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Estimation of urban vegetation abundance by spectral mixture analysis
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Abstract. The spatio-temporal distribution of vegetation is a fundamental com-
ponent of the urban environment that can be quanti®ed using multispectral
imagery. However, spectral heterogeneity at scales comparable to sensor reso-
lution limits the utility of conventional hard classi®cation methods with multispec-
tral re¯ectance data in urban areas. Spectral mixture models may provide a
physically based solution to the problem of spectral heterogeneity. The objective
of this study is to examine the applicability of linear spectral mixture models to
the estimation of urban vegetation abundance using Landsat Thematic Mapper
(TM) data. The inherent dimensionality of TM imagery of the New York City
area suggests that urban re¯ectance measurements may be described by linear
mixing between high albedo, low albedo and vegetative endmembers. A three-
component linear mixing model provides stable, consistent estimates of vegetation
fraction for both constrained and unconstrained inversions of three diVerent
endmember ensembles. Quantitative validation using vegetation abundance meas-
urements derived from high-resolution (2 m) aerial photography shows agreement
to within fractional abundances of 0.1 for vegetation fractions greater than 0.2.
In contrast to the Normalised DiVerence Vegetation Index (NDVI), vegetation
fraction estimates provide a physically based measure of areal vegetation abund-
ance that may be more easily translated to constraints on physical quantities
such as vegetative biomass and evapotranspiration.

1. Introduction

Recent estimates indicate that over 45% of the world’s human population now

lives in urban areas, with this ®gure rising to over 60% projected by 2030 (United

Nations 1997 ). The global rate of urbanization is expected to continue to accelerate

in the near future with the emergence of very large urban agglomerations in develop-

ing countries (Berry 1990, United Nations 1997 ). Even if developing countries follow

the course of post-industrial urban dispersion to the suburbs, the continuing localiz-

ation of populations from rural to urban/suburban conurbations will result in

increasing numbers of people living in built environments. As the size and number

of urban agglomerations increases, so does the relative importance of the urban

environment to the global population. Monitoring spatio-temporal changes in large

urban/suburban areas will therefore become increasingly important as the number

and proportion of urban residents continue to increase.

The spatio-temporal distribution of vegetation is a fundamental component of

the urban/suburban environment. Vegetation in¯uences urban environmental condi-

tions and energy ¯uxes by selective re¯ection and absorption of solar radiation (e.g.
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Landsberg 1981, Oke 1982, Goward et al. 1985, Roth et al. 1989, Gallo et al. 1993,

Nichol 1996 ) and by modulation of evapotranspiration (e.g. Price 1990, Carlson

et al. 1994, Gillies et al. 1997, Owen et al. 1998, Nemani and Running 1989 ). The

presence and abundance of vegetation in urban areas may also in¯uence air quality

and human health (Wagrowski and Hites 1997 ). Conversely, urban vegetation experi-

ences both short- and long-term phenological changes which may be sensitive to

subtle changes in environmental conditions. Changes in the built component of the

urban environment are generally documented at various levels of detail but phenolo-

gical changes in urban vegetation are not under direct human control and are not

generally monitored.

The synoptic view of urban landcover provided by satellite and airborne sensors

is an important complement to in situ measurements of physical, environmental and

socioeconomic variables in urban settings. Forster (1983 ) provides a thorough sum-

mary of the evolution of urban remote sensing and introduces a methodology with

which some socioeconomic parameters may be predicted using re¯ectance-based

estimates of landcover classes. Compared to agricultural areas and sparsely populated

regions, however, application of remotely sensed observations to studies of the urban

environment has been rather limited. In part this is because accurate identi®cation

of most built components of the urban environment requires ®ner spatial resolution

than is oVered by sensors on operational satellites such as Landsat and SPOT

(SysteÁme Pour l’Observation de la Terre). The 30 to 50 m spatial resolution of the

Landsat TM sensor (Markham 1985, Wilson 1988 ) is comparable to the characteristic

scale of urban landcover (Welch 1982, Woodcock and Strahler 1987 ) and is generally

too coarse for identi®cation of individual structures. While this resolution has limited

the use of Landsat data for studies of the built urban environment, it may be

su�cient to detect signi®cant spatial and temporal variations in urban vegetation.

The objective of this study is to determine the extent to which Landsat TM data

can be used to quantify vegetation abundance and distribution in urban and sub-

urban areas. In addition to the synoptic view of large urban areas, Landsat’s 16-day

revisit period allows monitoring of seasonal to interannual changes in urban and

suburban vegetation. If the spectral resolution of Landsat TM imagery is su�cient

to detect intra-urban and suburban variations in vegetation abundance, it may be

possible to combine the spatial resolution of Landsat with the higher temporal and

spectral resolution of sensors such as MODIS (Moderate Resolution Imaging

Spectrometer) to monitor spatio-temporal variations in urban/suburban vegetation.

It may also be possible to investigate temporal changes in urban/suburban vegetation

abundance that have occurred during the past 18 years that the TM instruments

have been operational.

2. Overview of the analysis

This analysis is based on the assumption that varying amounts and distributions

of vegetation within the urban mosaic make a distinct contribution to the net

re¯ectance observed by the Landsat TM sensor and that this contribution can be

estimated by inversion of spectral mixture models of the observed re¯ectance.

Section 3 introduces the problem of mixed pixels in the context of urban landcover

and spectral mixing. Section 4 summarizes the theory of spectral mixing and de®nes

the linear unmixing problem. The central questions of image dimensionality (§5) and

spectral endmembers (§6) are then addressed for the case of urban vegetation estima-

tion. The unmixing model previously de®ned is then inverted to produce vegetation
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fraction estimates for diVerent ensembles of endmembers with diVerent constraints.

The convergence of the solutions is quanti®ed to determine the stability of the

inversion and an analysis of the agreement between the estimated fractions and the

observed re¯ectances is conducted to verify the mathematical validity of the three-

component linear mixing model.

Mathematical validity does not guarantee that fraction estimates are accurate so

the second part of the study focuses on validation of the estimates. A methodology

is developed for calculating areal vegetation fractions from high resolution aerial

photography (§8) and for simulating the TM sensor’s response to the measured

fractions. The eVects of spatial scale and uncertainty in the geolocation of the satellite

measurements are then demonstrated for diVerent urban vegetation distributions

and a validation methodology is developed (§9 ). Finally, a quantitative validation

of the unmixed TM vegetation fraction estimates is presented for a wide range of

vegetation distributions in central Manhattan (§10). The study is concluded with a

discussion of the caveats of the method and the implications of the results.

3. Spectral classi®cation of urban landcover

Urban areas are generally recognized in remotely sensed imagery by their geomet-

ric and textural characteristics. Spectral characteristics of urban landcover are less

diagnostic than those of the rural periphery and unpopulated areas such as deserts

and forests. There are signi®cant diVerences between the spectral re¯ectance of urban

surfaces and natural rock and soil surfaces but these diVerences may be di�cult to

detect with the limited spectral resolution provided by broadband sensors such as

Landsat TM. In a study of the Washington DC metro area, Ormsby (1992 ) distingu-

ished nine urban landcover classes with signi®cant spectral separability. While these

classes may be distinguishable when they occur in homogeneous regions larger than

the Ground Instantaneous Field Of View (GIFOV) of the sensor, the characteristic

scale at which urban landcover changes is often comparable to, or smaller than, the

GIFOV of the TM sensor. Urban areas are therefore generally characterized by

spectral heterogeneity at scales approaching TM pixel resolution.

