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Abstract

Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar’s model, in which the

maximum rate of carboxylation (Vcmax) is a key control parameter of photosynthetic capacity. Even though Vcmax is

known to vary substantially in space and time in response to environmental controls, it is typically parameterized in

models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially

continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based

on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measure-

ments of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simula-

tions. Here, we show that top-of-canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level,

and present an approach to invert Vcmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and

Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to

solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the mid-

western US using spaced-based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soy-

bean plants (average values of 37 and 101 lmol m�2 s�1, respectively) and show plausible seasonal patterns. The

effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is

tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate

that simulations of GPP and light use efficiency improve significantly when our time-resolved Vcmax estimates from

SIF are used, with R2 for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83.

Our results support the use of space-based SIF data as a proxy for photosynthetic capacity and suggest the potential

for global, time-resolved estimates of Vcmax.
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Introduction

Accurately quantifying global and regional terrestrial

gross primary productivity (GPP) is considered of great

importance due to its key role in the atmosphere-bio-

sphere interactions. For several decades, state-of-the-art

terrestrial biosphere models (TBM) have been used to

quantify the variability of GPP at different temporal

and spatial scales (Dickinson, 1983; Sellers et al., 1997).

Most of these models are based on C3 and C4 photo-

synthesis models developed by Farquhar et al. (1980)

and Collatz et al. (1992) to calculate GPP, which are

particularly sensitive to photosynthetic capacity,

expressed as the maximum carboxylation capacity

(Vcmax). Vcmax is one of the key biochemical parameters

in these photosynthesis models as it controls the carbon

fixation process (Farquhar et al., 1980). There are large

spreads in GPP estimates in space and time across

models (Schaefer et al., 2012) owing to combinations of

model structural error and parameter uncertainties

(Bonan et al., 2011). The latter case most notably relates

to the uncertainty in Vcmax that has a magnitude com-

parable to model structural errors with an offsetting

sign (Bonan et al., 2011). Thus, accurate estimations of

Vcmax are needed to simulate ecosystem GPP because
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potential bias or errors of Vcmax may be exacerbated

when upscaling from leaf to ecosystem level (Hanson

et al., 2004).

Despite its importance, large-scale estimates of Vcmax

remain challenging. As a leaf-level parameter, Vcmax

cannot be measured directly, but only be inferred indi-

rectly from leaf-level measurements of gas exchange

(Wullschleger, 1993). However, making such observa-

tions is labor-intensive and can only focus on measure-

ments at leaf or plant scale. On the other hand, eddy

covariance flux measurements together with meteoro-

logical observations provide another way to make

ecosystem-level estimates of Vcmax through inverse

modeling from CO2 and water fluxes (Wolf et al., 2006;

Wang et al., 2007). However, the parameterization of

Vcmax in a global, spatially continuous and time-

resolved manner remains an unsolved problem.

Several studies have recently shown that Vcmax varies

seasonally (Wilson et al., 2001; Xu & Baldocchi, 2003;

Grassi et al., 2005), and that photoperiod may regulate

seasonal patterns of photosynthetic capacity as shown

by Bauerle et al. (2012), with Vcmax approaching a maxi-

mum around the summer solstice and then declining

synchronously with the photoperiod. However, only a

few terrestrial biosphere models have incorporated

such seasonal variations in photosynthetic capacity

(Medvigy et al., 2009; Oleson et al., 2010). Most of the

models either assume a constant Vcmax over time or

derive it from more easily measurable parameters

(Grassi et al., 2005) due to the limitations of available

spatial and temporal information from relevant proxies.

For example, in the widely used Community Land

Model (CLM) (Oleson et al., 2010) Vcmax is assigned a

specific value for each broadly defined plant functional

type (PFT) and then adjusted with day length. There is

increasing evidence that the assumption of time-invari-

ant photosynthetic parameters can cause significant

errors if large seasonal variability in photosynthetic

capacity occurs (Wilson et al., 2001; Kosugi et al., 2003;

Medvigy et al., 2013). As a consequence, the broad

implications of seasonal variations of Vcmax on the car-

bon cycle are not well understood.

Remote sensing provides a unique opportunity to

parameterize spatially explicit plant physiological

information on local, regional and global scales, and

thus improve simulations of carbon fluxes of terrestrial

ecosystems (Hilker et al., 2008). Many efforts have

been made to estimate the functional attributes of

plant canopies with remote sensing data. Classical

reflectance-based vegetation indices (VI) (Tucker, 1979),

such as Normalized Difference Vegetation Index

(NDVI), have substantially improved our understand-

ing of the global biosphere by providing estimates of

potential photosynthesis from greenness estimates

(Turner et al., 2003; Running et al., 2004). Some VIs like

photochemical reflectance index (PRI) can be success-

fully used to derive light use efficiency (LUE) from

multi-angle satellite data (Hilker et al., 2011). However,

reflectance-based measurements like NDVI are not

directly linked to instantaneous photosynthetic pro-

cesses and cannot alone quantify actual photosynthesis

or its down-regulation due to environmental stresses.

Therefore, the direct estimations of photosynthetic

capacity (Vcmax) through space-based proxies have not

yet been achieved.

As a complement to reflectance-based vegetation

indices, solar-induced fluorescence (SIF) offers new

possibilities to monitor photosynthesis from space

(Baker, 2008). Solar-induced fluorescence is an electro-

magnetic emission in the 650–800 nm range originating

at the core of the photosynthetic machinery. It has been

used in leaf-scale studies of photosynthesis under labo-

ratory conditions for several decades (Baker, 2008) and

has also been shown to be an excellent proxy for GPP at

canopy and ecosystem scales (Frankenberg et al., 2011;

Guanter et al., 2012). Global data of SIF have recently

been retrieved from a series of spaceborne instruments

providing high resolution spectra, such as the GOSAT’s

Fourier Transform Spectrometer (Frankenberg et al.,

2011; Joiner et al., 2011; Guanter et al., 2012), ENVI-

SAT/SCIAMACHY (Joiner et al., 2012) and MetOp-A/

GOME-2 (Joiner et al., 2013). The new global retrievals

of chlorophyll fluorescence enable the establishment of

a direct link between a remotely sensed vegetation

parameter related to photosynthetic capacity and actual

terrestrial photosynthetic activity. In particular, the

empirical study by Guanter et al. (2014) demonstrated

that space-borne SIF is more sensitive to the high pho-

tosynthetic rates of cropland than other remotely

sensed vegetation parameters.

In this work, we have used an integrated photosyn-

thesis-fluorescence model, the Soil-Canopy Observation

of Photochemistry and Energy fluxes (SCOPE) model,

to invert Vcmax from SIF retrievals obtained from

GOME-2 data. Specifically, a key objective of this study

is to investigate the utility of SIF as a proxy for photo-

synthetic capacity and to propose a new approach for

spatially continuous and time-resolved estimation of

Vcmax from space-based SIF measurements.

