and (2), are stable for our 0 estimates reported 1 - (W 1 - /z) - y 
in Table 1. This test requires that complex nonlinear com- 
binations of the parameter estimates yield characteristic roots - a(z)[iV(z) + - (z)] = 0 (10) 
thot nr> n11 l tohlki tilcL a . ll olaulIV,. 

We define the following polynomials in the lag operator 
L: 

a(L) = .23192L - .77227L2 + 1.4758L3 - .99328L4, 

f(L) = .37327L + .12408L2 + 1.0941L3 - .88155L4, 

y(L) = .39605L - .18591L2 - .019142L3 - .013813L4, 

+(L)= .66293L + .66047L2 - 1.3512L3 + 1.0228L4, 

v(L) = .38766L - .25976L2 - .93821L3 + .90838L4, 

and 

4(L) = -.34229L + .22746L2 

+ .044058L3 + .029353L4. 

have roots outside the unit circle. For the parameter values 
reported in Table 1, stability of the joint expectations process 
requires that the roots of 

1 - 1.4319z - .09953z2 + .7862z3 - .37972z4 

+ .1715z5 - .0950z6 + .0372z7 + 0.156z8 = 0 (11) 

all exceed 1 in absolute value. These roots, reported in Table 
5, are all stable. 

A similar stability test involves the state equation (3). 
Substituting ne(t) = 7r(t) + e(t) into (3), we derive the 

dynamics for 7re(t), where now i(t) is taken as an exogenous 
forcing function, as follows: 

[1 - f(L) + a(L) - y(L)]re(t) = forcing terms. (12) 
We then substitute nr(t) = -e(t) + e(t) into (1) and (2) so 
that both are expressed only in terms of current and lagged Stochastic stability of (12) requires that the characteristic 
values of re(t) and 7e(t), plus error terms. The basic expec- roots of the polynomial 
tation dynamics can then be expressed as 1 - (L) + a(L) - y(L) = O (13) 

I - ((L) -[v(L) + d(L)] re(t) 
-a(L) 1 - [f(L) + y(L)] _ne(t)_ 

= forcing terms. (9) 

all exceed 1 in absolute value. The roots of (13) are reported 
in Table 6, and all are stable. 

Another crucial test for our estimated expected inflation 
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Table 3. Results From 200 Monte Carlo Simulations for the Kalman Filter Estimates 

Standard Standard 
deviation deviation 

? 7fe(t) of the E 7?e(t) of the 
_9___ Parameter Filter econometric _ Parameter Filter econometric 

Month 200 uncertainty uncertainty uncertainty Month 200 uncertainty uncertainty uncertainty 