The characteristic spatial scale and the spectral variability of urban landcover

poses serious problems for traditional image classi®cation algorithms. Most `hard’

classi®cation algorithms attempt to reduce the information contained in multiband

spectral re¯ectance imagery to a single thematic map by assigning each multiband

pixel to one of a limited number of classes. The thematic class to which a pixel is

assigned is generally determined by some measure of the similarity of the spectral

re¯ectance vector of that pixel to the characteristic spectral re¯ectance vector of a

particular class. This similarity is based on some measure of proximity to the region

of the spectral feature space associated with that landcover class (Richards 1993,

Jensen 1996 ). In areas where the landcover types have distinctive re¯ectance spectra

and are relatively homogeneous at scales larger than the GIFOV of the sensor, the

assignment of each pixel to one speci®c class can be done with reasonable accuracy.

In areas where the re¯ectance spectra of the landcover vary appreciably at scales

comparable to, or smaller than, the GIFOV the spectral re¯ectance of an individual

pixel will generally not resemble the re¯ectance of a single landcover class but rather

a mixture of the re¯ectances of two or more classes present within the GIFOV. Hard

classi®ers assign these mixed pixels to the class to which they bear the greatest

statistical resemblance.

Because hard classi®ers assign each pixel to one and only one class, the assignment
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of a mixed pixel to a single homogeneous class produces inaccuracies in the resulting

thematic map. For this reason, traditional hard classi®cation of Landsat imagery

rarely produces accurate results in urban areas where surface re¯ectances vary

appreciably at scales smaller than the ~50 m GIFOV of the TM sensor. The problem

of mixed pixels was recognized prior to the launch of Landsat 1 by Horowitz et al.

(1971 ) and its relevance to urban remote sensing is discussed extensively by Forster

(1985 ). A variety of approaches have since been developed to detect the presence

and abundance of target materials within mixed pixelsÐparticularly for use with

imaging spectrometers in geologic remote sensing (e.g. Clark and Roush 1984, Goetz

et al. 1985, Kruse 1988, Boardman 1989, Boardman and Kruse 1994 ) and vegetation

mapping (e.g. Smith et al. 1985, Pech et al. 1986, Elvidge et al. 1993, Roberts et al.

1993, Wessman et al. 1994 ).

4. Linear spectral unmixing

Macroscopic combinations of homogeneous `endmember’ materials within the

GIFOV often produce a composite re¯ectance spectrum that can be described as a

linear combination of the spectra of the endmembers (Singer and McCord 1979 ).

Nonlinearity is introduced by multiple scattering of radiation among diVerent target

materials and is generally considered to be a second-order eVect that becomes

dominant in the case of intimate mixtures (Clark and Lucey 1984 ). Re¯ectance

modelling also suggests that multiple scattering can introduce signi®cant nonlinearity

for soil/vegetation-based targets (Borel and Gerstl 1994 ). If mixing between the

endmember spectra is predominantly linear and the endmembers are known a priori,

it may be possible to `unmix’ individual pixels by estimating the fraction of each

endmember in the composite re¯ectance of a mixed pixel (Adams et al. 1986, Gillespie

et al. 1990, Smith et al. 1990 ).

The linear mixing model assumes that the net spectral re¯ectance pro®le of an

area within the GIFOV of the sensor can be described as a linear combination of

endmember spectra as:

f
1
E

1
(l)+ f

2
E

2
(l)+ , + f n En (l)=R(l) (1)

where R(l) is the observed re¯ectance pro®le, a continuous function of wavelength

l. The E i (l) are the endmember spectra and the f i are the corresponding fractions

of the n endmembers contributing to the composite re¯ectance spectrum for the area

within the GIFOV. Because the sensor actually measures radiance in a ®nite number

of spectral bands, the surface re¯ectances are estimated from the measured radiances

by compensating for sensor calibration and interaction with the atmosphere. As a

result, the continuous re¯ectance pro®les are represented as vectors of discrete

re¯ectance estimates at speci®c wavelengths as:

E (l)=[el 1 , el 2 , el n ] (2)

R (l)=[rl 1 , rl 2 , rl n ] (3)

where each rl i represents a portion of the observed re¯ectance spectrum R (l),

integrated over a ®nite spectral band with a centre wavelength li and each el i

represents the contribution to this observed re¯ectance from the corresponding

endmember E (l). The continuous linear mixing model can therefore be represented

in discrete form as a system of linear mixing equations in which the dimensions are
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determined by the number of spectral bands and the number of endmembers:

f j ei j = ri i=1,b and j=1,n (4)

where ei j is the re¯ectance of the ith spectral band in the j th endmember spectrum,

f j is the fraction of the j th of the n endmember spectra and r i is the ith observed

re¯ectance of the b spectral bands. The system of b linear equations can be written

as:

Ef=r (5)

where E is a b by n matrix in which the columns are the n endmember spectra as

represented by the b discrete bands and f is a vector of endmember fractions

describing the observed re¯ectance vector r. The objective is to solve for f to

determine the fraction of each endmember that best describes the observed

re¯ectance vector.

The tractability of the unmixing problem is determined by the discrete sampling

of the re¯ectance spectra and the number of discernible endmembers that contribute

to the target re¯ectances. In the formulation above, the number of bands must be

equal to or greater than the number of endmembers or the problem will be under-

determined and an in®nite number of possible solutions may exist. Conversely, if

the number of endmembers is less than the number of bands, the problem is overdeter-

mined and there may be no exact solution if the data contain measurement error.

In this case, the mixture model can be modi®ed to accommodate errors in the

re¯ectance estimates that would corrupt an exact solution. The overdetermined linear

mixing model, incorporating measurement error, is now:

r=Ef+ e (6)

where e is an error vector which must be minimized to ®nd the fraction vector f

which gives the best ®t to the observed re¯ectance vector r. Since e= rÕEf, we seek

to minimize:

e
T
e= (rÕ Ef ) (rÕ Ef ) (7)

A variety of approaches exist to solve this type of problem (e.g. Smith et al. 1985,

1990, Pech et al. 1986, Menke 1989, Settle and Drake 1993 ). The choice of approach

is determined by the spectral characteristics of the endmembers and the nature of

the noise component. In the case of uncorrelated noise, the well known least-squares

solution is given by:

f= (ET E ) Õ
1 ET r (8)

The case of correlated noise is discussed in detail by Settle and Drake (1993 ).

The result is a set of endmember fraction estimates for each pixel which together

provide a fraction image for each endmember, indicating the spatial distribution and

fraction of that endmember. The endmember fraction for a given pixel represents

the fractional area of the pixel containing that endmember. In this study, the primary

objective is the estimation of the vegetation fraction, F
V

.

There exist a number of variations on this problem which incorporate diVerent

constraints on the basic estimation problem described above. Because all of the

fractions should sum to unity, a constraint equation (S f j =1) can be incorporated

into the problem as well as positivity constraints ( f j > 0) on the fraction estimates.