Materials and methods

SIF retrievals from GOME-2

SIF (in radiance units) was derived from measurements by the

GOME-2 instrument onboard Eumetsat’s MetOp-A platform

launched in October 2006. Details of the retrieval of SIF from

GOME-2 measurements can be found in Joiner et al. (2013).

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3727–3742
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GOME-2 measures in the 240–790 nm spectral range with a

spectral resolution between 0.2 and 0.5 nm and a nominal

footprint of 40 9 80 km2. SIF retrievals are based on the inver-

sion of the top-of-atmosphere measurements in the 715–

758 nm windows overlapping the second peak of the SIF

emission. The retrieval method disentangles the contribution

of atmospheric absorption and scattering, surface reflectance

and fluorescence to the measured top-of-atmosphere radiance

spectra. The retrievals are quality-filtered and binned in 0.5°
latitude-longitude grid boxes (Joiner et al., 2013). GOME-2

data between 2007 and 2011 have been used in this work.

GOME-2 SIF retrievals were aggregated into biweekly periods

to improve the signal-to-noise ratio of the SIF data.

Flux sites and data

We used six crop flux tower sites located in the corn belt in

the midwestern US (Table 1). Sites have been selected on the

basis of landscape homogeneity within the GOME-2 grid and

on data availability in the period of interest (2007–2011). To

determine landscape homogeneity, we used the MODIS prod-

ucts for land cover type (MCD12C1, Friedl et al., 2010), and

Enhance Vegetation Index (EVI, MOD13C2, Huete et al., 2002)

with spatial resolution of 0.05 degree. We selected those sites

for which more than 90% of the GOME-2 pixel area around

the flux tower sites corresponds to croplands and EVI stan-

dard deviation is <0.10 (Table 1).

We obtained the Level 2 flux data products for the 6 US

crop sites from the AmeriFlux website (http://ameriflux.ornl.

gov/). Half-hourly or hourly data of CO2 flux and associated

meteorological variables were extracted. Gap-filling and flux-

partitioning were all processed by the online tool available

at http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/from

Max Planck Institute for Biogeochemistry (MPI-BGC). GPP

was estimated by partitioning the observed net flux into GPP

and ecosystem respiration as described in Reichstein et al.

(2005) and Papale et al. (2006). Hourly absorbed photosyn-

thetic active radiation (APAR) and fraction absorbed photo-

synthetic active radiation (FPAR) data was obtained from the

flux data. Site-level leaf area index (LAI) and canopy height

(hc) measurements were available for each site every 2 weeks

during the growing season.

For each site, SIF values were extracted based on the coordi-

nates of the flux tower, and averaged to biweekly means when

at least 5 SIF retrievals were available within each biweekly

period. To avoid signal contamination from urban areas, we

extracted SIF from nearby homogeneous pixels for those sites

in which urban areas fell inside the GOME-2 pixel. Given that

in homogeneous landscapes flux measurements are usually

representative of a large area, (i.e., US-IB1 is representative of

central Illinois), we assumed that SIF from nearby grid pixels

can represent that at the flux sites. The SIF measurement

error in each biweekly period is estimated as the standard

error of the mean (SE) and a nominal constant error of

0.2 W m�2 lm�1 sr�1 (Joiner et al., 2013). The standard error

alone appear to underestimate the uncertainties as the large

numbers of samples used in the averaging process lead to rel-

atively small standard errors. The constant error is introduced

to account for other error sources such as cloud contamination

and variability. We used the maximum values of the constant

error and the standard error of the mean in each biweekly

period.

The SCOPE model and input parameters

SCOPE is a vertical (1-D) integrated radiative transfer and

energy balance model (van der Tol et al., 2009a). The model

calculates radiation transport in a multilayer canopy as a func-

tion of the solar zenith angle and leaf orientation to simulate

fluorescence in the observation direction. The biochemical

component has recently been updated on Collatz et al. (1991,

1992) for C3 and C4 plants, respectively. It calculates the illu-

mination and net radiation of leaves with respect to their posi-

tion (distance from the top of canopy in units of leaf area) and

orientation (leaf inclination and azimuth angle), and the spec-

tra of reflected and emitted radiation as observed above the

canopy in the specified satellite observation geometry. The

spectral range (0.4–50 lm) includes the visible, near and short-

wave infrared and the thermal domain, with respectively, 1, 1,

100 and 1000 nm resolution. The geometry of the vegetation is

Table 1 Details about the study flux tower sites used in this study*

Site

ID Latitude Longitude

Study

period

Max

(LC) MeanEVI sdEVI Crop rotations References

USBo1 40.0062 �88.2904 2007 98% 0.5562 0.0399 Corn Ryu et al. (2011)

USIB1 41.8593 �88.2227 2007–2008 98% 0.4431 0.0780 Corn at even years and

soybean at odd years

Allison et al. (2004)

USNe1 41.1651 �96.4766 2007–2011 95% 0.5641 0.0627 Continuous corn Suyker et al. (2005)

USNe2 41.1649 �96.4701 2007–2011 95% 0.5608 0.0704 Corn except in 2008 Suyker et al. (2005)

USNe3 41.1797 �96.4397 2007–2011 95% 0.5731 0.0719 Corn at odd years and

soybean at even years

Suyker et al. (2005)

USRo1 44.7143 �93.0898 2007–2010 98% 0.4912 0.0953 Corn at odd year and

soybean at even year

*LC stands for Land Cover class; EVI is the MODIS Enhanced Vegetation Index; max(LC) stands for the percent of dominant vegeta-

tion cover within the GOME-2 pixel; sdEVI for standard deviation of EVI within the GOME-2 pixel.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3727–3742
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treated in a stochastic way with 60 elementary layers, 13 dis-

crete leaf zenith inclination and 36 leaf azimuth classes. The

azimuthal distribution is uniform, while the zenith angle dis-

tribution is provided as input. It describes the sun-canopy-

observer geometry and leaf orientation, so that the different

biophysical processes for sunlit and shaded components can

be considered. Radiative transfer of chlorophyll fluorescence

is calculated using a module similar to the FluorSAIL model

(Miller et al., 2005), but allowing leaf fluorescence to vary

depending on position and orientation in the canopy. A leaf-

level biochemical model calculates GPP, stomatal resistance,

and the energy balance of the leaf together with fluorescence

from the absorbed flux of PAR, canopy temperature, and

ambient vapor, CO2 and O2 concentrations (van der Tol et al.,

2009b). In a recent update, the stomatal conductance model in

SCOPE has been replaced by that of Ball et al. (1991), and the

relationship between photochemical and fluorescence yield is

based on the Genty equation (Genty et al., 1989) and has been

calibrated to observations from leaf-scale fluorescence and gas

exchange experiments with C3 and C4 crops. The model cal-

culates radiation transport in a multilayer canopy as a func-

tion of the solar zenith angle and leaf orientation to simulate

fluorescence in the observation direction. Other significant

updates were: the FLUSPECT module replaced PROSPECT

model, the leaf-level biochemical model for fluorescence was

changed, the within canopy gradient in Vcmax parallels the

extinction of light following Sellers et al. (1992), and the way

of programming was changed by organizing variables in

structures. In this work, we used the recent version of SCOPE

(V. 1.52).

