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Estimation of velocity uncertainties from GPS time series:

Examples from the analysis of the South African TrigNet network

M. Hackl,1 R. Malservisi,1,2 U. Hugentobler,3 and R. Wonnacott4

Received 5 December 2010; revised 17 August 2011; accepted 18 August 2011; published 10 November 2011.

[1] We present a method to derive velocity uncertainties from GPS position time series
that are affected by time‐correlated noise. This method is based on the Allan variance,
which is widely used in the estimation of oscillator stability and requires neither spectral
analysis nor maximum likelihood estimation (MLE). The Allan variance of the rate
(AVR) is calculated in the time domain and hence is not too sensitive to gaps in the time
series. We derived analytical expressions of the AVR for different kinds of noises like
power law noise, white noise, flicker noise, and random walk and found an expression for
the variance produced by an annual signal. These functional relations form the basis of error
models that have to be fitted to the AVR in order to estimate the velocity uncertainty.
Finally, we applied the method to the South Africa GPS network TrigNet. Most time series
show noise characteristics that can be modeled by a power law noise plus an annual
signal. The method is computationally very cheap, and the results are in good agreement
with the ones obtained by methods based on MLE.

Citation: Hackl, M., R. Malservisi, U. Hugentobler, and R. Wonnacott (2011), Estimation of velocity uncertainties from GPS

time series: Examples from the analysis of the South African TrigNet network, J. Geophys. Res., 116, B11404,

doi:10.1029/2010JB008142.

1. Introduction

[2] Satellite‐based geodetic techniques provide an out-
standing tool to measure crustal motions and deforma-
tions. Geodetically derived velocities of surface points
provide necessary constraints to study tectonic plate motion,
strain localization of active geological features, and to esti-
mate rheological properties of the crust and the underlying
asthenosphere [e.g., Dixon, 1991]. In general, geodetic
velocities and their uncertainties are indirectly derived
through repeated position measurements of given points.
[3] The measured relative position x(t) of the point is the

result of antenna motion and noise "(t). Any contribution to
the measured antenna position is either modeled or consid-
ered to be noise. In geodynamics and tectonics the constant
long‐term (interseismic) rate is usually of major interest.
Unfortunately, a constant long‐term signal is not the only
contribution to the antenna motion. Sudden (e.g., offset due
to antenna changes or coseismic displacement), periodic
(e.g., annual or semiannual seasonal deformations), or tran-

sient (e.g., postseismic deformation) signals are typically
present in position time series. Some of the deviations from
the long‐term linear motion due to these contributions can
be modeled and subtracted in order to improve the mea-
sured velocity of the observed point [Segall, 2010]. Still,
the “corrected” time series remain affected by multiple
sources of noise that cannot be completely removed from the
signal (e.g., atmospheric delays, clock instability, monument
motion, orbit error, etc.).
[4] Johnson and Agnew [1995], Zhang et al. [1997], Mao

et al. [1999], and Williams et al. [2004] showed that GPS
velocity uncertainties are underestimated by factors from 2 to
11 if only white noise (not time correlated noise) is consid-
ered. This suggests that time‐correlated noise has to be taken
into account in the calculation of velocity uncertainties.
[5] Mao et al. [1999] presented an error model that

includes colored (time correlated) noise. Their empirical
formula is based on spectral analysis and maximum likeli-
hood estimation (MLE) of 23 globally distributed GPS sta-
tions with three years of data and takes into account flicker
noise and random walk.
[6] Williams [2003a] also presented an empirical method

to derive velocity uncertainties, followed by the presentation
of CATS, a software package for the analysis of time series
[Williams, 2008]. CATS can be used to perform a thorough
time series analysis based on MLE for a variety of error
models. A full analysis of the colored noise included in the
time series through MLE is computationally expensive
(depending on the error model up to O(n3), for a time series
of length n). Bos et al. [2008] presented an MLE approach
that reduced the number of computations significantly (O(n2)
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for a power law plus white noise error model), if there are no
gaps in the time series. However, many published GPS
velocity uncertainties are still computed assuming pure white
noise or scaling the white noise by some empirical value
derived from the repeatability of the time series [e.g., Dixon
et al., 2000]. Only in a few cases is time‐correlated noise
included, in general through the use of some empirical for-
mula that does not require a full analysis of the time series
[e.g., Mao et al., 1999]. Still these methods can lead to both
large overestimation and underestimation of the correct
velocity uncertainty.
[7] There has been some debate on the choice of the error