The sensitivity of the fraction estimates to these constraints is discussed below. Settle
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and Drake (1993 ) present a thorough discussion of the theory and application of

this class of mixing model and propose a regularized solution that is less sensi-

tive to noise and produces smoother fraction images. The regularized solution is

not used in this study because a smoothness constraint is not consistent with the

expectation of landcover heterogeneity at scales approaching pixel resolution.

In reality, the validity of the linear mixture model is determined by the ability of

the sensor to resolve diVerences in the characteristic spectra of the target material

given a limited sampling of the continuous re¯ectance spectra with a ®nite number

of bands. In the case of imaging spectrometers, the spectra are intentionally over-

sampled relative to the narrowest absorption bands, but in the case of typical

multispectral sensors such as Landsat, the spectra are generally undersampled so

that materials with diVerent re¯ectance spectra can yield indistinguishable re¯ectance

vectors in the six bands that are imaged. In a sense this can simplify the mixing

problem by reducing the number of possible endmembers that can be resolved.

Conversely, this limits the applicability of Landsat data to mixing problems in which

six or less endmembers describe most of the variance in the image and can be clearly

distinguished in the spectral bands measured by the sensor. In this sense, the suitabil-

ity of the linear mixing model is determined by the inherent dimensionality of the

image and the presence of correlations between the observed bands. It is therefore

necessary to determine the feature space topology of the image in order to determine

whether or not a linear mixture model is appropriate.

5. Image dimensionality

The inherent dimensionality of a re¯ectance image is determined by the re¯ectance

spectra of the targets and the way the sensor samples these spectra. The sampling is

determined by both the spatial and spectral resolution of the sensor. Correlations

among bands reduce the information content of the data. The presence of noise

further reduces the information content of the data. If it is assumed that noise is

spatially uncorrelated and that information content is related to spatially correlated

variance, it is possible to obtain some indication of the inherent dimensionality and

variance partitioning of multidimensional datasets by investigation of their eigenvalue

distribution (Strang 1986, Preisendorfer 1987 ). Principal component transformations

are routinely used to minimize the in¯uence of band to band correlations and to

investigate variance partitioning of multiband images (e.g. Richards 1993 ) but

unequal scaling of re¯ectance bands can result in the noise content of one band

having larger variance than the signal in another band. For this reason it is often

preferable to partition variance on the basis of signal to noise ratio or spatial

autocorrelation (Lee et al. 1990 ).

The Maximum Noise Fraction (MNF) transformation, proposed by Green et al.

(1988 ), seeks to diagonalize the noise covariance matrix prior to the principal

component transformation thereby reducing the eVect of band-speci®c noise sources.

In some cases, a noise covariance model can be determined from sensor calibration

measurements or ground truth re¯ectance measurements of a spectrally homogeneous

target. In many cases, however, these measurements are not available and it is

necessary to base the noise model on the sample covariance matrix as proposed by

Green et al. (1988 ). This method assumes that noise is spatially uncorrelated and

may therefore be sub-optimal in the case of urban imagery where the actual

re¯ectance varies appreciably at pixel resolution. By partitioning some of the informa-

tion content to the higher order components, the MNF transformation may
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underestimate the dimensionality of urban imagery. This is considered further in the

error analysis below (see §8).

The six re¯ected bands of a Landsat TM image (scene ID LT5014032009620210)

showing Manhattan island and surrounding parts of New York City and New Jersey

are shown in ®gure 1 along with the resulting MNF transformation. Image digital

numbers (DNs) were converted to normalized exoatmospheric re¯ectances using

prelaunch calibration data for the Landsat 5 sensor (Markham and Barker 1987 )

but no atmospheric corrections were applied. The image was acquired at 9:18 a.m.

local time on 20 July, 1996. Varying degrees of correlation among the six re¯ected

bands suggest that the inherent dimensionality of this image may be less than the

six spectral dimensions acquired. Strong correlations are apparent between the three

visible bands (1, 2, 3). The ®rst two MNF bands show strong spatially coherent

contrasts illustrating spectral distinction between water, clouds, shadows, vegetation

and built urban areas while the higher order MNF bands show consistently dimin-

ishing spatial coherence. The eigenvalue spectrum shown in ®gure 2 veri®es that the

®rst two MNF bands contain most of the spatially coherent variance.

The distribution of the transformed re¯ectances within the three-dimensional

feature space corresponding to the low-order MNF dimensions suggests that the

observed re¯ectances might be described by a three-component mixing model

(®gure 2). The density shaded scattergram of MNF dimensions 1 and 2 illustrates

the triangular distribution that would be expected for three component mixing while

the scattergram of dimensions 1 and 3 show most of the pixels lying on or near the

plane of MNF bands 1 and 2. The scattergram of bands 2 and 3 shows that

the plane is slightly inclined and disperses with increasing distance from the lower

corner. If the observed re¯ectances can actually be represented by linear combinations

of a ®nite number of endmembers then the re¯ectance vectors of the pixels at the

periphery of the feature space distribution would be likely candidates for endmember

spectra. The three corners of the triangular distribution correspond geographically

to homogeneous areas of (1) low albedo (e.g. water), (2) high albedo (e.g. clouds,

sand, concrete) and (3) vegetation (e.g. grass). In truly linear mixing, all pixels would

lie within a mixing space interior to a convex hull de®ned by the endmembers

(Boardman 1993 ). The slight outward curvature in the distribution of pixels shown

in ®gure 2 implies some degree of nonlinear mixing among the three endmembers.

The pixels along several dropped scan lines reside in small clusters outside this

planar triangular region indicating that their re¯ectance vectors are not described

by mixtures of the three endmembers. The remaining pixels lie intermediate between

the three endmembers with the majority displaced toward a mixing line between the

low- and high-albedo corners. The most signi®cant departures from the mixing plane

are related to higher dimensional re¯ectance spectra associated with clouds and the

distinction between water and other low-albedo re¯ectance such as shadows.

The triangular distribution in MNF space bears an obvious similarity to the well

known Tasseled Cap distribution discovered by Kauth and Thomas (1976 ). The

distributions are similar in the sense that both contain a vegetation endmember that

is distinct from a mixing continuum between absorptive and re¯ective endmembers.

The primary diVerence is that the `plane of soils’ frequently observed in agricultural

regions is replaced here by a lower dimensional mixing line of built urban surfaces.

Since most urban surfaces are impervious to moisture, the re¯ectance along this axis

is presumably less time variable than the plane of soils.
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Figure 1. Dimensionality of urban multispectral re¯ectance. The six re¯ective bands of
Landsat TM acquired over Manhattan Island and surrounding regions on 20 July
1996 show strong correlations, especially in the visible bands (1, 2, 3). After applying
a Maximum Noise Fraction (MNF) transformation, the spatially coherent variance is
contained in the low-order components (1, 2) while the spatially uncorrelated variance
is relegated to the higher order components. Total information content is invariant
under the transformation.
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Figure 2. Transformed feature space representation of Manhattan and surrounding areas.
The eigenvalue spectrum (top left) corresponding to the MNF rotated bands shown
in ®gure 1 indicates that the ®rst two components contain the majority of the spatially
correlated variance compared to the four low-order components. Density-shaded
scattergrams reveal the feature space topology of the re¯ectance data to have three
endmembers con®ned primarily to the plane of MNF bands 1 and 2 (upper right).
The density-shaded scattergrams show a distinction between water and shadow
re¯ectance as well as signi®cant oVset and curvature of the cloud spectra on the upper
cusp of the distribution. Urban pixels are con®ned primarily to the triangular region
on the band 1±2 plane which is slightly inclined to the 0 axis of band 3. Note that
the colour changes with the log10 of the number of pixels.