.131639 .000003 

.021405 .000378 

.232814 .000515 

.077440 .000757 

.191361 .001071 

.123722 .000838 

.164278 .001674 

.104940 .001163 

.270470 .001532 

.195437 .001726 

.349573 .001884 

.480042 .007103 

.365508 .006414 

.225979 .008591 

.201613 .004603 

.191907 .004423 

.313475 .002992 

.282130 .001712 

.377563 .002056 

.429543 .003742 

.452222 .002697 

.437072 .002627 

.352250 .004407 

.326944 .004951 

.213174 .004017 

.446566 .005407 

.391919 .005349 

.413802 .006631 

.338381 .003454 

.272176 .008007 

.315040 .004078 

.172661 .007680 

.209102 .004310 

.168221 .004908 

.201652 .004456 

.321342 .005057 

.260209 .004817 

.354807 .003911 

.209501 .003533 

.348532 .003794 

.261725 .002853 

.366155 .002502 

.412265 .002835 

.424413 .002479 

.333501 .002371 

.462387 .002476 

.417502 .002297 

.427862 .003090 

.393096 .002663 

.406695 .002956 

.390811 .003034 

.505491 .002687 

.373272 .002279 

.455372 .002627 

.405788 .002746 

.372005 .004271 

.336123 .004378 

.555862 .003935 

.391042 .002893 

.558338 .003060 

.480662 .002108 

.447825 .003148 

.502701 .003750 

.470417 .004343 

.433698 .006022 

.654710 .003904 

.487577 .002749 

.503435 .002897 

.414428 .004010 

.377556 .003358 

.459002 .003155 

.330371 .006192 

.296244 .003083 

.277078 .003901 

.363102 .002959 

.309036 .002964 

.349346 .002757 

.310305 .002097 

.093637 

.083571 

.052197 

.043253 

.032278 

.028977 

.024237 

.022951 

.020879 

.020199 

.019047 

.018659 

.017970 

.017733 

.017320 

.017161 

.016895 

.016789 

.016608 

.016535 

.016409 

.016355 

.016266 

.016225 

.016161 

.016130 

.016083 

.016058 

.016023 

.016003 

.015976 

.015961 

.015940 

.015927 

.015912 

.015901 

.015889 

.015880 

.015870 

.015863 

.015855 

.015849 

.015842 

.015837 

.015832 

.015828 

.015824 

.015820 

.015816 

.015814 

.015811 

.015808 

.015806 

.015803 

.015801 

.015799 

.015798 

.015796 

.015795 

.015793 

.015792 

.015791 

.015790 

.015789 

.015788 

.015787 

.015786 

.015785 

.015785 

.015784 

.015783 

.015783 

.015782 

.015782 

.015781 

.015781 

.015781 

.015780 

.306005 

.289740 

.229591 

.209785 

.182619 

.172642 

.160968 

.155287 

.149701 

.148073 

.144678 

.160506 

.156154 

.162246 

.148066 

.146914 

.141022 

.136021 

.136615 

.142397 

.138225 

.137774 

.143781 

.145521 

.142049 

.146754 

.146398 

.150629 

.139559 

.154953 

.141613 

.153757 

.142304 

.144345 

.142715 

.144769 

.143894 

.140679 

.139294 

.140204 

.136774 

.135467 

.136665 

.135339 

.134919 

.135294 

.134613 

.137513 

.135941 

.137002 

.137274 

.135995 

.134480 

.135757 

.136188 

.141669 

.142040 

.140468 

.136702 

.137308 

.133791 

.137617 

.139785 

.141888 

.147683 

.140323 

.136144 

.136684 

.140692 

.138356 

.137619 

.148238 

.137353 

.140297 

.136895 

.136912 

.136154 

.133707 

Jan. 1971 
Feb. 1971 
March 1971 
April 1971 
May 1971 
June 1971 
July 1971 
Aug. 1971 
Sept. 1971 
Oct. 1971 
Nov. 1971 
Dec. 1971 
Jan. 1972 
Feb. 1972 
March 1972 
April 1972 
May 1972 
June 1972 
July 1972 
Aug. 1972 
Sept. 1972 
Oct. 1972 
Nov. 1972 
Dec. 1972 
Jan. 1973 
Feb. 1973 
March 1973 
April 1973 
May 1973 
June 1973 
July 1973 
Aug. 1973 
Sept. 1973 
Oct. 1973 
Nov. 1973 
Dec. 1973 
Jan. 1974 
Feb. 1974 
March 1974 
April 1974 
May 1974 
June 1974 
July 1974 
Aug. 1974 
Sept. 1974 
Oct. 1974 
Nov. 1974 
Dec. 1974 
Jan. 1975 
Feb. 1975 
March 1975 
April 1975 
May 1975 
June 1975 
July 1975 
Aug. 1975 
Sept. 1975 
Oct. 1975 
Nov. 1975 
Dec. 1975 
Jan. 1976 
Feb. 1976 
March 1976 
April 1976 
May 1976 
June 1976 
July 1976 
Aug. 1976 
Sept. 1976 
Oct. 1976 
Nov. 1976 
Dec. 1976 
Jan. 1977 
Feb. 1977 
March 1977 
April 1977 
May 1977 
June 1977 

.201393 .004055 .015780 

.175674 .003046 .015780 

.191211 .003342 .015779 

.251434 .003312 .015779 

.257377 .003187 .015779 

.333310 .003252 .015678 

.282151 .003048 .015778 

.337999 .003767 .015778 

.319762 .003745 .015778 

.304107 .005399 .015778 

.400258 .005121 .015777 

.297176 .004788 .015777 

.352425 .005047 .015777 

.288755 .006210 .015777 

.380208 .007563 .015777 

.177620 .010629 .015777 

.304721 .007025 .015776 

.193158 .008225 .015776 

.330960 .004719 .015776 

.269266 .004156 .015776 

.436570 .004427 .015776 

.437714 .003180 .015776 

.414894 .002997 .015776 

.425417 .002600 .015776 

.558694 .002813 .015776 

.584902 .004825 .015776 

.743305 .006794 .015776 

.849875 .007149 .015775 

.765967 .005798 .015775 

.801272 .004718 .015775 

.708857 .010361 .015775 

.983362 .039160 .105775 

.850679 .028443 .015775 

.847152 .025253 .015775 

.961991 .031770 .015775 

.965882 .017226 .015775 
1.078973 .027448 .015775 
1.055253 .019452 .015775 
1.228695 .026159 .015775 
1.014496 .026828 .015775 