model and whether a random walk signal, mainly due to
monument motion, is present in geodetic data or not. Con-
tinuous strainmeter and tiltmeter measurements at the Ida
and Cecil Green Piñon Flat Observatory show a power law
process close to random walk [Wyatt, 1982, 1989]. This is in
agreement with geodimeter and trilateration measurements
[Langbein et al., 1987; Langbein and Johnson, 1997].
However, the analyses of Zhang et al. [1997] and Mao et al.
[1999] suggest that flicker noise is the prevalent signal in GPS
time series and random walk plays a secondary role. A
comprehensive analysis of Southern California and South
Nevada GPS sites by Langbein [2004, 2008] using MLE
reveals that the time series are characterized by either flicker
noise, random walk, general power law noise, or a combi-
nation of them and only in a few cases are these noises more
complex including band‐pass‐filtered noise, first‐order
Gauss‐Markov processes, or broadband seasonal noise.
Recent studies by Hill et al. [2009] and King and Williams
[2009] on short baselines, however, suggest that monument
stability is not a dominant error source. Santamaría‐Gómez
et al. [2011] favor an error model consisting of white noise
plus a power law noise, which is close to flicker noise for
many sites. This is also in agreement with Hill et al. [2009]
and King and Williams [2009].
[8] However, it is very difficult to distinguish between

time‐correlated noise and velocity variations from transient
phenomena (like post seismic deformation). For example
Hackl et al. [2009] showed that the long‐term interseismic
velocity field in Southern California (active plate boundary)
can be affected by seismic cycle effects, which could
explain a trend toward higher time correlation nearby active
tectonic features.
[9] Here we present a method to estimate GPS velocity

uncertainties. In contrast to the different scaling methods, our
method accounts for site characteristics but does not require
spectral analysis nor MLE. It is based on the Allan Variance,
an analysis often used as a measurement of frequency sta-
bility in clocks and oscillators [Allan, 1966; Barnes, 1966;
Rutman, 1978] and it is applied to the slope of the time series.
As the calculation is done in the time domain, the method
is not too sensitive to gaps in the data and it is computa-
tionally cheap. The method provides the variance of the
rate as a function of the considered time span (up to ∼1/4 of
the total time series length) without any assumption of the
noise characteristics. The method is an extension of the one
suggested by Caporali [2003] to estimate the stability of
time series as a function of time. It is tested with synthetic
time series and finally applied to the South Africa GPS

network TrigNet, a network almost not affected by tectonic
deformation.

2. Time‐Correlated Variance

[10] Like many geophysical phenomena, noise in GPS
position time series can be described as a power law process
[Mandelbrot, 1983; Agnew, 1992]. This one‐dimensional
stochastic process "(t) is characterized by a power spectrum
of the form

Px fð Þ ¼ P0

f

f0

� �

�

; ð1Þ

where f is the temporal frequency, P0 and f0 are normalizing
constants, and n is the spectral index [Mandelbrot and Van
Ness, 1968]. White noise corresponds to n = 0, flicker noise
to n = −1, random walk to n = −2. There are many ways to
deal with time‐correlated noise mostly based on spectral
analyses [e.g., Lomb, 1976; Scargle, 1982] or on MLE [e.g.,
Williams, 2008; Bos et al., 2008]. Another way to deal with
time‐correlated noise was developed to calculate clock
uncertainties and is called Allan variance or two‐sample
variance [Allan, 1966; Barnes, 1966; Rutman, 1978]. It is
defined as one half of the average of the squared differences
between consecutive readings of the observable sampled
over a certain interval t:

�
2
�ð Þ ¼

1

2 n� 1ð Þ

X

i

miþ1 �ð Þ � mi �ð Þð Þ2 ð2Þ

where t is the bin length, n the number of bins, and mi(t)
the mean of the observable in the ith bin.
[11] The variance computed in this way is a function of

the distribution being measured and the sample period. For
stationary processes (n > −1) this variance is identical to the
classical variance and thus it can be identified with the
variance of the observable [Allan, 1966]. In the case of
nonstationary processes the Allan variance for a certain bin
length is independent of the time series length and the
sampling frequency. Thus, the Allan variance is convergent
in contrast to the classical variance. Although the meaning
of a variance is questionable in the case of nonstationary
processes the Allan variance still provides insights into the
noise characteristics in those cases [Allan, 1987].
[12] The Allan variance has already been applied to geo-