6. Endmember spectra

Estimation of endmember fractions from the linear mixing model is predicated

on the assumption that we have some idea what spectral endmembers the mixed

pixels are composed of and what materials actually constitute the spectral endmem-

bers. The simplest mixing model is that which describes the observed re¯ectances

with the smallest number of endmembers. The simplest mixing model that can

describe the distribution in ®gure 2 is composed of three components associated with

the apexes of the triangular distribution. If the re¯ectance vector of any pixel within

the triangular distribution shown in ®gure 2 can be described as a linear combination

of vectors located on the periphery of the distribution then the re¯ectance vectors

form a convex set (Boardman 1993 ). Convexity has pleasing implications for the

existence of solutions to linear inverse problems (Parker 1994 ) but it provides no
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assurance of uniqueness. In other words, convexity does not guarantee that the set

of endmember spectra chosen is the only set that describes the data. For this reason

it is important to have some idea what the physical endmembers are. A three-

component mixing model based on low albedo, high albedo and vegetation is

physically consistent with the spectral characteristics that might be expected for an

urban environment. Although a wide variety of target materials is present in the

urban mosaic, the diVerences in their spectral re¯ectances are not necessarily resolved

by the TM sensor’s spectral sampling. While this would be a limitation for some

applications, it may simplify the problem of vegetation detection considerably.

The success of spectral unmixing depends on the selection of the endmember

components. There exist a variety of methods for choosing endmembers based on

a priori assumptions, ground truth or laboratory re¯ectance measurements or the

image data themselves. In many cases it is necessary to select reference endmembers

to relate image endmembers to actual target materials (Roberts et al. 1993, Adams

et al. 1995 ). In the case of urban re¯ectance, the relative simplicity of the feature

space topology suggests that it may be possible to select endmembers from the image

data. Three approaches are considered in which the endmembers are based on

(1) maximally inclusive feature space selection, (2) minimally inclusive feature space

selection and (3) geographic image space selection. The maximally inclusive endmem-

bers are averages of large numbers (>2000 ) of re¯ectance pro®les of all pixels near

the corners of the triangular distribution in the scattergram of MNF bands 1 and

2. The minimally inclusive endmembers are averages of smaller numbers (~100) of

re¯ectance pro®les corresponding to the pixels nearest the apexes of the three corners

of the scattergram. The geographic image space endmembers are averages of spatially

homogeneous areas of cloud, water and grass corresponding to the corners of

the scattergram. These three ensembles of endmembers are shown in ®gure 3 with

continuous laboratory vegetation spectra (Clark et al. 1993 ) for comparison.

Once the image endmembers have been determined, their relationship to physic-

ally meaningful target materials must be established. The similarity of the three

ensembles of endmember spectra for the low-albedo and vegetation endmembers

suggests that these endmembers occupy a compact, well de®ned subset of spectral

space. The high-albedo endmember shows much greater sensitivity to the selection

method, as would be expected from the curvature and oVset of the high-albedo cusp

of the scattergram. The spectral endmembers determined from the transformed

feature space correspond to re¯ectances from distinct geographic locations within

the study area so the physical targets themselves can be checked in the ®eld. The

underlying assumption of endmember purity, or spectral homogeneity, can then be

veri®ed to establish the relationship between the endmembers and actual target

materials. The similarity of the endmember spectra obtained from the feature space

and geographic space selections supports the assumption.

The underlying question in this analysis concerns the actual physical composition

of the spectral endmembers. In the New York study area, the low-albedo endmember

corresponds to deep clear water and, in some cases, deep shadow. The high-albedo

endmember corresponds to clouds in the minimally inclusive case with the inclusion

of sand and concrete in the maximally inclusive case. In all cases the vegetation

endmember corresponds to grass. This is physically reasonable because the diVerences

observed in full-resolution vegetation spectra (Asner 1998 ) are not necessarily

observed by the spectral sampling of the Landsat TM sensor. Dense, healthy grass

has negligible internal shadowing and therefore provides the most homogeneous
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Figure 3. Endmember re¯ectance spectra. Discrete spectra correspond to minimally inclusive
(circles) and maximally inclusive (squares) MNF space endmembersand geographically
homogeneous image space (triangles) endmembers. The low-albedo ( long dash) and
vegetation (solid) endmembersare self-consistent and relatively invariant to the method
of endmember selection. The high-albedo (short dash) spectra are more variable as a
result of the spectral dissimilarity of clouds and high-albedo urban targets. TM
bandwidths (grey) and continuous spectra (thin curves) derived from the United States
Geological Survey spectral library are shown for comparison. Atmospheric scattering
is indicated by the higher re¯ectance in TM band 1 for the vegetation and low-albedo
endmembers.

vegetation response found in the New York metro area. Varying degrees of tree

canopy closure observed in Central Park correspond to a mixing between homogen-

eous vegetation and varying amounts of low-albedo endmember related to shadow.

Some contribution from soil is undoubtedly present, but evidently not in large

enough amounts to form a distinct endmember in feature space.

7. Vegetation abundance estimates

The three-component linear mixing model was inverted for endmember fractions

using the Landsat TM data shown in ®gure 1 with each of the three sets of endmember

spectra shown in ®gure 3. An example of the resulting endmember fraction images

is shown in ®gure 4. Each inversion was performed both with and without a unit

sum constraint. The unit sum constraint enforces the assumption that the three

endmembers completely span the space of all possible re¯ectance vectors. In order

for the inversion to be stable, small diVerences in the endmember spectra should not

result in large diVerences in the fraction estimates. The sensitivity of the solution to

the choice of endmember spectra is indicated by the consistency of the endmember

fraction distributions and the correlations between diVerent solutions given in tables

1 and 2. The similarity of the distributions and the high correlations between

the resulting fraction images suggest that the low-albedo fraction is most sensitive

to the diVerences in the endmembers shown in ®gure 3. Enforcing the unit sum
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Figure 4. Three-component endmember fraction images of Manhattan and surrounding
areas. Fractional abundance images result from a unit sum constrained least squares
inversion of the linear mixing model using the maximally inclusive endmember spectra
shown in ®gure 3. The parallel diagonal streaks crossing the Hudson River are dropped
scan lines. The index map in the lower right shows a high pass ®ltered low-albedo
fraction image.
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Table 1. Endmember fraction and RMS mis®t distributions.

FH FV FL RMS

Mean s Mean s Mean s Mean s

U Min 0.20 0.17 0.15 0.19 0.49 0.39 0.007 0.007
CMin 0.18 0.16 0.16 0.19 0.66 0.22 0.010 0.009
U Max 0.18 0.18 0.15 0.22 0.47 0.41 0.007 0.007
CMax 0.14 0.16 0.17 0.22 0.68 0.24 0.011 0.010
U Geo 0.13 0.14 0.14 0.21 0.53 0.37 0.009 0.008
CGeo 0.10 0.12 0.16 0.20 0.73 0.21 0.012 0.010

U=Unconstrained, FH =High-albedo fraction, Min=Minimally inclusive endmember,
C=Constrained SF =1, FL =Low-albedo fraction, Max=Maximally inclusive endmembers,
FV =Vegetation fraction, Geo=Geographic endmembers.