.988371 .017411 .015775 

.711190 .016189 .015775 

.869816 .012150 .015775 

.796295 .015466 .015775 

.954646 .010882 .015775 

.800807 .014681 .015775 

.691141 .015687 .015775 

.956826 .012617 .015775 

.371898 .016067 .015775 

.528631 .011186 .015775 

.344435 .010840 .105775 

.456692 .011197 .105775 

.261674 .008629 .015775 

.485385 .008703 .015775 

.631167 .026754 .015775 

.691944 .011649 .015775 

.419884 .015026 .015775 

.568815 .008529 .015775 

.350230 .008723 .015775 

.556091 .006723 .015775 

.429548 .005613 .015775 

.157377 .023609 .015775 

.171241 .008231 .015775 

.186770 .011615 .015775 

.210665 .011210 .015774 

.356741 .006427 .015774 

.307489 .005152 .015774 

.342123 .003775 .015774 

.372251 .003294 .015774 

.406500 .002671 .015774 

.317764 .002756 .015774 

.357940 .003526 .015774 

.299603 .002945 .015774 

.467422 .004549 .015774 

.428932 .004097 .015774 

.427606 .003755 .015774 

.398111 .003313 .015774 

.468643 .002634 .015774 

July 1964 
Aug. 1964 
Sept. 1964 
Oct. 1964 
Nov. 1964 
Dec. 1964 
Jan. 1965 
Feb. 1965 
March 1965 
April 1965 
May 1965 
June 1965 
July 1965 
Aug. 1965 
Sept. 1965 
Oct. 1965 
Nov. 1965 
Dec. 1965 
Jan. 1966 
Feb. 1966 
March 1966 
April 1966 
May 1966 
June 1966 
July 1966 
Aug. 1966 
Sept. 1966 
Oct. 1966 
Nov. 1966 
Dec. 1966 
Jan. 1967 
Feb. 1967 
March 1967 
April 1967 
May 1967 
June 1967 
July 1967 
Aug. 1967 
Sept. 1967 
Oct. 1967 
Nov. 1967 
Dec. 1967 
Jan. 1968 
Feb. 1968 
March 1968 
April 1968 
May 1968 
June 1968 
July 1968 
Aug. 1968 
Sept. 1968 
Oct. 1968 
Nov. 1968 
Dec. 1968 
Jan. 1969 
Feb. 1969 
March 1969 
April 1969 
May 1969 
June 1969 
July 1969 
Aug. 1969 
Sept. 1969 
Oct. 1969 
Nov. 1969 
Dec. 1969 
Jan. 1970 
Feb. 1970 
March 1970 
April 1970 
May 1970 
June 1970 
July 1970 
Aug. 1970 
Sept. 1970 
Oct. 1970 
Nov. 1970 
Dec. 1970 

.140836 

.137207 

.138279 

.138171 

.137716 

.137952 

.137209 

.139805 

.139724 

.145521 

.144564 

.143406 

.144304 

.148279 

.152773 

.162498 

.151001 

.154923 

.143160 

.141180 

.142136 

.137680 

.137015 

.135559 

.136340 

.143528 

.150231 

.151409 

.146879 

.143156 

.161667 

.234382 

.210282 

.202553 

.218049 

.181663 

.207902 

.187687 

.204779 

.206406 

.182171 

.178783 

.167106 

.176751 

.163271 

.174517 

.177375 

.168498 

.178443 

.164197 

.163141 

.164229 

.156218 

.156454 

.206224 

.165602 

.175502 

.155897 

.156516 

.149991 

.146244 

.198454 

.154938 

.165496 

.164268 

.149002 

.144660 

.139820 

.138089 

.135814 

.136127 

.138928 

.136821 

.142560 

.140967 

.139748 

.138156 

.135679 
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Table 3 (continued) 

Standard Standard 
deviation deviation 

' 
?e(t.) of the f 

e(t) of the 
_ ___ Parameter Filter econometric __ Parameter Filter econometric 

Month 200 uncertainty uncertainty uncertainty Month 200 uncertainty uncertainty uncertainty 