detic time series to study uncertainties associated with site
positions [Le Bail, 2004]. Here, the Allan variance has been
modified in the sense that the mean of each bin is replaced
by its slope. To avoid confusion we will call the variance
computed in this way Allan Variance of the Rate (AVR). In
simple terms, the time series is divided into n bins of equal
length t. Then the slope of the time series is calculated for
every bin by linear regression. The AVR corresponding to a
given t is then defined as one half of the variance of the
differences of the slopes of two consecutive bins. Figure 1
shows a synthetic time series and the corresponding AVR
that is displayed in a log‐log plot as a function of the bin
length t. The statistical significance of the AVR depends on
the number of bin pairs used in the computation. In tests
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with synthetic time series reasonable results were obtained
down to four bin pairs. The necessity of at least four bins to
compute a statistical significant variance limits the maxi-
mum time span for which the variance can be directly
computed to ∼1/4 of the total length of the time series. The
statistics of the AVR can be significantly improved at the
expense of computational time for computing the AVR for
overlapping bins [e.g., Howe et al., 1981]. This requires
more calculation steps, but provides better results in terms of
statistical significance. The variance associated to the full
series needs to be extrapolated assuming an error model.
Still the AVR provides a visual representation of the
improvement of the velocity uncertainty with increasing
time length independently from the selected error model.
[13] Gaps in the time series do not dramatically affect the

calculation of the AVR. We tested the method with synthetic
time series where gaps were created removing up to 50% of
the points and obtained very similar results compared to the
corresponding time series without gaps. As an empirical rule
derived by tests with synthetic time series we found that if a
bin contains at least 30% of the data points and the time span
covered in the bin is at least 50% of t it can be included in the
calculation. It is worthy to mention that it does not make a
difference whether the time series is detrended or not since
only the difference of slopes of consecutive bins is used.
While the upper limit of the length of t is specified by the
time series length, the lower limit is specified by the sam-
pling rate and numerical stability. Testing with synthetic time
series we found that starting from bin length t larger than

four times the sampling rate improves the numerical stability
of the calculation drastically.

3. Error Model

[14] The method described in section 2 provides the
velocity uncertainty for any interval length of the time series
within the accessible range of t limited by the necessity of
multiple bins to get a statistically significant value of the
variance and by the sampling period (4t < t < L/4, where t is
the sampling period and L the length of the time series). In
most cases we want to assess the velocity uncertainty cor-
responding to the full length of the time series. In order to do
so an error model based on assumptions on the noise
characteristics is required and a corresponding function has
to be adjusted to the slope variance. Its extrapolation to the
full length of the time series can then be interpreted as the
variance of the velocity of the full time series. The extrap-
olation requires a function based on assumptions on the
noise characteristics. Unless a complete analysis of all noise
contributions in GPS time series is considered, the choice of
the right error model will be subject to debate. Here, some
of the most common error models were applied to the AVR
of synthetic time series, in order to validate the presented
method.

3.1. Power Law Noise

[15] Agnew [1992] analyzed the time domain behavior of
Gaussian power law noise (equation (1)) and derived the
relation

�x Tð Þ / T
� �þ1ð Þ

2 ð3Þ

for the standard deviation sx of the position for a given time
series with a spectral index n and length T. This implies that
for n ≤ − 1 the position uncertainty does not decrease with
increasing the length of the time series, the process is not
stationary. It has been shown [Allan, 1966; Bos et al., 2008]
that the variance s2 of the linear velocity v is proportional to

�
2

v Tð Þ / T� �þ3ð Þ ð4Þ

In the case of Gaussian distributed noise this expression
implies the linear relationship

� ¼ � � þ 3ð Þ ð5Þ

between the spectral index n and the slope m of the AVR in
a log‐log plot (see Table 1). This relationship between m and
n is also in agreement with Williams [2003a]. Unlike the
position, the velocity information still improves with
observation length for n > − 3.
[16] In the case of a power law noise the AVR of the

velocity as a function of the length of the time series can be
modeled by

�
2

v Tð Þ ¼ aplT
� ð6Þ

In order to test the presented method, 21,000 time series
with spectral indices −2 ≤ n ≤ 0 were created and analyzed.
A subset of 1000 points were taken from time series of
10,000 points to avoid boundary effects. All time series
were generated as a superposition of Ornstein‐Uhlenbeck