Table 2. Endmember fraction and RMS mis®t correlation coe�cients.

U Min CMin UMax CMax U Geo CGeo

U Min 1.000 0.965 0.999 0.958 0.999 0.950 FH

CMin 0.625 1.000 0.955 0.999 0.962 0.998 FH

U Max 0.999 0.638 1.000 0.947 0.999 0.938 FH

CMax 0.626 0.989 0.633 1.000 0.955 0.999 FH

U Geo 0.998 0.626 0.999 0.621 1.000 0.948 FH

CGeo 0.622 0.968 0.625 0.995 0.613 1.000 FH

FL FL FL FL FL FL

U Min CMin UMax CMax U Geo CGeo

U Min 1.000 0.994 0.996 0.987 0.996 0.983 FV

CMin 0.890 1.000 0.987 0.997 0.991 0.996 FV

UMax 0.965 0.901 1.000 0.987 0.999 0.982 FV

CMax 0.842 0.978 0.896 1.000 0.991 0.999 FV

U Geo 0.861 0.895 0.930 0.930 1.000 0.987 FV

CGeo 0.797 0.940 0.865 0.981 0.959 1.000 FV

RMS RMS RMS RMS RMS RMS

constraint seems to repartition the variance between the high- and low-albedo

endmember fractions at the expense of slightly larger RMS mis®ts to the observed

re¯ectances. This is consistent with the dispersion of the mixing space between these

two endmembers seen in ®gure 2. In contrast, the scattergram is more planar

approaching the vegetation endmember. The implication is that a three-component

linear mixing problem may be ill-posed for estimation of high- or low-albedo com-

ponent fractions but is well posed for vegetation component fractions. The rest of

this analysis discusses the unit sum constrained solution based on the maximally

inclusive endmembers, although tables 1 and 2 suggest that the results for the other

solutions would not diVer signi®cantly for the vegetation fraction.

The mathematical validity of the three-component linear mixing model can be

assessed by reconstructing re¯ectance vectors using the model endmembers and the

estimated fractions. Comparing an observed re¯ectance vector with the correspond-

ing vector constructed from the estimated fractions of model endmembers indicates
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how well the linear mixing model describes the re¯ectance of that pixel. Example

comparisons of observed and reconstructed vectors for three diVerent vegetation

fractions are shown in ®gure 5. The Root Mean Square (RMS) mis®t between the

observed and reconstructed re¯ectance vector gives some indication of model validity

for each pixel in the image. The RMS image in ®gure 5 shows generally small mis®t

overall (95% <0.02 RMS) and consistently lower mis®t for the low albedo (e.g.

water) and vegetated areas with larger mis®ts for high-albedo areas, clouds and the

dropped scan lines. The density-shaded scattergrams in ®gure 5 verify that the pixels

with larger mis®ts are associated with larger fractions of the high-albedo endmember

and intermediate fractions of the low-albedo endmember. Maximum RMS mis®t

diminishes monotonically with increasing vegetation fraction and is consistently low

for vegetation fractions greater than 0.2. The larger mis®t for high-albedo components

suggests that this endmember is not accurately represented in the model but this

evidently does not in¯uence the estimation of vegetation fraction. The small mis®t

for pixels having a signi®cant vegetation fraction suggests that the three-component

linear mixing model may provide robust estimates of vegetation abundance in urban

Landsat imagery. Low RMS mis®t supports the statistical validity of the linear

mixing model but does not guarantee accurate or physically meaningful results. In

order to quantify the accuracy of the vegetation fraction estimates it is necessary to

validate the model with independently derived ground truth estimates of the actual

vegetation fraction.

8. High-resolution measurement of vegetation distribution

Measurements of the areal vegetation fraction and distribution can be obtained

from high-resolution imagery in which vegetation can be unambiguously identi®ed

by texture, colour and context. If the unmixed vegetation fractions estimated from

the Landsat data are similar to vegetation fractions derived from validated high-

resolution imagery, the agreement will provide independent con®rmation of the

unmixing estimates and give some idea of the detection limit of the TM sensor. The

Landsat-derived vegetation fraction estimates are validated here by comparison with

high-resolution visible colour aerial photography of central Manhattan acquired by

Hammon, Jensen, Wallen and Associates from an altitude of 3788 m using a calib-

rated, forward motion compensated, Zeiss LMK 1015 aerial survey camera. A

1:16 000 colour reproduction of this imagery is published in the National Geographic

Satellite Atlas of the World (National Geographic Society 1998 ). The image was

acquired nine days prior to the Landsat overpass and provides su�cient spatial and

spectral resolution to allow consistent detection of vegetation at scales larger than

Figure 5. Linear mixing model mis®t. RMS mis®t image ( lower right) indicates consistently
good (95% <0.02 RMS) ®t of the three-component mixing model to the observed
re¯ectances. Vegetation and homogeneous low-albedo (e.g. water) pixels have low
RMS mis®t while high-albedo pixels and dropped scan lines have larger mis®ts.
Examples of observed re¯ectance vectors (upper right, thick lines) and the correspond-
ing reconstructed endmember re¯ectance (thin lines) for three diVerent vegetation
fractions show good agreement for all but the lowest vegetation fraction. Density-
shaded scattergrams show larger RMS mis®ts for pixels with higher fractions of high-
albedo or moderate fractions of low-albedo components but show consistently low
mis®t for vegetation fractions greater than 0.2. Symbols correspond to the three
example pro®les above. The colour of the scattergrams is proportional to log10 pixels
as in ®gure 2.
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1 m. The area imaged contains a wide variety of vegetation types including large

grass covered meadows and open and closed canopy temperate forest within Central

Park, numerous smaller parks with varying degrees of canopy closure, and tree-

lined streets and interior courtyards in geometric arrangement. As such, it provides

numerous examples of interspersed built and vegetative landcover in varying fractions
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as well as large areas of complete vegetation with diVerent degrees of internal

shadowing.

Measurements of vegetation fraction are made by simulating the spatial response

of the Landsat sensor to the distribution of vegetation estimated from the higher

resolution aerial photograph. Vegetated pixels are assigned on the basis of visible

green re¯ectance on the assumption that spatially contiguous visible green areas

represent illuminated vegetation. This assumption is incorrect for the rivers and

many of the small water bodies in Central Park because the presence of algae results

in some visible green re¯ectance but these areas do not in¯uence the validation. In

general, however, spatially continuous areas larger than ~2 m with predominantly

visible green re¯ectance represent vegetation. Smaller isolated green areas occur

infrequently and are attenuated by the spatial averaging process described below.

Extensive ®eld validation in central Manhattan further veri®es the correspondence

between spatially contiguous green areas and vegetation.

For the purposes of validation it is necessary to distinguish between fully illumin-

ated vegetation, partially illuminated vegetation, shadow and non-vegetated areas.