To simulate photosynthesis and fluorescence, SCOPE

requires inputs of meteorological forcing (incoming shortwave

and long-wave radiation, air temperature, humidity, wind

speed, and CO2 concentration) and four kinds of parameters:

(1) vegetation structure parameters, such as canopy height, leaf

size, leaf angle distribution, and LAI; (2) leaf biophysical parame-

ters: leaf chlorophyll content(Cab), dry matter content(Cdm), leaf

equivalent water thickness (Cw), senescent material(Cs), and

leaf structure (N); (3) optical parameters: reflectance of soil in

the visible, near infrared and thermal bands, and vegetation

(thermal) emissivity; (4) plant physiological parameters: stomatal

conductance parameter (m), and maximum carboxylation

capacity, Vcmax of a top leaf standardized to a reference tem-

perature at 25 °C (parameter ‘Vcmo’ in the model).

Meteorological inputs to constrain SCOPE were available

from flux tower measurements. Values or sources of some

other important input parameters required for the SCOPE

model are listed in Table 2. Leaf angle distribution is assumed

to be spherical, which is a good approximation in crops such

as soybean and corn (Table 2) (Lemeur & Blad, 1974; Verhoef

& Bach, 2007). Estimates of LAI and canopy height and their

seasonal variations were derived from the AmeriFlux website.

Based on soil texture classification from site-specific websites,

soil reflectance spectra were derived from ASTER soil spectral

library available at www.speclib.jpl.nasa.gov. Initial soil tem-

peratures were set equal to the corresponding air tempera-

tures.

Vcmax is a key parameter for biochemical modeling of CO2

assimilation in SCOPE. It is a leaf-scale photosynthetic param-

eter, assumed to decrease exponentially with the depth in a

canopy. The parameter Vcmax varies largely with different bio-

mes (Wullschleger, 1993; Sellers et al., 1997), and with day of

the year (M€akel€a et al., 2004). As stated in the objective of this

study, this parameter was chosen to be inverted from SIF (sec-

tion ‘Inversion of Vcmax during the growing season from

SCOPE simulations and SIF data’).

A rough estimation of Cab, Cw, Cdm, and N controlling the

leaf and canopy radiative transfer was obtained from vegeta-

tion indices (VIs). Three VIs were used including NDVI and

EVI (Huete et al., 2002), both extracted from the MOD13C2

product, and the MERIS terrestrial chlorophyll index (MTCI)

(Dash & Curran, 2004). These indices provide indirect infor-

mation on canopy structure and chlorophyll content. Many

studies have shown the feasibility of inverting radiative trans-

fer models using VIs to derive Cab, Cw, Cdm, and N (Jacque-

moud et al., 1996; Combal et al., 2003; Maire et al., 2004). We

Table 2 The input parameters used for SCOPE simulations

Parameters Symbol Units Range Values or sources

Chlorophyll a + b content Cab lg cm�2 10–70 Inverted from VIs

Dry matter content Cdm g cm�2 0.001–0.02 Inverted from VIs

Leaf equivalent water thickness Cw cm 0.001–0.05 Inverted from VIs

Senescent material Cs / / 0.0

Leaf structure N / 1.3–2.0 Inverted from VIs

Leaf angle distribution parameter a LIDFa / / �0.35

Leaf angle distribution parameter b LIDFb / / �0.15

Leaf width w m / 0.1

Ball-Berry stomatal conductance parameter m / / Corn: 4; Soybean: 9

Dark respiration rate at 25 °C as fraction of Vcmax Rd / / 0.015

Cowan’s water use efficiency parameter kc 700

Leaf thermal reflectance q (thermal) / / 0.01

Leaf thermal transmittance s (thermal) / / 0.01

Soil thermal reflectance qs (thermal) / / 0.06

Leaf area index LAI / / Field measurement

Canopy height hc m / Field measurement

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3727–3742
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use a look-up table approach to solve the inversion problem

which requires less computing time and generally performs

well. The leaf reflectance model PROSPECT (Jacquemoud &

Baret, 1990) was used for the inversion, which was also inte-

grated into the SCOPE model. We built a database composed

of hundreds of thousands of simulated leaf reflectance spectra

with the PROSPECT model with a 1 nm resolution in forward

mode. The ranges of the Cab, Cw, Cdm, and N parameters are

chosen from observed data (the LOPEX data set, Hosgood

et al., 1994). The values of each parameter are given in Table 2.

The space of model input variables was sampled by randomly

drawing values by assuming uniform distribution function of

each variable. The generated database contains a total of

280 000 simulations representing a wide range of leaves. A

simple cost function was used to find the solution to the

inverse problem, which minimizes the root mean squared

error (RMSE) between measured and simulated vegetation

indices. Monthly VIs were extracted based on the coordinates

of the flux tower. To avoid an ill-posed problem we used the

median from the best 100 simulations (Combal et al., 2003;

Darvishzadeh et al., 2008). We also checked the use of median

of the best 10, 20, and 40 simulations and found no significant

differences (data not shown). The resulting seasonal variables

of Cab, Cw, Cdm, and N were used as input biophysical parame-

ters for SCOPE at each site.

Inversion of Vcmax during the growing season from
SCOPE simulations and SIF data

A schematic diagram of SIF-based Vcmax retrieval scheme is

given in Fig. 1. With the meteorological and other input

parameters stated above, SCOPE was first run with a LUT of

Vcmax at half-hourly or hourly time steps at the flux tower sites

for the 2007–2011 period. Based on the published literature

(Wullschleger, 1993; Kattge et al., 2009; Lokupitiya et al., 2009),

the ranges of Vcmax were set to 10–70 lmol m�2 s�1 with a

step of 5 lmol m�2 s�1 for corn and 10–200 lmol m�2 s�1

with a step 10 lmol m�2 s�1 for soybean, respectively. We

also tested a smaller step; this showed no significant differ-

ences (data not shown), but had a higher computational cost.