July 1977 .432242 .002812 .015774 .136333 Jan. 1981 .782313 .024367 .015774 .200354 
Aug. 1977 .442687 .003437 .015774 .138604 Feb. 1981 .646986 .022546 .015774 .195757 
Sept. 1977 .377332 .003854 .015774 .140101 March 1981 1.130567 .025621 .015774 .203457 
Oct. 1977 .360030 .007978 .015774 .154117 April 1981 .420064 .025759 .015774 .203798 
Nov. 1977 .470847 .008754 .015774 .156616 May 1981 .681751 .020248 .015774 .189795 
Dec. 1977 .431026 .006051 .015774 .147735 June 1981 .440380 .019218 .015774 .187062 
Jan. 1978 .528069 .004783 .015774 .143377 July 1981 .511838 .019017 .015774 .186523 
Feb. 1978 .473220 .002900 .015774 .136655 Aug. 1981 .407620 .023193 .015774 .197403 
March 1978 .523630 .002721 .015774 .135997 Sept. 1981 .645894 .020885 .015774 .191465 
April 1978 .654615 .009584 .015774 .159244 Oct. 1981 .309660 .019470 .015774 .187734 
May 1978 .698524 .008117 .015774 .154567 Nov. 1981 .429655 .020797 .015774 .191237 
June 1978 .774900 .005243 .015774 .144974 Dec. 1981 .139263 .021625 .015774 .193389 
July 1978 .657250 .005147 .015774 .144643 Jan. 1982 .460011 .016248 .015774 .178947 
Aug. 1978 .576595 .004228 .015774 .141430 Feb. 1982 .160507 .021514 .015774 .193101 
Sept. 1978 .564464 .003588 .015774 .139150 March 1982 .089540 .027168 .015774 .207225 
Oct. 1978 .658797 .004527 .015774 .142484 April 1982 -.071015 .024849 .015774 .201552 
Nov. 1978 .658264 .003863 .015774 .140133 May 1982 .119616 .018390 .015774 .184836 
Dec. 1978 .668566 .005195 .015774 .144809 June 1982 .235169 .059178 .015774 .273774 
Jan. 1979 .783193 .013509 .015774 .171123 July 1982 .524152 .018616 .015774 .185446 
Feb. 1979 .889885 .010337 .015774 .161591 Aug. 1982 .067334 .021337 .015774 .192642 
March 1979 .934237 .007282 .015774 .151843 Sept. 1982 .076071 .016365 .015774 .179274 
April 1979 .885449 .007578 .015774 .152814 Oct. 1982 .194601 .024952 .015774 .201808 
May 1979 .869079 .005695 .015774 .146523 Nov. 1982 .077405 .018542 .015774 .185248 
June 1979 .923886 .005090 .015774 .144443 Dec. 1982 -.143560 .015948 .015774 .178107 
July 1979 .822160 .005174 .015774 .144734 Jan. 1983 -.005608 .009571 .015774 .159202 
Aug. 1979 .842537 .004149 .015774 .141151 Feb. 1983 -.126137 .012138 .015774 .167069 
Sept. 1979 .814703 .004711 .015774 .143128 March 1983 .063916 .006654 .015774 .149759 
Oct. 1979 .798863 .003766 .015774 .139785 April 1983 .192518 .020751 .015774 .191117 
Nov. 1979 .782230 .005444 .015774 .145667 May 1983 .266590 .007191 .015774 .15:543 
Dec. 1979 .766099 .005811 .015774 .146921 June 1983 .170954 .012638 .015774 .168561 
Jan. 1980 .731874 .010159 .015774 .161039 July 1983 .287377 .007963 .015774 .154069 
Feb. 1980 .907036 .005506 .015774 .145876 Aug. 1983 .253636 .013691 .015774 .171655 
March 1980 1.019419 .014157 .015774 .173006 Sept. 1983 .245478 .008167 .015774 .154730 
April 1980 .846046 .014801 .015774 .174858 Oct. 1983 .219928 .008529 .015774 .155895 
May 1980 .532216 .024310 .015774 .200211 Nov. 1983 .102955 .012004 .015774 .166670 
June 1980 .719212 .017863 .015774 .183404 Dec. 1983 .171813 .010257 .015774 .161341 
July 1980 .665867 .019208 .015774 .187035 Jan. 1984 .409875 .013266 .015774 .170413 
Aug. 1980 .612224 .020003 .015774 .189149 Feb. 1984 .223426 .013910 .015774 .172291 
Sept. 1980 .671003 .016044 .015774 .178378 March 1984 .274642 .009861 .015774 .160111 
Oct. 1980 .575305 .018028 .015774 .183854 April 1984 .185243 .009202 .015774 .158038 
Nov. 1980 .643496 .017944 .015774 .183625 May 1984 .053552 .014439 .015774 .173821 
Dec. 1980 .752406 .017718 .015774 .183009 

NOTE: Parameter uncertainty = var^te(t). Filter uncertainty = [. var ee(t)]/200 = [EP11(t)]/200. Standard deviation of the econometric uncertainty 
columns 3 and 4. 

series is to determine whether the forecast error e(t) = z(t) 
- e(t) can be predicted either by lagged values of itself 
or by other economic variables known at time t. To examine 
these questions, we ran ordinary least squares of the form 

e(t) = flo + A,x(t - 1) + _2X(t - 2) 

+ 33x(t - 3) + 4Px(t - 4) + e(t) (14) 

for alternative choices of the variable x. The critical .05 
value of F(4, xo) is 2.37. Thus for every case reported in 
Table 7, we cannot reject the null hypothesis that fI = 

/2 = 33 = 34 = 0; we have not found any economic variables 
that will help forecast unexpected inflation. 

We also performed an alternative test to verify that e(t) 
is mean zero: an ordinary least squares regression on a con- 
stant yielded a value of -.00032 with a t statistic of - .0179 
and a Durbin-Watson (DW) statistic of 2.01. 

Finally, we ran an ordinary least squares regression of 
actual n(t) on a constant, n(t - 1), . . , 7(t - 4), and 

i(t - 1), .... i(t - 4) for the same sample period used 
to estimate i(t). If agents use information in our model 

the square root of the sums of 

efficiently, the standard error for this regression should be 

greater than our estimated value of a,. In fact, the standard 
error of the latter regression is .355, compared with our 
value of ^, = .304, a 65% reduction. 

Hence we see that our estimated i"(t) series does not 
contradict the assertion that inflationary expectations are un- 

biased, rational, and efficient. 

8. AN APPLICATION OF THE ESTIMATED 
EXPECTED INFLATION SERIES TO 

ASSET PRICING 

The Ross (1976) APT predicts that 

p, = Ep, + bf, + E,, (15) 

where p, = nominal return on an asset; Ep, = expected 
return on an asset;f = (fi, .. .., f,,,)' = actual values of 

systematic factors influencing the return on the asset; b = 

(b, . . . , b,) = the asset's sensitivity to a change in the 

systematic factors; and e, = the realization of the unsyste- 
matic, idiosyncratic factors. 