The net vegetative re¯ectance is determined both by the amount of boundary

shadowing from adjacent buildings and internal shadowing related to canopy struc-

ture so it is important to discriminate not just between vegetated and non-vegetated

areas but also between diVerent amounts of illuminated vegetation within these

areas. At scales larger than ~2 m, vegetation in New York City consists primarily

of deciduous trees with lesser contributions from evergreen trees and grass, so using

a 2 m resolution pixel should incorporate all signi®cant vegetated areas with a

minimal number of false positives. Although there are signi®cant diVerences in the

green hues and saturations of diVerent vegetation, the assumption is that at 2 m

resolution the darker green areas correspond to illumination diVerences rather than

species composition. This assumption is based on the observation that intracanopy

shadows range through darker green into brighter green in illuminated canopy.

Vegetation measurements are made for 2 m square airphoto pixels by calculating

the ratio of green to the sum of red and blue visible re¯ectance, g/(r+ b), as shown

in ®gure 6. For equal proportions of red, green and blue, this ratio has a value of

0.5 corresponding to grey shades ranging between black and white. Most construction

materials lie somewhere on or near this grey axis so the histogram corresponding

to the ratio image in ®gure 6 shows a peak near 0.5. Partially shadowed vegetation

within tree canopies appears darker green than fully illuminated vegetation such as

grass. Forested areas in Central Park have g/(r+ b) ratios ranging from 0 to ~1.2

with consistent modal values of ~0.8. By applying a clipped linear stretch to the

ratio image and assigning pixels with ratios less than 0.5 a value of zero and assigning

pixels with ratios greater than 0.8 a value of 1 it is possible to generate a nearly

binary image of vegetation presence or absence while allowing partially illuminated

vegetation to contribute to the integrated vegetation response. This admittedly ad hoc

method neglects the fact that illuminated vegetation spans a range of green hues but

the resulting image does show the presence of vegetation remarkably well while

accommodating diVerences in canopy structure and internal shadowing which would

be expected to in¯uence the net re¯ectance of fully vegetated areas.

In order to compare the vegetation fractions estimated from the aerial photograph

with those obtained from the Landsat image it is necessary to account for the

instrument response of the TM sensor. Convolving a 50 mÖ50 m radially symmetric

TM point spread function (Markham 1985 ) with the stretched green ratios described
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Figure 6. High-resolution estimation of vegetation abundance. A colour visible aerial photo-
graph of Central Park and the Upper West Side of Manhattan at 2 m resolution shows
the presence of vegetation by larger ratios of visible green re¯ectance ( lighter areas)
relative to visible red and blue re¯ectance (g/(r+b), left image). Applying a clipped
linear stretch between green ratios of 0.5 and 0.8 maps pixels along the grey axis
(g/(r+b)=0.5 ) and below (g/(r+b)<0.5 ) onto 0 and maps pixels containing healthy,
unshadowed vegetation (e.g. grass g/(r+b)>0.8 ) onto 1 (central image). Pixels with
stretched values between 0 and 1 generally correspond to partially shadowed vegeta-
tion. Convolving the 2 m green ratio vegetation image with the point spread function
of the Landsat 5 TM sensor yields a response weighted estimate of the vegetation
fraction expected for a 28.5 m pixel centered on each 2 m airphoto pixel (right image).
The size of the 50 m IFOV and 28.5 m pixel in the center of the Sheep Meadow
(bottom center) relative to the scale at which the vegetation fraction changes indicates
that a small uncertainty in the precise location of a TM pixel can result in signi®cant
diVerences in the vegetation fraction detected by the sensor. Shading is linear over the
ranges indicated above each image.

above results in a response weighted estimate of the total vegetation fraction within

the Landsat sensor’s ~50 m GIFOV when centred on each of the 2 m airphoto

pixels (®gure 6). The distance-weighted measure of the vegetation fraction that would

be detected by the TM sensor is given by:

SG (x,y)= P
IFOV u , v

R (xÕ u,yÕv) G (x,y)du dv (9)

where R (u,v) is the point spread function of the TM sensor within the GIFOV and

G (x,y) is the stretched green ratio. The resulting image appears smoother at 2 m

resolution than the corresponding Landsat image with 28.5 m pixels (®gure 7) and

shows that the vegetation fraction within the GIFOV of the sensor can vary
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Figure 7. Comparison of measured and unmixed vegetation fractions in central Manhattan.
The vegetation fraction (FV ) image derived from the aerial photograph is shown at 2 m
resolution while the unmixed Landsat TM vegetation fraction image on the left is limited
to 28.5 m spatial resolution. Shading is linear for vegetation fractions between 0 .0 (black)
and 1.0 (white) for both images. Non-zero FV for the Hudson and East rivers in the 2m
image is a result of visible green scattering by algae and suspended particulate matter in
the water. The numbers show locations of validation sites (table 3).

appreciably at scales smaller than a single 28.5 m Landsat pixel. This observation

has profound implications for validation of the endmember fraction estimates.

In order to validate the vegetation fractions unmixed from the Landsat data it



Estimation of urban vegetation abundance 1323

is necessary to compare them with the higher resolution vegetation fractions meas-

ured from the airphoto. To compare the vegetation fraction of a single 28.5 m Landsat

pixel with the measured vegetation distribution in the corresponding 50 mÖ50 m

GIFOV on the airphoto, it is necessary to know the precise location of the GIFOV.

This presents a problem if the response-weighted 2 m vegetation fraction estimate

varies signi®cantly at scales smaller than 28.5 m because it is not generally possible

to determine the location of a Landsat pixel to subpixel precision. As a result, small

(<14 m) uncertainties in the location the GIFOV can result in signi®cant diVerences

in the vegetation fraction measured from the airphoto that is expected to correspond

to the single Landsat pixel.

9. Characteristic scale and fraction estimates

The distance over which the response-weighted vegetation fraction changes is

determined by the characteristic scale of the vegetation distribution and the character-

istic scale of internal shadowing in the tree canopy. One measure of this characteristic

scale can be obtained from the spatial autocorrelation function by the width of its

central peak. This lag distance corresponds to the average distance between maxima

and minima of the vegetation fraction image and provides a quantitative indication

of the characteristic scale of the vegetation distribution. If the distribution is not

isotropic the scale will depend on azimuth. Figure 8 shows radial autocorrelation

pro®les in maximum and minimum gradient directions for 2 m vegetation fraction

measures from ®ve representative areas in central Manhattan. In both the forested

areas of Central Park and the isolated vegetated courtyards, the characteristic scale

of the vegetation is between 5 and 20 m. If the vegetation fraction is spatially

homogenous at scales larger than 50 m, pixel registration is not important but in the

common case of isolated stands of vegetation with dimensions smaller than the 50 m

GIFOV, the response-weighted vegetation fraction is sensitive to small diVerences

in the location of the GIFOV. For this reason it is not generally possible to validate

vegetation fraction estimates for individual Landsat pixels unless they occur within

larger areas of homogeneous vegetation fraction.

10. Validation

It is evident from ®gure 7 that there is a strong correspondence between the

unmixed Landsat vegetation fraction estimates and those derived from the higher

resolution airphoto. Aside from the dropped scan lines, there appears to be good

agreement between the Landsat vegetation fraction image and the airphoto-derived

estimate, even given the ®ner sampling of the airphoto estimate. For most applica-

tions, regional diVerences in vegetation fraction will be of greater interest than

the fraction of an individual pixel. It may therefore be possible to validate the

satellite-derived estimates by comparing the distribution in a well de®ned area to

the distribution derived from the higher resolution airphoto.