We also used a bigger LUT of Vcmax (up to 320 and

120 lmol m�2 s�1 for soybean and corn, respectively) and

found that the linear relationship became non-linear after

around 200 and 70 lmol m�2 s�1 for soybean and corn,

respectively. This means that Vcmax become non-limiting at

ambient light and simulated chlorophyll fluorescence did not

increase with Vcmax at higher values.

Relationships between Vcmax and canopy fluorescence were

established by running the SCOPE model in forward mode.

The relationships were derived separately for different vegeta-

tive growth periods during the growing season for each year

and each site as shown in the section ‘Relationship between

Vcmax and SIF during the growing season from SCOPE simula-

tions’. To match the biweekly GOME-2 SIF retrievals, we

derived the relationship for each biweekly period during the

growing season. This implies that for each biweekly period, a

unique linear relationship was established for the inverse

retrieval of Vcmax from GOME-2 SIF at each site. Then, using

corresponding GOME-2 SIF biweekly retrievals, seasonal

Vcmax was inverted from the derived relationships for corn

and soybean during the growing season for each year and

each site, respectively. We estimated the uncertainties in each

biweekly period from the measurement error of SIF which

was propagated to Vcmax through the linear models between

Vcmax and SIF.

It should be noted that, due to the coarse resolution of

GOME-2, we applied this inversion approach on a mixture of

corn and soybean canopies assuming similar intrinsic light

use efficiency of fluorescence and a similar intrinsic FPAR for

them. Although FPAR and the canopy light use efficiency of

fluorescence vary with chlorophyll content Cab and leaf area

(Gitelson et al., 2012), the intrinsic light use efficiency of fluo-

rescence at photosystem level is assumed to be equal for both

crops. This means that the two crops produce similar canopy

fluorescence and electron transport rates (ETR) (Weis & Berry,

1987; Genty et al., 1989; Baker, 2008). Actual ETR is similar

(Fig. 2) for soybean and corn despite large differences in their

rates of CO2 assimilation related to the difference in photosyn-

thetic pathways. In Fig. 2, actual ETR for corn and soybean

was calculated according to von Caemmerer & Farquhar

(1981) from CO2 assimilation rate (GPP) estimated from flux

tower measurements for the year 2007 (corn, C4) and 2008

(soybean, C3) at the site of US-Ne3. We compare the daily

cycles of actual ETR for the peak month for corn (July) and

soybean (August), respectively. The mean ratio of ETR corn/

soybean is 1.09 (�0.12) from flux tower measurements. This

comparison demonstrates the similar actual ETR of these two

crops which supports our assumption that the two crops pro-

duce similar canopy fluorescence. Previous work (Edwards &

Baker, 1993) showed that the coupling of fluorescence to ETR

is similar for C3 and C4 species. We conclude that while the

area is a mixture of soybean and corn, we can use the

observed fluorescence properties of the mixture as if it were

all soybean or all corn and solve for the respective values of

Vcmax that are consistent with the observations.

After the Vcmax inversion, we performed time-series simula-

tions of GPP and canopy fluorescence at half-hourly or hourly

steps using SCOPE with parameters stated above (Table 2) for

each site. SCOPE was run with two different configurations to

evaluate the effect of Vcmax parameterizations on simulated

SIF and GPP. The following SCOPE simulations were con-

ducted:

1. Fixed Vcmax: simulations with a constant PFT-specific Vcmax

values: 54 lmol m�2 s�1 for corn, and 100 lmol m�2 s�1

for soybean (Wullschleger, 1993; Kattge et al., 2009;

Fig. 1 Overview flowchart of the Soil-Canopy Observation of

Photosynthesis and Energy simulations and inversions of Vcmax

from solar-induced fluorescence.
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Lokupitiya et al., 2009) which are commonly used in the

TBM community.

2. Vcmax = f(SIF): simulations with Vcmax as a function of SIF

from GOME-2 retrievals. For seasonal Vcmax, we used an

arbitrary value of 10 lmol m�2 s�1 for the non-growing

season periods.

Analysis of SCOPE simulations with different Vcmax

configurations

GOME-2 has a sun-synchronous orbit and samples near

9:30 hours local time. We used data only under mostly

clear-sky condition up to cloud fraction of 40% or less.

From SCOPE model results, we defined midday values of

fluorescence as average values between 09:00 and

12:00 hours. To match the window of inversion of GOME-2

SIF, we determined the model values of fluorescence of

that at the 740 nm wavelengths. We also integrated the

half-hourly or hourly simulations to biweekly to compare

with GOME-2 SIF retrievals. For GPP, we used the average

of 24-hour values of each day for both flux tower estimates

and model results, and then aggregated to biweekly values

for comparisons. The results of GPP generated from the

SCOPE model were similarly aggregated and validated

against flux tower observations at each site. To show the

feasibility of modeling SIF with SCOPE, we compared the

SIF simulations with PFT-fixed Vcmax with GOME-2 SIF ret-

rievals. Due to the spatial mismatch between GOME-2 grid

cell and flux tower footprint, we also compared the SIF

simulations with seasonal variable Vcmax with satellite retri-

evals for corn and soybean to validate our inversion pro-

cess. In addition to SIF and GPP comparisons with

different Vcmax parameterizations, we also compared the

two light use efficiencies: LUEp and LUEf. LUEp represents

photosynthetic light use efficiency, defined as GPP/APAR.

LUEf represents light use efficiency for SIF (i.e., the fraction

of absorbed PAR photons that are re-emitted from the can-

opy as SIF photons); this is also known as fluorescence

quantum yield (Govindjee, 2004), and is obtained by divid-

ing SIF by APAR.

The performance of inversions of Vcmax from SIF was evalu-

ated against the data by different validation statistics includ-

ing the mean absolute error (MAE) and the root mean squared

error (RMSE):

MAE ¼ 1

n

Xn
i¼1

abs(RESiÞ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

RES2i

s

RESi denotes the residual at the ith observations, i.e., OBSi–

SIMi, where OBSi and SIMi are the corresponding observed

and simulated values.

Results

Relationship between Vcmax and SIF during the growing
season from SCOPE simulations

SCOPE simulations have shown strong linear relation-

ships between Vcmax and canopy fluorescence at

biweekly steps during the growing season for corn and

soybean, respectively (Fig. 3). Figure 3 illustrates these

relationships for one example (the site of US-Ne3 at

Mead, Nebraska in 2007 and 2008). This site has the

longest period of data after 2007 and longest rotations

of corn and soybean (Table 1). The top panel is for soy-

bean in 2008, and the bottom is for corn in 2007. The

other years and sites had similar patterns so they are

not shown. Chlorophyll fluorescence increased linearly

with Vcmax within the range of our look-up tables. This

suggests that Vcmax has a significantly positive impact

on simulations of SIF when other parameters, such as

radiation, LAI, and Cab, remain unchanged using ancil-

lary observations.