We employed four macroeconomic factors, defined as 
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follows [all data are from Ibbotson Associates (1984) and 
Ibbotson and Sinquefield (1982)]: fl, = UPRIS, = unan- 
ticipated change in risk premium measured as the return on 
corporate bonds in month t minus return on government 
bonds in month t; f2, 

= UTS, - unanticipated change in 
the term structure measured as the return on government 
bonds in month t minus return on Treasury bills in month 
t - 1; f3, = UI, = unanticipated inflation measured as 
7z(t) - fi(t) (from Table 2); and f4, = DEI, = the difference 
in expected inflation measured as i'(t + 1) - 7"(t) (from 
Table 2). An economic justification for these factor measures 
is provided in Chen, Roll, and Ross (1983), Roll and Ross 
(1984), and Burmeister and Wall (1986). 

To demonstrate that our inflationary expectations work 
has a useful application, we computed an ordinary least 
squares regression for the equation 

RSPI, = Po + lIUPRIS, + P2UTS, 

+ 33UI, + P4DEI, + 8, (16) 

over a sample from July 1964 to May 1984, where RSPI, 
denotes the return on the Standard & Poor's (S&P) 500 stock 
index in month t. [The use of our estimated expected inflation 
series in variables on the right side of Equation (16) entails 
a partial equilibrium methodology and should be viewed with 
the usual caution. Of course, unobserved expectations and 
observed realizations are best estimated jointly in a general 

Table 4. Autocorrelations and Q Statistics for 
Inflation Forecast Errors 

Lags Autocorrelations Standard errors Q statistics 

1 -.528E-02 .647E-01 .672E-02 
2 .894E-02 .647E-01 .261 E-01 
3 -.207E-01 .647E-01 .130 
4 -.863E-01 .647E-01 1.94 
5 .334E-01 .652E-01 2.21 
6 .918E-01 .653E-01 4.28 
7 -.715E-01 .658E-01 5.54 
8 -.355E-01 .661 E-01 5.86 
9 .121 .662E-01 9.44 

10 .138 .671E-01 14.2 
11 .427E-01 .683E-01 14.7 
12 -.685E-01 .684E-01 15.9 
13 -.114 .687E-01 19.1 
14 -.254E-01 .695E-01 19.3 
15 .274E-01 .695E-01 19.6 
16 .472E-01 .696E-01 20.2 
17 -.568E-01 .697E-01 21.0 
18 .332E-01 .699E-01 21.3 
19 .413E-01 .700E-01 21.8 
20 .636E-01 .701 E-01 22.9 

equilibrium framework. When one does not know the correct 
general equilibrium model, however-which is certainly the 
case for stock market returns-the only feasible alternative 
is a partial equilibrium specification.] We suppose that 
RSPI, = p, is the return on a portfolio, and the Ross APT 
implies that there exist (;., a] ... .,4) such that 

4 

Ep, ,o + b,)i, 
i=1 

where bi = sensitivity of the S&P index to factor i and ., 
is the risk premium for factor i. Substituting the latter into 

4 

p, = Ep, + > bifi, + et 
i= I 

gives 
4 4 

- o + bi= + b i fi + bi + ,, 
i= 1 i=l 

which is exactly the form of the preceding regression equa- 
tion. 

We obtained the following results (for which the t statistics 
are reported in parentheses): 

fo = .0079 i, = 1.05 f2 = -.412 
(3.28) (5.44) (-2.18) 

A3 = -1.99 

(-2.22) 
,/4 = 4.37 

(2.37) 

R2 = .22 F(4, 234) = 18.0 DW = 1.93. 

Both /13 and /4 are significant, a strong indication that our 
estimated expected inflation series has useful economic con- 
tent (assuming that the APT is correct). Moreover, we con- 
clude that over the July 1964-May 1984 monthly sample 
period, unanticipated inflation has a negative impact on stock 
market returns. On the other hand, the difference in expected 
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Table 5. Characteristic Roots of the Polynomial (11) 
for the Estimated Parameter Values 0 

Root Absolute value 

1i = 1.038 + .03545i 1.0386 
.2 = 1.038 - .03545i 1.0386 
3 = -1.155 1.155 

/4 = 1.195 + 1.156i 1.6626 
/.5 = 1.195 - 1.156i 1.6626 

6 = -.5530 + 1.935i 2.012 
7 -.5530 - 1.935i 2.012 
,8 - 4.590 4.590 

inflation, which in this model can be interpreted as an un- 
anticipated expectation that the level of inflation will rise, 
has a positive impact on nominal stock market returns. A 
more complete examination of the APT, using the expected 
inflation series derived here, is made in Burmeister and Wall 
(1986), and a new method for jointly estimating the b's and 
the i's is presented in McElroy, Burmeister, and Wall (1985). 

9. CONCLUSION 

We have only scratched the surface of the research op- 
portunities opened by these new techniques. In particular, 
in future work we intend to estimate other expected inflation 
series by using two alternative measures of the price level: 
the consumer price index (CPI) and a constructed monthly 
implicit deflator for the gross national product. It will be 
interesting to learn how these expected inflation measures 
compare with the one given here and, most important, to 
see whether conclusions such as those in Hamilton (1985) 
about forecast errors and business cycles are robust with 
respect to these different measures of the price level. 