If the eVect of pixel registration uncertainty is to redistribute vegetation fraction

among adjacent Landsat pixels then the overall distribution of vegetation fraction

estimates for a region should not generally depend on registration to the extent that

an individual pixel estimate does. If the mixing model was consistently over or

underestimating the actual vegetation fraction, then the distribution of satellite-

derived estimates for a speci®c area would be consistently diVerent from the

distribution of high-resolution estimates. Since individual features with well de®ned

rectangular boundaries are easily recognized in both the satellite and airphoto
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Figure 8. Characteristic scales of urban vegetation. Abrupt breaks in slope of the normalized
autocorrelation functions for ®ve representative areas in Manhattan indicate that the
characteristic scale of vegetation varies from <10 m to 30 m and is generally smaller
than the IFOV of the Landsat TM sensor. The curves represent the maximum gradient
( light) and minimum gradient (dark) radial autocorrelation functions for open (FV =

0.53) and closed (FV =0.7 ) canopy forest in Central Park, courtyard trees in a housing
complex in Harlem (FV =0.25 ), intrablock courtyard trees on the Upper West Side
(FV =0.14 ) and an isolated community garden on the Upper East Side (FV =0.06).
Subpixel registration uncertainty is relatively insigni®cant for homogeneous vegetated
areas but can result in considerable validation error when FV changes at subpixel
scales as with smaller isolated vegetated areas.
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estimates in ®gure 8, it is straightforward to compare distributions for a variety of

easily discernible features and areas. Figure 9 compares vegetation fraction distribu-

tions for two contrasting regions of central Manhattan as well as for the entire

validation region. The distributions from both estimates show good agreement for

vegetation fractions greater than 0.2 but signi®cant disagreement for lower fractions.

The disagreement for fractions less than 0.2 is a result of a larger modal vegetation

fraction for the airphoto distribution than for the satellite distribution. This is at

least partially a result of non-vegetated 2 m pixels with small visible green components

such as the water bodies which have near-zero vegetation fractions in the satellite

estimates but small, non-zero green components in the colour visible airphoto. In

this respect, the non-zero uncertainty level of the high-resolution vegetation fraction

estimate imposes a limitation on the smallest (<0.2) vegetation fraction that can be

validated with the airphoto.

Comparing distributions of measured and unmixed vegetation fractions provides

two complementary measures to assess agreement. While similar mean values is a

necessary but not su�cient condition for equality of distributions, similar dispersions

(e.g. standard deviations) strengthen the assertion that the two distributions are

equivalent. Thirty four validation sites of varying size and vegetation distribution

were chosen within the central Manhattan area (table 3 and ®gure 7). The distribu-

tions of measured and unmixed vegetation fractions are compared for each area in

®gure 10. Vegetation fraction distributions are remarkably consistent between the

two methods as indicated by nearly equal mean values and standard deviations over

nearly the entire range of vegetation fractions. Mean values generally agree to within

F V <0.1 and almost all of the distribution means lie within one standard deviation

of perfect agreement. The uniform scatter about the diagonal suggests that there is

no systematic bias between the estimates measured from the airphoto and the

estimates resulting from inversion of the mixing model. While good agreement would

be expected for very high (>0.9) and very low (<0.1) fractions, it is remarkable that

low to intermediate fractions agree as closely as they do.

The validation exercise described here should be considered a ®rst step rather

than an absolute veri®cation of the spectral mixing model. The ¯aws and biases

inherent in a comparison of a colour visible airphoto with visible/infrared satellite

imagery are obvious and should be given serious consideration. The purpose of this

validation is to demonstrate that two indirect methods of estimating vegetation

fractions in urban environments produce consistent results and that the spectral

unmixing approach warrants further investigation. A validation based on simultan-

eously acquired, high-resolution (2 m) hyperspectral imagery with coincident ®eld

measurements would provide more meaningful results.

11. Discussion

The results of this analysis suggest that inversion of a three-component linear

spectral mixing model for Landsat TM data can provide reasonable quantitative

areal estimates of vegetation fraction over a wide range of abundances in an urban

setting. The validation described above is obviously incomplete in that it relies

entirely on visible re¯ectance in the high-resolution image and does not address

issues of spatial scaling. The inability of the validation method to quantify the

uncertainty of vegetation fraction estimates of less than 0.2 is a signi®cant issue that

must be resolved in future studies. Most parks and green spaces in New York City

have vegetation fractions larger than 0.2 and are well resolved in the unmixed
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Landsat data but accurate estimates of lower vegetation fractions will be important

for many applications. In spite of the acknowledged inability of the validation

method to constrain these low vegetation abundances, the signi®cant increase in

RMS mis®t for unmixed vegetation fractions less than 0.2 suggests that this may be

a real limitation imposed by the satellite data. In areas with little, or poorly illumin-

ated, vegetation the re¯ectance is dominated by the other two endmembers. Since

the low- and high-albedo endmembers are characterized by a higher dimensional

(®gure 2) and possibly nonlinear mixing, the three-component mixing model is

evidently inappropriate for estimation these endmembers. The in¯uence of atmo-

spheric scattering on both spatial and spectral resolution of optical imagery is known

to be signi®cant (Kaufman 1989 ) so the limits implied by these results should not

be assumed to be universal. Atmospheric conditions were far from ideal when this

Landsat image was acquired so it may be possible to obtain smaller mis®ts for low

abundances under better conditions or by applying atmospheric corrections.

Illumination conditions will also limit the accuracy of re¯ectance-based estimates of

vegetation abundance. Small-scale vegetation that is not illuminated during image

acquisition will not be detected by satellites in Sun synchronous orbits yet may

amount to a signi®cant fraction of vegetation present in urban areas. Full considera-

tion of spatial scaling issues is beyond the scope of this study. Nonetheless, the

surprisingly good agreement between two completely independent estimates over the

wide range of vegetation abundances is encouraging and suggests that the method

warrants more detailed investigation.

One of the primary advantages of spectral unmixing compared to most commonly

used vegetation indices is its relatively straightforward physical interpretation. The

apparent ®rst-order linearity of macroscopic spectral mixing suggests a direct corres-

pondence between unmixed vegetation fraction and the area within the GIFOV

containing vegetation cover. In contrast, the commonly used NDVI infers the pres-

ence of vegetation on the basis of the diVerence between visible and VNIR re¯ectance

but does not provide areal estimates of the amount of vegetation. In addition to the

dependence of NDVI on the spectral bandwidth of the particular sensor, the relation-

ship between NDVI and other measures of vegetation abundance (e.g. Leaf Area

Index (LAI)) is notoriously nonlinear (Asrar et al. 1984, 1989 ). This nonlinearity

and platform dependence limits the extent to which NDVI can be used for quantitat-

ive analyses of vegetation. Figure 11 indicates that the NDVI obtained from Landsat

TM is asymptotic above intermediate vegetation fraction in much the same manner

that it saturates with increased values of LAI (Hinzman et al. 1984 ). In contrast to

the unmixed vegetation fraction, the NDVI does not distinguish between open and

closed canopy forest and grass-covered areas in Central Park. The NDVI also

overestimates the abundance of interspersed non-park vegetation relative to more

densely vegetated areas in parks.