The slope of the linear relationship between Vcmax

and SIF varies for different biweekly periods (Fig. 3).

The variations were substantial between the mid-grow-

ing season and early or end of the growing season. The

slopes of fits between Vcmax and SIF decreased from

start to the mid-growing season, and then increased to

the end of the growing season (Fig. 3b, d).The reason

for such seasonal shifts may be due to seasonal varia-

tions of APAR. Figure 3a, d show that the slopes of fits

have significantly negative correlation with APAR for

both corn and soybean (Pearson correlation, r > 0.9,

Fig. 2 A comparison of daily cycles of calculated actual electron transport rate for the peak month of corn and soybean with CO2

assimilation rate estimated from flux tower measurements gross primary productivity. The month is July for corn, and August for soy-

bean (see main text for detail).

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3727–3742

3732 Y. ZHANG et al.



P < 0.001). In addition, the slopes are rather high in the

very early or end of the growing season (e.g., June 18

for soybean in Fig. 3a, b), implying that larger increases

in Vcmax would only result in smaller increases in can-

opy SIF and that plant carboxylation rates may not be

Rubisco-limited and Vcmax may be non-limiting during

this period. However, much more work is needed in

the future to investigate this underlying mechanism of

growing season shifts between Vcmax and SIF. In this

study, we focused on the utilization of this linear rela-

tionship to retrieve Vcmax from space measurements of

GOME-2.

Seasonal variability of Vcmax from SIF

With the derived linear relationships shown above, sea-

sonal values of Vcmax were retrieved using the GOME-2

biweekly retrievals for each year and each site. Figure 4

shows the temporal evolution of Vcmax and its uncertain-

ties derived from SIF over the growing season for all the

six sites during 2007–2011. The values of Vcmax for soy-

bean are higher than those for corn and both are in good

agreement with published values (Wullschleger, 1993).

During the growing season, our estimates for Vcmax of

corn at 25 °C varied from 11 to 75 lmol m�2 s�1 with an

average of 37 lmol m�2 s�1 for all the years and sites,

while the soybean Vcmax ranged from 17 to

190 lmol m�2 s�1 with an average 101 lmol m�2 s�1.

The uncertainties of Vcmax due to the uncertainties in SIF

are approximately 4.3 � 1.2 and 10.9 � 4.4 lmol m�2 s�1

for corn and soybean, or approximately 13.2 � 6.5% of

mean Vcmax for corn and 12.3 � 6.3% of mean Vcmax for

soybean for all site-years together (Fig. 4).

As expected, there were strong seasonal variations in

Vcmax (Fig. 4). During the growing season, Vcmax

increased rapidly with time and reached maximum val-

ues at early-mid-growing season for all the years and

sites except the year 2007 at the Mead site (US Ne1-3)

which had peak values in later growing season of late

July or early August. Thereafter, there was a rapid

decline in Vcmax toward the end of the growing season

as leaves started to senesce. Due to different planting

dates and lengths of growing season for corn and soy-

bean, Vcmax generally peaked later for soybean than for

corn (Fig. 4). This suggests that both the timing and

amplitude of the seasonally varying Vcmax was associ-

ated with the onset of leaf growth difference between

the two crops.

0 1 2 3 4 5 6
0

20

40

60

80 Jun 04 Jun 18
Jul 02

Jul 16Jul 30Aug 13Aug 27

SIF−SCOPE (W m−2 µm−1 sr−1)

V
cm

ax
 (

µm
ol

 m
−

2 s−
1 )

Corn

100 150 200 250 300
50

100

150

200

250

Days of year

S
lo

pe
 o

f l
in

ea
r 

fit
s

US−Ne3 Soybean

r = −0.937
P < 0.001

200

300

400

500

600

A
P

A
R

 (µ
m

ol
 m

−
2 s−

1 )

Slope
APAR

100 150 200 250 300
10

20

30

40

50

Days of year
S

lo
pe

 o
f l

in
ea

r 
fit

s

US−Ne3 Corn

r = −0.958
P < 0.001

100

200

300

400

500

A
P

A
R

 (µ
m

ol
 m

−
2 s−

1 )

Slope
APAR

0 1 2 3 4 5 6
0

50

100

150

200

250

Jun 18 Jul 02 Jul 16Jul 30Aug 13Aug 27Sep 10

SIF−SCOPE (W m−2 µm−1 sr−1)

V
cm

ax
 (

µm
ol

 m
−

2 s−
1 )

Soybean

(b)

(c) (d)

(a)

Fig. 3 Relationship between biweekly Vcmax and solar-induced fluorescence from Soil-Canopy Observation of Photosynthesis and

Energy simulations for soybean (a) and corn (c) years at the US Ne3 site. (b) and (d) are the slopes of the fits in (a) and (c) and the sea-

sonal absorbed photosynthetic active radiation (APAR) during the growing season. Pearson product–moment correlations are shown

between the slopes and APAR in (b) and (d). Each linear relationship represents a biweekly period during the growing season, e.g., the

first left most line in (a) is for June 18–July 1 of 2008.
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SIF simulations with different Vcmax parameterizations

Here, for the first time, we evaluate SCOPE SIF simula-

tions with GOME-2 space retrievals. To show that the

inversion scheme is working properly, we compared the

SIF simulations with constant and seasonally varying

Vcmax parameterizations. As an example, Fig. 5 demon-

strates the seasonal impact of using different Vcmax

parameterizations on modeled canopy fluorescence for

the crop flux site of US Ne3 at Mead, Nebraska.

Figure 5a compares the biweekly time-series of GOME-

2 SIF retrievals with its standard error to SCOPE simula-

tions using a fixed Vcmax of 54 and 100 lmol m�2 s�1 for

corn and soybean, respectively, and Vcmax derived from

biweekly GOME-2 SIF time-series record. Figure 5b, c

show the same data as scatter plots. Figure 6 present this

comparison between observed and modeled SIF for all

site-years together. Table 3 lists the R2 values and bias

error between observations and model predictions for

each of the sites. Generally, there are good agreements

between model predictions and measurements for both

simulations and we also observe an improvement in the

SIF simulations when seasonal Vcmax is used. Figure 5

also shows that there are similar canopy SIF for corn and

soybean from SCOPE simulations. The similar SIF simu-

lations from SCOPE again prove our assumption of simi-

lar fluorescence yield for both crops even though they

have different photosynthesis rate (or GPP, Gitelson

et al., 2012). In these simulations, the results from

seasonally varying Vcmax generally tracked the observa-

tions a little more closely, especially for soybean. The use

of seasonal Vcmax reduces bias error (MAE from 0.59 to

0.36 lmol m�2 s�1, Fig. 6) and the correlation coeffi-

cient (R2) increases from 0.80 to 0.88. However, some

high values of SIF were not captured by either type of

simulation (Fig. 5). In addition, the model was unable to

simulate the earlier onset (late May and early June) of

crop growth for soybean in years 2008 and 2010 (Fig. 5a).