Figure 1. (a and b) Synthetic time series and (c) corre-
sponding Allan variance of the rate (AVR). The time series
is divided in n bins of length t, and the slope of each bin is
calculated by linear regression (red and blue lines in Figures
1a and 1b). The AVR is calculated using equation (2). The
red circle at t = 64 days corresponds to the bins shown in
Figure 1a, and the blue circle at t = 256 days corresponds to
the bins shown in Figure 1b. The light grey circles in the
AVR are based on less than four bin pairs; hence they are
statistically poorly constrained and should not be included in
the fit of an error model.
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processes [Kasdin, 1995; Milotti, 2006]. The time series
were also analyzed using CATS, a psd spectral analysis
Matlab routine [Stoica and Moses, 1997; Welch, 1967;
Oppenheim and Schafer, 1989], and a method introduced by
Lomb [1976] and Scargle [1982]. The Matlab routine is
based on the periodogram, which is a widely used, simple,
and fast algorithm, although it is known to be a biased
estimate [e.g., Stoica and Moses, 1997] and is included only
for completeness.
[17] The results are summarized in Figure 2, showing

the average and the dispersion of the difference between the
estimated spectral index for the different methods and the
spectral index utilized to create the time series. The error bars
denote the standard deviation of the estimates. Although
CATS is clearly the best performing method, it is evident that
all the different methods are able to estimate the correct
spectral index within the corresponding dispersion and with a
relative accuracy smaller than 0.1. A bias in the psd method
is clearly visible for low spectral indexes. We also note that
the AVR tends to produce a slightly higher power spectrum
at high spectral indices probably due to the numerical sta-
bility choice of starting the integration from t > 4t (thus
partially decreasing the contribution of white noise). We also
note an increase in the dispersion of the results at lower
spectral indices that is probably due to the necessity to limit
the interpolation to t not longer than 1/4 of the length of the
time series.

3.2. White Noise, Flicker Noise, and Random Walk

[18] Previous studies [e.g., Zhang et al., 1997; Mao et al.,
1999] suggested that the noise in GPS time series consists of
a combination of white noise, flicker noise, and random
walk. One reason for the use of these three particular noise
contributions was that the derivations of the corresponding
covariance matrices existed only for these integer spectral
indices. Although today it is possible to derive the covariance
matrix for any power law noise by fractional differencing and
integrating, the estimation of the spectral index along with
the noise magnitudes is computationally expensive. There-
fore, most GPS velocity uncertainties are still calculated
assuming an error model consisting of the aforementioned
noise types.
[19] The method presented here is also able to deal with

error models consisting of a combination of white noise,
flicker noise, and random walk by using the relationship
between spectral index and power law behavior of the AVR
(equation (5)). For this error model the variance of the rate
can be written as

�
2

wnþflþrw �ð Þ ¼ awn�
�3 þ afl�

�2 þ arw�
�1 ð7Þ

where awn, afl, and arw are the coefficients for white noise,
flicker noise, and random walk, respectively. Table 1 sum-

marizes the different noise types, their spectral indices and
the corresponding AVR exponents.
[20] In the case of a linear combination of different noise

types it is interesting to look at the values tco, where the
slope of the AVR changes (crossover bin length). For these
bin lengths the contribution of the corresponding noise types
have the same magnitude. The tco separate regimes where
the specific noise contributions are dominant. Noise pro-
cesses with lower spectral indices, for example random
walk, are dominant at larger bin lengths, while noise with a
higher spectral index such as white noise is dominant for
shorter bin lengths. Therefore error sources with a corre-
spondingly small n (n → − ∞) can never be ruled out for
finite time series since low spectral index processes may
become dominant for bin lengths exceeding the length of the
time series.
[21] Similarly to what we did for testing the power law

model, synthetic time series consisting either of one noise
type or a combination of different noise types were created.
Then the AVR was computed. Finally, we adjusted the
parameters awn, afl, and arw in the error model function
(equation (7)) to fit the AVR (see Figure 3 and Table 2). In
general we were able to estimate the correct noise con-
tributions in the accessible range of bin lengths (a region
bounded below by four times the sampling frequency and
above by 1/4 of the length of the time series).
[22] As an example we can look at the case of “white

noise + random walk” (Figure 3). Equation (7) was adjusted
to the variances looking for the values of awn, afl, and arw
that represent the calculated variances best. We used those
parameters to extrapolate function (7) to the full length of
the time series (red lines in Figure 3). This value is the
velocity variance of the given time series. As expected for
this particular synthetic time series with only white noise