A second important task for future work is to examine the 
stability of our parameter estimates over time. There is some 
evidence that financial markets underwent a structural change 
around October 1979, and we plan to test whether the pa- 
rameter values agents implicitly use to forecast inflation also 
shifted around this date. 

Finally, there are a host of interesting economic questions 
that can be investigated with our expected inflation series: 
What is the relationship between the level of inflation and 
the variance of forecast errors? Does the latter relationship 
have anything to do with business cycles? Why have recent 
real interest rates been so high'? How do inflationary expec- 
tations influence long-term interest rates, and does the var- 
iance of forecast errors play any role in determining the term 
structure of interest rates? We hope to address some of these 
issues, as well as others, in our future research. 

Table 6. Characteristic Roots of the Polynomial (14) 
for the Estimated Parameter Values 0 

Root Absolute value 

i, = 1.048 1.048 
,2 = -1.118 1.118 
A,3= 2.082 - 2.094i 2.95 
,4 = 2.082 + 2.094i 2.95 

Table 7. Tests on the Estimated Inflation Forecast Error 

Definition of the variable x(t) R2 F(4, 234) DW 

e(t) -.0086 .49 1.99 
Return on government bonds 

in month t minus return on 
Treasury bills in month 
t- 1 .0017 1.10 2.02 

Return on government bonds 
in month t minus return on 
corporate bonds in month t .0014 1.87 2.00 

Rate on 4-6-month 
commercial paper in 
month t -.014 .176 2.00 

Return on Treasury bills in 
month t -.015 .103 2.00 

7n(t) -.015 .14 2.02 
Inflation in month t as 

measured by the CPI .0023 .135 1.96 
Return on the Standard & 

Poor's 500 stock index in 
month t .014 1.87 1.98 

Return on corporate bonds in 
month t .014 1.85 2.00 

Return on government bonds 
in month t .0017 1.10 2.02 

Trade-weighted value of the 
U.S. dollar in month t -.0035 .887* 1.97 

*This value is F(4, 124) because of data limitations. 
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APPENDIX A: IDENTIFICATION OF THE 
STATE-SPACE MODEL 

Our state-space model, (6), possesses a structure that is 
a special case of that considered in Wall (1984), and its 
identification can be established by the theory developed 
there. Specifically, we make use of Theorem 2 of that paper, 
with minor modifications. 

Proposition 1. Let {F, G, Q, H, D, R} be as specified 
in (6). If /4 - 04 and /4 - a4 are nonzero and if at least 
one element of the first row of G is nonzero, then the state- 
space model is minimal. 

Proof. Consider first the controllability condition. The 
state-space model is completely controllable iff the rank of 
[G FG F2G .. F4G] is 5. The companion form of F and 
the special structure of G ensure that one will always be able 
to find embedded in the controllability matrix a 5 x 5 upper 
triangular submatrix. This can be seen by straightforward 
but tedious calculation. For example, suppose that g,, is 
nonzero; then we could form an upper triangular submatrix 
from the first columns from each of G, FG, F2G, F3G, and 
F4G. This submatrix would have gi, down the diagonal and 
hence be of rank 5. If gil = 0, then we could repeat the 
exercise by using g12. We are guaranteed that we can form 
at least one such full-rank triangular submatrix because of 
the assumption in the proposition. 
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Next consider the observability condition. Here we desire 
the rank of observability matrix [H' F'H' (F2)'H' * (F4)'H'] 
to be 5. Once again the companion form of F, the special 
form of H, and the assumptions of the proposition yield 
observability. This follows from the fact that F and the 
second row of H form an observable pair for a fourth-order 
state-space model when we drop from consideration the last 
column of F and the last element of the second row of H. 
Thus working with just the second row of H, HF, HF2, HF3, 
and HF4, we can always form a submatrix of rank 4. Indeed, 
it will again be triangular with 1 in the first position and 
,84- a4 down the diagonal. Combining this submatrix with 
the first row of H and the assumption in the proposition 
concerning y/4 - 04 guarantees that we always can find five 

linearly independent columns in the observability matrix. 

Proposition 2. Let the conditions of Proposition 1 hold. 
Then the state-space model (6) is identified. 

Proof. For minimal state-space models, the form of the 
equivalence relation that leads to lack of identification is 
known to be represented by a nonsingular coordinate trans- 
formation in the state space (see Wall 1984 and the references 
cited therein). Specifically, if {F,, G,, Q,, H,, D,, R,} and 
{F2, G2, Q2, H2, D2, R2} are any two members of an equiv- 
alence class, then they are related by 

F2 = T-IFiT, G2 = T-I'G, Q2 = Ql, 

H2 = HIT, D2 = D1, R2 = R,. 

Identification obtains whenever there are enough restrictions 
in the specification that the only matrix T consistent with 
these and satisfying the above equations is T = I. In this 
way we will be assured of selecting one and only one rep- 
resentative from each equivalence class. We now show that 
there are enough restrictions in (6) to force T = I. 