This is possibly due to the spatial mismatch between

GOME-2 and the flux tower footprint. Obviously,

GOME-2 pixels contain more than one crop, resulting in

what is often referred to as mixed pixels. There was a

much greater portion of corn crop area within the

GOME-2 pixels than soybean area, and soybean is usu-

ally planted later (USDA, 2010; USDA National Agricul-

tural Statistics Service CroplandData Layer, 2013).

GPP simulations with different Vcmax parameterizations

We compare flux tower-based GPP estimates with

SCOPE simulations. We first present the comparisons

on an hourly time scale for an example site. Figure 7

compares predicted and observed hourly values of

GPP for the US Ne3 site during the period of 2007–
2011. Generally, hourly GPP is substantially overesti-

mated for corn and underestimated for soybean when a

constant Vcmax is assumed (Fig. 7a). Clearly, the use of

Vcmax as a function of biweekly GOME-2 SIF improved

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 4 Seasonal variability of Vcmax at 25 °C inverted from GOME-2 solar-induced fluorescence retrievals for six crop flux sites at

biweekly step during 2007–2011. (a)USBo1, (b)USIB1,(c)USRo1,(d)USNe1,(e)USNe2, and (f)USNe3. See Table 1 for site information.

Greyed areas indicate estimated uncertainties as discussed in the text.
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hourly GPP modeling, which is evidenced by an

increase of the correlation coefficient (R2) from 0.82 to

0.92 and a reduction of bias error (MAE) from 6.1 to

4.0 lmol m�2 s�1 (Fig. 7b). The simulations underesti-

mate high GPP values for soybean, but the underesti-

mation is substantially reduced with seasonal Vcmax

(Fig. 7b). The results for other sites show similar

improvements in GPP modeling with seasonally vary-

ing Vcmax from SIF.

On a seasonal time scale, the use of seasonal variable

Vcmax also improves the correlation between observed

and modeled values for biweekly GPP and reduces the

bias, especially for soybean. The overall performance of

the seasonal impact of using different Vcmax parameter-

izations on modeled bi-weekly GPP for all site-years is

presented in Figs 8 and 9; Table 3. The time-series

of modeled and observed GPP shows that the

SCOPE model can track the seasonal variability of
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Fig. 5 Site US-Ne3, (a) Seasonal comparison of solar-induced fluorescence (SIF) from GOME-2 retrievals against Soil-Canopy Observa-
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Vcmax. Soybean is in 2008 and 2010; corn for other years. (b) Scatter plots of SIF between GOME-2 retrievals and SCOPE simulations

with constant Vcmax. (c) Scatter plots of SIF between GOME-2 retrievals and SCOPE simulations with seasonal variable Vcmax inverted

from GOME-2 retrievals.
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Fig. 6 Scatter plots of GOME-2 solar-induced fluorescence retrievals against Soil-Canopy Observation of Photosynthesis and Energy

simulations at biweekly step using (a) constant Vcmax and (b) seasonal variable Vcmax for all site-years at biweekly step during 2007–
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photosynthesis fairly well with both constant and sea-

sonally varying Vcmax (Fig. 8). However, SCOPE gener-

ally overestimates GPP for corn during the mid-late

growing season, and underestimates GPP for soybean

during the mid-growing season when a fixed Vcmax is

used (Fig. 8). When the seasonality of Vcmax inverted

from SIF is incorporated into the model, SCOPE more

accurately simulates the seasonal variations of GPP

(Fig. 8), with R2 values >0.94 for all the sites (Table 3),

and a reduction of bias by more than 40% for all sites

together (Fig. 9). For example, the mid-late growing

season GPP is better captured for corn for all the site-

years (Fig. 8). The regression of observed vs. modeled

GPP is closer to the 1 : 1 line with seasonally varying

Vcmax with slopes between 0.95 and 1.08 for corn and

soybean, respectively (Fig. 9).

Light use efficiency of photosynthesis (LUEp) and
fluorescence yield (LUEf) with different Vcmax

parameterizations

To further evaluate the performance of our derived

seasonally varying Vcmax from GOME-2 data and also

to evaluate its effect on photosynthesis modeling, we

compare flux tower data with simulations of the can-

opy-level light use efficiency of photosynthesis (LUEp)

and fluorescence yield (LUEf) before and after imple-

menting retrieved seasonal Vcmax. Figures 10 and 11

show the comparisons of simulated LUEp and LUEf

from constant and seasonal Vcmax for all site-years

together, while Table 3 lists some statistical information

(R2, RMSE and MAE) for corn and soybean for each of

the sites. It should be noted that we only calculate

daytime LUEp and LUEf during the growing season

because of unrealistic values during night and the non-

growing season. We observe that modeling Vcmax as a

function of SIF improved the simulations of LUEp and

LUEf as compared with constant Vcmax parameteriza-

tions, providing a closer match with observations

during the growing season (Figs 10 and 11; Table 3).

The correlation coefficient (R2) increases from 0.44 to

0.83, and the bias (MAE) is reduced from 0.75 to 0.40

for LUEp for all sites together (Fig. 11). For LUEf, the

improvement is much larger with an increase of R2

from 0.1 to 0.73, and a reduction of bias error (MAE)

from 0.18 to 0.10 (Fig. 10). With constant Vcmax, there

Table 3 Model-observed data comparisons statistics for biweekly SIF, GPP, LUEp and LUEf at the six sites*

Statistic

Fixed Vcmax Vcmax = f(SIF)