It is not surprising that spectral unmixing provides a better estimate of vegetation

Figure 9. Distribution of measured and unmixed vegetation fractions in central Manhattan.
The greatest disparity between the 28.5 m Landsat estimate (bars) and the 2 m airphoto
estimate (curves) distributions is seen at low vegetation fractions with generally good
agreement for fractions larger than 0.2. The presence of small amounts of non-
vegetative visible green re¯ectance in the airphoto is responsible for the displaced
peaks in the distributions around FV =0.1 and results in an uncertainty of ~0.05 in
the FV estimated from the airphoto.



Estimation of urban vegetation abundance 1327



C. Small1328

Table 3. Central Manhattan validation sites.

Measured FV Unmixed FV

Site Mean s N @ 2 m Mean s N @ 28.5 m

1 Sakura Park 0.48 0.15 3700 0.42 0.16 15
2 Columbia University 0.29 0.14 15 543 0.25 0.18 77
3 St. John’s Park 0.34 0.17 15 138 0.26 0.18 70
4 Morningside Park 0.63 0.17 42 705 0.48 0.18 214
5 Courtyard trees 0.45 0.11 641 0.55 0.21 3
6 Courtyard trees 0.35 0.05 377 0.28 0.00 2
7 Community Garden 0.34 0.07 494 0.42 0.06 2
8 Community Garden 0.39 0.09 723 0.23 0.05 6
9 Marcus Garvey Park 0.50 0.15 23 746 0.39 0.16 121

10 Mt. Morris district 0.32 0.10 15 977 0.18 0.12 84
11 M.L.K. Jr. Housing Complex 0.38 0.13 14 659 0.29 0.14 77
12 Ball®eld 0.37 0.12 1606 0.44 0.15 6
13 Grover Washington Housing 0.23 0.09 33 048 0.22 0.14 180

Complex
14 Ball®eld 0.37 0.16 2592 0.36 0.24 15
15 Community garden 0.36 0.08 1404 0.46 0.13 9
16 Cooper Hewitt Museum 0.25 0.11 900 0.34 0.07 4
17 Carl Schurz Park 0.28 0.07 16 131 0.39 0.21 92
18 Amsterdam Housing Complex 0.31 0.16 11 881 0.20 0.15 63
19 American Museum of Natural 0.26 0.16 21 626 0.30 0.21 110

History
20 Park West Village 0.42 0.07 1800 0.33 0.07 9
21 North Quarter, Central Park 0.61 0.16 182 320 0.53 0.19 930
22 South Quarter, Central Park 0.56 0.21 182 450 0.51 0.21 928
23 Sheep Meadow, Central Park 0.99 0.02 5525 0.99 0.03 25
24 The Ballground, Central Park 0.77 0.14 3078 0.70 0.09 15
25 Courtyard trees 0.11 0.05 15 872 0.10 0.08 81
26 Courtyard trees 0.25 0.05 646 0.38 0.01 2
27 Courtyard trees 0.24 0.04 496 0.24 0.01 2
28 Courtyard trees 0.40 0.03 195 0.31 0.00 1
29 Courtyard trees 0.62 0.04 238 0.56 0.00 1
30 Community garden 0.44 0.06 255 0.49 0.00 1
31 Randall’s Island Field 0.97 0.04 1419 0.93 0.03 6
32 Great Hill, Central Park 0.69 0.14 35 424 0.58 0.16 180
33 Cedar Hill, Central Park 0.72 0.09 1242 0.82 0.08 6
34 The Ramble, Central Park 0.62 0.07 3975 0.67 0.12 20

abundance than does the NDVI. Estimation of vegetation fraction from linear

spectral unmixing depends not only on the amplitude of the visible/VNIR `red edge’

but on the overall shape of the spectral re¯ectance pro®le over a larger portion of

the spectrum. Fraction estimates obtained by inverting Landsat TM re¯ectances

provide a more quantitative, physically based measure of vegetation abundance that

may be more easily used to constrain quantities like evapotranspiration and biomass.

For applications that require biophysical measures, such as LAI or biomass, addi-

tional studies must be carried out to calibrate the relationship between the biophysical

measure and the vegetation fraction in the urban setting.

Vegetation estimates that make use of the full spectral re¯ectance vector should

show better agreement with the unmixed vegetation fraction. This is indeed the case

as the Landsat TM Tasseled Cap Greenness (Crist and Ciccone 1984 ) shows a very
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Figure 10. Validation of the linear mixture model. Mean unmixed and measured FV for 34
validation sites in central Manhattan generally agree to within Ô0.1 (grey diagonal)
while the standard deviations (bars) of the distributions of measured and unmixed FV

are generally greater than 0.1. The sizes of the validation sites are indicated by the
shading of the symbols ranging from less than 10 (dark) to ~1000 ( light) TM pixels.
The numbers correspond to locations of validation sites, see table 3 and ®gure 7. The
linear correlation coe�cient of the measured and unmixed fractions is 0.999.

strong (0.98) correlation with the unmixed vegetation fraction for the New York

City subscene discussed here. In spite of the good agreement, the unmixed vegetation

fraction would generally be considered preferable to Tasseled Cap greenness because

it provides a quantitative measure of areal vegetation abundance within mixed pixels

and incorporates scene speci®c components of the observed re¯ectance.

In conclusion, the linear spectral mixing model provides a simple, physically

based measure of vegetation abundance and distribution in urban areas. Both con-

strained and unconstrained inversions of three independently derived ensembles of

endmembers produce nearly identical estimates of FV , suggesting that the inversion

is stable and well posed. Quantitative validation with higher spatial resolution (2 m)

vegetation estimates derived from aerial photography suggests agreement to within

0.1 for vegetation fractions greater than 0.2. The accuracy of estimates for smaller
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Figure 11. Comparison of unmixed vegetation fraction and NDVI for Manhattan and sur-
roundingareas. The image on the lower left indicates that the unmixed FV discriminates
between grass and forest with varying degrees of canopy closure (e.g. Central Park)
while revealing signi®cant intra-urban variations in non-park vegetation abundance.
The NDVI image ( lower right) does not discriminate canopy closure diVerences or
the presence of grass. The density-shaded scattergram (top) shows some correlation
for low values of FV and NDVI but a pronounced saturation of NDVI for FV greater
than ~0.4. As a result, NDVI values greater than ~0.4 carry an uncertainty of at
least 0.4 in vegetation abundance.
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vegetation fraction and the limitations imposed by atmospheric scattering and illu-

mination conditions remain to be determined. A validation based on simultaneously

acquired, high-resolution (2 m) hyperspectral imagery with coincident ®eld measure-

ments would provide more meaningful results. Studies in other urban areas are

necessary to assess the general applicability of the three-component mixing model.

Areas with a greater diversity of landcover types may require more than three

endmembers. In some cases, a larger number of landcover types may cause the

unmixing problem to be underdetermined with Landsat TM data. In spite of these

limitations, the results of this study suggest that spectral unmixing may provide

simple, physically meaningful estimates of urban vegetation abundance and that the

method warrants further investigation.
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