Consider first the relationship between F, and F2. We have 
T as the solution to the matrix equation TF2 - FIT = 0. It 
can be shown (see Lukes, in press or Wall 1984) that all 
solutions to the foregoing equation, with F as specified in 
(6), must be of the form 

T = [c, -pl(F)c, -p2(F,)c, -p3(Fi)c, -p4(F,)c], 

where c E N with N the null space of p5(F1) and p,,(F) the 
characteristic polynomial of the respective n x n submatrix 
of F (where n = 1 corresponds to the upper left corner 1 
x 1 submatrix defined by /i - ac). 

Now consider the relationship between GI and G2. T must 
satisfy the matrix equation TG2 = G,. From the assumptions 
of the proposition, at least one element of the first row of 
G is nonzero, so without loss of generality let us assume 
that it is ac. The first columns on each side of the matrix 
equation must satisfy 

a, a, 
0 0 
0 = [c, -p,(F1)c, -p2(F,)c, -p3(FI)c, -p4(F,)c] 0 , 
0 0 
0 0 

where a' denotes the g,, element of G2 and a, denotes the 
glI element of G,. It is easy to see that comparison of the 
first elements on both sides of this equation requires c, to 
be nonzero, whereas all of the subsequent comparisons re- 
quire c2 = c3 = C4 = C5 = 0. Thus the vector c has all 
elements zero except the first. 

Finally, let us consider the relationship between H, and 
H2, stipulated by the matrix equation H2 = HIT. From the 
second row of this equation we find that 

[1 0 0 0 ] [1 0 0 0 O]T 

= [c * * * *], 

where the asterisks denote generally nonzero entries. Hence 
cl = 1, and we conclude that the first column of T is the 
first column of the identity matrix. (We also conclude that 
the first row of T is the first row of an identity matrix, but 
this is not needed for the proof.) Insertion of this result into 
each of the remaining four columns of T reveals that each 
of these is, in turn, the corresponding column of a 5 x 5 
identity matrix. Thus T = I and the model specification is 
identified. 

APPENDIX B: DESCRIPTION OF THE 
KALMAN-FILTERING ALGORITHM AND 
UNOBSERVED VARIABLE ESTIMATION 

For expositional convenience first consider the problem 
of estimating x(t) given the parameters of F, G, F, H, and 
D, together with the first two moments of y(t) and z(t). If 
x(t, r) denotes the minimum mean squared error estimate 
of x(t) given the model and all observed data up through 
time r, 

Y* = {y(l), y(2) ....y()}, 

Zr = {z(l), z(2), .... ()}, 

then x(t, t) is produced by the following recursive compu- 
tation: 

x(t + 1, t) = Fx(t, t) + Gz(t), 

P(t + 1, t) = FP(t, t)F' + FQF', 

B(t + 1, t) = HP(t + 1, t)H' + R, 

?(t + 1, t) = y(t + 1) - Hx(t + 1, t) 

- Dz(t + 1), 

K(t + 1) = P(t + 1, t)H'B-'(t + I, t), 

f(t + 1, t + 1) = x(t + 1, t) 

+ K(t + l)?(t + 1, t), 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

P(t + 1, t + 1) = [I - K(t + l)H]P(t + 1, t), (B.7) 

for to - t - T. P(t + 1, t) is the var-cov matrix of the 
estimation matrix error in x(t + 1, t); that is, 

P(t + , t) x(t + + 1, t) = + 1) - + 1, t)] 

x [x(t + 1) - (t + 1, t)]'}. 
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B(t + 1, t) is the var-cov matrix of the innovation; that is, 

B(t + 1, t) = E{jE(t + 1, t)E(t + 1, t)'}. 

The initial values for x(t, t) and P(t, t) are assumed to be 
known and are given by 

o(to, to) = x(0) = E{x(to) given all information 

at time to}, 

P(to, to) = P(O) = E{[x(to) - (O)][x(t) - x()]'}. 

Thus P(t, T) is the var-cov matrix of the error in estimating 
x(t) given all observations up through timer z t. The vector 
e(t + 1, t) represents the innovations process and is anal- 
ogous to the model residuals used in econometric estimation. 
Equations (B. 1)-(B.7) constitute the Kalman filter. 

More efficient estimates of the states can be obtained by 
using all of the sample information available, that is, .(t, 
T). This is referred to as the smoothed estimate. It is derived 
from the filtered estimate, x(t, t), by means of a reverse 
"sweep" over the data from T back to t + 1. Broadly speak- 
ing, computation is as follows: the recursive Kalman filter 
is employed in reverse time "beginning" at time T using a 
diffuse "prior" for x(T, t + 1), that is, P(T, T + 1) = x. 
For any time t in the closed interval [0, T], this reverse time 
filter produces an estimate, x(t, t + 1), along with its cor- 
responding var--cov matrix, P(t, t + 1). This represents our 
best estimate of x(t), using data only over the interval [t + 
1, T]. Combining this with our forward time estimate, x(t, 
t), using only data over the interval [0, t], gives us the desired 
result x(t, T). The method of combination follows from a 
classical result in probability and statistics; namely, the op- 
timal combination of two independent estimates x(t, t) [with 
precision matrix P-'(t, t)] and x(t, t + 1) [with precision 
matrix P-'(t, t + 1)] is 

x(t, T) = P(t, T)[P-l(t, t)x(t, t) 

+ P-l(t, t + l).(t, t + 1)], 

with corresponding precision matrix 

P-l(t, T) = P-'(t, t) + P-'(t, t + 1). 