USBo1 USIB1 USNe1 USNe2 USNe3 USRo1 USBo1 USIB1 USNe1 USNe2 USNe3 USRo1

SIF-C3 R2 0.555 0.873 0.810 0.699 0.804 0.927 0.882 0.836

RMSE 1.174 0.499 0.537 0.737 0.779 0.378 0.422 0.544

MAE 0.698 0.378 0.400 0.500 0.479 0.277 0.291 0.379

SIF-C4 R2 0.815 0.827 0.856 0.903 0.925 0.954 0.946 0.911 0.949 0.957 0.961 0.957

RMSE 0.808 0.590 0.560 0.438 0.400 0.315 0.441 0.424 0.333 0.291 0.288 0.305

MAE 0.730 0.416 0.368 0.308 0.209 0.226 0.287 0.300 0.241 0.209 0.208 0.221

GPP-C3 R2 0.712 0.869 0.945 0.898 0.980 0.936 0.964 0.978

RMSE 2.415 1.410 1.005 1.597 0.640 0.990 0.813 0.739

MAE 2.031 0.723 0.620 0.689 0.372 0.500 0.355 0.419

GPP-C4 R2 0.752 0.976 0.865 0.960 0.945 0.969 0.904 0.950 0.953 0.986 0.977 0.987

RMSE 2.788 1.005 2.353 1.518 1.789 1.282 1.732 1.447 1.387 0.890 1.169 0.826

MAE 2.051 0.675 1.322 0.904 1.020 0.788 1.172 0.795 0.798 0.495 0.603 0.447

LUEp-C3 R2 0.591 0.552 0.421 0.485 0.619 0.836 0.809 0.647

RMSE 0.704 0.381 0.612 0.776 0.635 0.396 0.351 0.642

MAE 0.457 0.305 0.464 0.585 0.486 0.295 0.252 0.499

LUEp-C4 R2 0.294 0.373 0.236 0.515 0.694 0.790 0.939 0.543 0.761 0.773 0.939 0.963

RMSE 0.578 0.988 1.213 0.625 0.743 0.789 0.170 0.444 0.678 0.427 0.332 0.332

MAE 0.424 0.660 0.924 0.471 0.555 0.583 0.128 0.727 0.474 0.283 0.258 0.241

LUEf-C3 R2 0.426 0.570 0.408 0.000 0.686 0.932 0.779 0.687

RMSE 0.253 0.148 0.347 0.284 0.187 0.062 0.212 0.235

MAE 0.181 0.112 0.234 0.200 0.114 0.044 0.148 0.130

LUEf-C3 R2 0.465 0.560 0.151 0.089 0.003 0.073 0.852 0.287 0.728 0.723 0.834 0.854

RMSE 0.165 0.104 0.237 0.173 0.242 0.264 0.087 0.087 0.134 0.096 0.099 0.105

MAE 0.115 0.071 0.162 0.126 0.063 0.201 0.058 0.058 0.089 0.063 0.053 0.079

*LUEp represent photosynthesis light use efficiency; LUEf represent light use efficiency for SIF which is fluorescence yield (i.e. the

fraction of absorbed PAR photons that are re-emitted from the canopy as SIF photons); RMSE, root mean squared error; MAE, mean

absolute error.
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are poor correlations between simulated and observed

LUEp and LUEf and disagreement with the 1 : 1 line.

After optimization with seasonally varying Vcmax

derived from SIF, the regression of observed vs. mod-

eled LUEp and LUEf is closer to the 1 : 1 line (slopes of

0.93 and 1.28 for LUEp and LUEf, respectively, in

Figs 10 and 11). At site level, the mean bias error

(MAE) is reduced from 0.54 to 0.36 and 0.15 to 0.08

LUEp and LUEf, respectively, leading to a decrease in

bias of 40% on average (Table 3).
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Fig. 8 Seasonal variations of flux tower estimated gross primary productivity and Soil-Canopy Observation of Photosynthesis and

Energy simulations with constant Vcmax and seasonally varying Vcmax at biweekly time steps for the six flux sites. (a)USBo1, (b)USIB1,

(c)USRo1,(d)USNe1,(e)USNe2, and (f)USNe3. See Table 1 for site information.
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Fig. 7 Scatter plots of flux tower estimated hourly gross primary productivity against Soil-Canopy Observation of Photosynthesis and

Energy simulations with (a) fixed Vcmax and (b) seasonal variable Vcmax during 2007–2011 at USNe3 site.
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Discussion

Previous studies showed that chlorophyll fluorescence

is a powerful technique to quantify photosynthetic effi-

ciency and monitor vegetation dynamics (Flexas et al.,

2002; Meroni et al., 2008; Damm et al., 2010). With

recent retrievals of SIF (Joiner et al., 2013), Guanter et al.

(2014) first showed the feasibility to monitor crop

photosynthesis at regional to global scale, and capture

the high photosynthetic rate of the corn belt of mid-

western US. Following that work, our study shows that

we are also able to derive sensible space-based esti-

mates of seasonal Vcmax by combining space-based ret-

rievals of SIF and a photochemistry and radiative

transfer model (SCOPE).

Comparison of obtained Vcmax in corn and soybean with
literature values

In this study, the estimates of Vcmax (Fig. 3) are within

the range of those reported in the literature for corn

and soybean except for several of the higher values

(Wullschleger, 1993; Kattge & Knorr, 2007; Kattge et al.,

2009; Houborg et al., 2013). Houborg et al. (2013),

for example, reported Vcmax at 25 °C of 11 to 48 lmol

m�2 s�1 for corn during the growing season derived

from leaf chlorophyll (Chl) content. For comparison,

most of our estimations range from 11 to 64 lmol

m�2 s�1 for Vcmax of corn. For soybean, our retrieved

values of Vcmax are between 95 and 134 lmol m�2 s�1

during the mid-growing season, which is in good
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Fig. 10 Scatter plots of flux tower estimated fluorescence yield (LUEf) against Soil-Canopy Observation of Photosynthesis and Energy

simulations at a biweekly time step during growing season with (a) constant Vcmax and (b) seasonal variable Vcmax for all site-years dur-

ing 2007–2011.
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agreement with field estimates from gas exchange mea-

surements during mid-August near Champaign, IL,

USA (Ainsworth et al., 2014). They reported values of

Vcmax at 25 °C ranging from 76 to 136 lmol m�2 s�1 for

soybean. On the other hand, we estimate slightly higher

values of Vcmax for soybean during the early growing

season, varying between 160 and 190 lmol m�2 s�1.

This larger Vcmax during the early growing season may

be due to two combined reasons: (1) larger slopes

between Vcmax and SIF due to this period being not

Rubisco-limited (Fig. 3); and (2) spatial mismatch

between GOME-2 pixel and flux tower footprint. This

suggests the limitations that are primarily due to the

current data availability of SIF. We assumed relatively

homogeneous landscape for GOME-2 pixel, but there is

obviously spatial variability within such a footprint,

especially the mosaic of soybean and corn. In addition,

there are different seasonal patterns of soybean and

corn. As shown in Fig. 5, an earlier onset of the grow-

ing season was observed for soybean year through SIF

from satellite while measurements were later from the

flux tower. Hence, the assumption that it can be repre-

sented equally well for soybean and corn is tenuous in

the early seasons (early to mid-June). The future retri-

evals of SIF with higher spatial resolution from the Sen-

tinel-5 Precursor (TROPOMI, Veefkind et al., 2012)

would address this issue.