Details of the smoothing algorithms are given in Cooley, 
Rosenberg, and Wall (1977). Thus once filtered estimates 
are obtained, they can be revised by the smoothing algorithm 
to produce the most efficient estimates of x(t). [It can be 
shown that P(t, t) - P(t, T) for to - t - T. This should be 

intuitively clear, since by definition x(t, T) uses more in- 
formation than x(t, t). See Jazwinski (1970, chap. 7) or 
Bryson and Ho (1969, chap. 13).] 

Using the Kalman filter to generate model residuals en- 
ables the formation of a loss function that can be used in 
parameter estimation. The parameters to be estimated may 
include not only the unknown elements of H, D, and R (the 
parameters of the behavioral equations) but, more important, 
those of F, G, F, and Q. The algorithms for estimation of 
the unknowns in this manner are called prediction error 
methods and, like the Kalman filter, are thoroughly treated 
in the control literature (see Ljung and Sorderstrom 1983). 

The algorithm employed in the present study is outlined by 
the following steps: 

1. Collect the unknown parameters into a vector 0 of 
dimension N x 1. Denote an initial guess at its true value 
by 0?, and insert this into the Kalman filter Equations (B. 1)- 
(B.7). Set i = 0. 

2. Using the Kalman filter Equations (B.1)-(B.7), com- 
pute the model innovations sequence {E(t + 1, t); t, < t - 
T - 1}, where ~(t + 1, t) = (t + 1, t, 0') is an implicit 
function of O'. 

3. Form the loss function J(0i), where 

1 T-l 

J(O) - E [?l(t + 1, t)'A[+ll,^(t + 1, t) 
2 ot 

+ ln(det i,+ l,)] (B.8) 

and A,+II, is some positive definite weighting matrix. 
4. Compute an improved estimate of 0, denoted by 0'+, 

such that J(O'i+) - J(0'). Use 

0i+l = 0' - p'M-l'J('i)/dO, 

where p' is a (scalar) step size parameter and Mi- is a positive 
definite N x N matrix such that in the limit (as i --> c) it 
tends to the inverse Hessian of J. (See discussion after step 
5.) 

5. Check to see whether 110'+' - 0'll < 6, and/or IjAJ(Oi+')/ 
a011 - 62. If so, stop; Oi+' is accepted as the "best" estimate 
of 0. Otherwise, set 0' to 0i+', i = i + 1, and return to 
step 2. If it is assumed that e(t) is normally distributed for 
each t and A,+ i, is set equal to B(t + 1, t), then approximate 
maximum likelihood estimates are obtained. The approxi- 
mation involved relates to the prior on the unknown coef- 
ficient vector 0. The difference between our likelihood func- 
tion and the exact likelihood function is of the order 1/T. 
Thus asymptotically (T -> cc) there is no difference. (See 
Pagan 1980 for a discussion of this fact.) 

The iterative algorithm given earlier requires an initial 
estimate, 0?; a convergence criterion, 6, and/or ^2; and 
expressions for the components of the gradient vector aJ(()/ 

0O. The gradients may be computed numerically, using sim- 
ple finite first differences of J(0), or analytically, using a 
straightforward application of differential calculus to (B.8). 
The method by which pi and M, are computed depends on 
the particular function minimization algorithm employed. A 
Davidson-Fletcher-Powell variable metric algorithm is used 
here, since M, ' is then computed automatically, with aJ(O)/ 
a0 being the only user-supplied information. On conver- 
gence M,' is the inverse Hessian of J(0) (i.e., the infor- 
mation matrix) and yields valuable information concerning 
estimated parameter standard errors, correlations (covari- 
ances), and identifiability. In particular, once the algorithm 
converges, a simple scaling of M, ' produces an estimate of 
the parameter var-cov matrix. This estimate is useful not 
only in hypothesis tests on elements of 0 but also in ex- 
amining identifiability. Since local identifiability and asymp- 
totic nonsingularity of the Hessian matrix are equivalent, a 
nearly singular M, indicates identification problems. In 
practice, this is most easily tested by converting the param- 
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eter var-cov matrix to a correlation matrix and examining 
the off-diagonal elements. Interparameter correlations near 
unity, say ?.996, lead to a singular condition suggesting an 
overparameterized specification and lack of complete iden- 
tification. Moreover, a singular Hessian for J(O) results in 
nonconvergence of the numerical optimization algorithm, so 
lack of convergence and lack of identification are highly 
related. 

[Received March 1985. Revised July 1985.] 
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