Effects of seasonal variability in Vcmax

Including the seasonal patterns of Vcmax in photosyn-

thesis simulations significantly improved the agree-

ment between independently modeled and measured

estimates of GPP over the growing season for croplands

(Figs 7–9). This result is in good agreement with other

studies that found better modeling of CO2 exchange

between terrestrial ecosystems and the atmosphere by

considering seasonal variations of Vcmax (Wilson et al.,

2001; Houborg et al., 2013; Medvigy et al., 2013). In

addition, the substantial improvements between mod-

eled and flux tower derived estimates of LUEp and

LUEf further increase our confidence that space retri-

evals of SIF can be used to invert seasonally varying

Vcmax and improve modeling of GPP and LUE (Figs 10

and 11). Assuming a constant value of Vcmax in the

simulations with SCOPE over the growing season

results in overestimating GPP for corn but underesti-

mating that for soybean. Yet, this approach of parame-

terizing Vcmax with constant values is widely

implemented in most of terrestrial biosphere models

due to the difficulties of measuring in the field and to

prescribe values on a global scale (Kattge et al., 2009).

This study addresses the need to consider seasonal var-

iability in photosynthetic capacity for croplands and

provides an approach to derive sensible space-based

estimates of seasonal Vcmax with space-based measure-

ments of SIF.

Implications for biophysical models

Our results suggest that measurements of SIF provide a

new indicator of the magnitude and seasonality in

Vcmax. Recently, spectroscopic data has been used to

estimate various leaf or canopy-level biophysical

parameters (Gillon et al., 1999; Asner & Martin, 2008).

However, there are only a few studies that have related
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spectral data to photosynthetic capacity parameters

(Vcmax) in the literature (Doughty et al., 2011; Serbin

et al., 2011; Ainsworth et al., 2014). In these studies,

Vcmax values were estimated for short-term periods

using full-spectrum leaf optical properties from ground

measurements. To our knowledge, there is only one

other study that explored this potential relationship

with satellite data (Houborg et al., 2013), in which they

quantified the seasonal variability in Vcmax over a corn

growing season based on Landsat-derived leaf chloro-

phyll estimates and a generalized indirect Vcmax – Chl

relationship for leaf nitrogen. On an operational basis,

however, the required hyperspectral instruments are

not currently available from space and satellite retri-

evals of Chl remain complex and uncertain. In this case,

chlorophyll fluorescence, which has a much more direct

link to vegetation photosynthetic activity, can provide

an alternative way to more accurately assess key bio-

physical properties of vegetation compared to tradi-

tional reflectance-based measures.

The mechanistic relationship between SIF and Vcmax,

shown in this study, offers the advantage of directly

integrating SIF information into TBMs that rely on the

C3 and C4 photosynthesis model developed by Farqu-

har et al. (1980) and Collatz et al. (1992). To more accu-

rately quantify global and regional terrestrial GPP,

information is needed on the seasonal variability of

Vcmax (Wilson et al., 2001; Medvigy et al., 2013). As

Bonan et al. (2011) has pointed out, it is important to

parameterize Vcmax for simulating GPP because model

structural errors can be partially compensated for by

adjusting this parameter. In many modeling exercises,

however, Vcmax was assumed to be constant for each

broadly defined PFT over time. It has long been sought

to estimate the photosynthetic capacity of plant cano-

pies from remote sensing data in space and time. The

highly correlated relationship between Vcmax and can-

opy-level chlorophyll fluorescence can be used to

derive seasonal Vcmax from space retrievals of SIF pro-

vided that other parameters, such as LAI and Cab, are

available from ancillary observations.

It should be pointed out that other parameters

especially LAI may have similar effects to Vcmax on

the simulations of chlorophyll fluorescence. System-

atic errors in LAI may lead to compensating errors

in the inversion of Vcmax. In this study we have used

in situ field measurements of LAI from the sites and

hence this should not be important problem in our

inversion of Vcmax. However, some sensitivity analy-

ses need to be done in the future especially if LAI

data is used from ancillary satellite-based measure-

ments. Another point should be noted that, SCOPE

is based on Collatz et al. (1991, 1992) for photosyn-

thesis which assumes that the proximal cause of the

decrease in photosynthetic capacity at elevated leaf

temperature is incomplete activation of Rubisco. In

the original Farquhar et al. model, this control is

attributed to potential rate of electron transport

(Jmax). This parameter is used in several land surface

models (e.g., CLM) and is generally assumed to be a

constant ratio with Vcmax across species (Wullschleg-

er, 1993). Variations of this ratio have been found for

different species (Medlyn et al., 2002; Onoda et al.,

2005). However, we don’t anticipate that this differ-

ence in model structure would have any significant

effect on the inversions for Vcmax reported here.

To conclude, we demonstrated that the magnitude

and seasonal variability of Vcmax can be estimated with

chlorophyll fluorescence, and that the consideration of

seasonally varying Vcmax improves the modeling of

GPP and LUE for both C3 and C4 crops. We evaluated

the performance of our methods using six AmeriFlux

eddy covariance flux sites in the midwestern US. A

high correlation (linear relationship) was found

between Vcmax and SIF using SCOPE simulations for

different vegetative growth stages during the growing

season when other parameters in the model are speci-

fied using ancillary data. The resulting relationships

were utilized to determine the magnitude and seasonal

variability of Vcmax from GOME-2 SIF retrievals at

biweekly time steps. This study indicates that the use of

seasonally varied Vcmax derived from SIF, rather than a

fixed PFT-specific value, significantly improves the

agreement of simulated GPP and LUE with the

observed tower fluxes.

Our approach provides the basis for regional or even

global estimation of key photosynthetic capacity

parameters like Vcmax from the state-of-the-art remote

sensing instruments. These estimates may represent a

unique data for the constraint and benchmarking of

TBMs in which global vegetation is typically classified

by biome, and LUTs are used to estimate model param-

eters for each biome (Sellers et al., 1997), especially for

the key parameter of Vcmax. There are now two GOME-

2 instruments on the MetOp-A and MetOp-B (launched

in 2006 and 2013, respectively), and the MetOp-A is

now providing data at a higher spatial resolution

(40 9 40 km2). This will lead to improved fluorescence

data sets for further studies. In addition, several future

instruments, such as the Orbiting Carbon Observatory-

2 (OCO-2) (Frankenberg et al., 2014) and the Sentinel-5

Precursor (TROPOMI, Veefkind et al., 2012) satellite

missions to be launched in 2014–2016 will provide data

with an up to 100-time improvement in spatial resolu-

tion and total number of observations. This will espe-

cially benefit the applications over the fragmented

agricultural areas such as in Europe and China, and

improve the application of our approach. With these

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 3727–3742
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high spectral and spatial resolution instruments, we

could have not only the ability to derive the seasonal

variability of leaf photosynthetic capacity, but also the

potential to map Vcmax on a broad scale over frag-

mented areas. This would provide large-scale observa-

tions of Vcmax that could further facilitate the

parameterization improvements for the dynamic global

vegetation models.
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