Table 1. Spectral Index n and the Power-Law Index of the

AVR m for the Most Frequently Mentioned Noises With Gaussian

Distribution

n m

White noise 0 −3
Flicker noise −1 −2
Random walk −2 −1

Figure 2. Estimated spectral indices with standard devia-
tions from synthetic time series. The time series were created
with a length of 10,000 days, but only 1000 were used in
order to avoid boundary effects. The 1000 time series of each
spectral index were created and analyzed by the AVR
method introduced here. The spectral indices were estimated
by a nonlinear fit weighting the data points by t (blue). For
comparison, 100 time series of each spectral index were ana-
lyzed by CATS (green), a Matlab‐implemented function to
calculate the power spectral density (red), and a method
introduced by Lomb [1976] and Scargle [1982] (black).
The latter two methods provide power spectra, and the
spectral indices were calculated by linear regression of the
log‐log representation of the power spectra.
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Figure 3. (left) Synthetic time series and (right) the corresponding AVRs. The time series consist of
white noise, flicker noise, or random walk and any possible combination of these noise types. The coeffi-
cients in equation (7) (the error model; red lines, Figure 3 (right)) are estimated by least squares fitting to
the variances based on more than four bin pairs (blue circles in variance plots) and are summarized in
Table 2. The crossover periods tco (in days) confine intervals where the different noise contributions are
dominant.
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and random walk the coefficient afl is negligible. For this
particular time series, the crossover bin length of white noise
and random walk tco(wn − rw) is 169 days. This means that
for observations shorter than this time span white noise is
the dominant noise contribution while for longer observa-
tions it is random walk. For flicker noise a virtually van-
ishing contribution is estimated and crossover bin lengths
are thus meaningless.

3.3. Seasonal Effects

[23] Many GPS time series show annual signals mainly
because of seasonal loading. In most cases the seasonal
signals are just modeled by the first and the second har-
monics of a sine function, where the fundamental period is
one year. The signal is then subtracted from the time series.
Blewitt and Lavallée [2002] showed that a seasonal signal
still affects the velocity uncertainty and presented the fol-
lowing series to estimate the velocity uncertainty introduced
by a seasonal signal:

�
2

annual �ð Þ ¼
18T 2a2

1

�2�4

X

T
2Dt

k¼1

1

k3
cos

�k�

T

� �

�
T

�k�
sin

�k�

T

� �� �2

ð8Þ

where a1 is the amplitude of the contribution at the funda-
mental period T, Dt is the sampling interval, and t is the
length of the time series. Blewitt and Lavallée [2002] indi-
cated that the contributions with k = 1,2 (annual and semi-
annual) account for ∼90% of the total variance. Equation (8)
is limited to t > T, which makes it difficult to use it for
fitting in the presence of noise since the adjustment should
include the full range of t. Bos et al. [2010] showed the
importance of including the effect of colored noise when
dealing with periodic signals.
[24] A periodic signal is not a stochastic process and as a

consequence the AVR cannot directly be identified with the
velocity variance. Here we discuss the effect of a periodic
signal on the AVR and show how the method presented here
can be used to estimate the amplitude at the fundamental
period, which then can be used along with equation (8) to
estimate correct velocity uncertainties. There are two
advantages of doing so: (1) the amplitude is estimated along
with other (colored) noise parameters and (2) the phase is
not present in this formulation.
[25] The AVR for a pure sinusoidal signal of the form

x tð Þ ¼ a sin
2�

T
t þ F

� �

ð9Þ

where a is the amplitude of the signal, T its period, and F a
phase can be calculated analytically with Maple (TM). The

expression obtained is very complex and not suitable for
fitting an error model, but it can be approximated by

�
2

annual �ð Þ ¼
36T2a2

�2�4
sin

2
��

T

� � T

��
sin

��

T

� �

� cos
��

T

� �

� �2

ð10Þ

where a is the amplitude of the sinusoidal signal that can
be solved for by fitting the data for a given period T (e.g.,
T = 365 days for an annual signal).
[26] Equation (10) is identical to the one derived by

Blewitt and Lavallée [2002] for the velocity bias from a
sinusoidal signal, apart from a phase not present on the
AVR. The phase term is absent because the AVR is com-
puted using the difference of consecutive bin pairs. At every
phase of a harmonic signal the difference is zero at integer
multiples of T independent from the phase. In this way, as
long as we have enough bins, the phase bias to the AVR is
averaged out.
[27] It is possible to apply the AVR and to fit an adequate

model that accounts for the colored noise (like the ones
described in 3.1 or 3.2) combined with the expression of the
annual signal (equation (10)). By fitting the AVR to this
model, a (that can be identified with a1 in equation (8)) can
be estimated along with the parameters describing the time‐
correlated noise (e.g., m and apl in equation (6)). The values
obtained by the fit can then be used in a linear combination of
the selected noise model (e.g., equation (6)) and equation (8)
to extrapolate the variance to the full length of the time
series.
[28] As an example we created a synthetic time series

consisting of flicker noise plus an annual signal of arbitrary
phase. Figure 4 shows the time series (Figure 4, top) and the
corresponding AVR (Figure 4, bottom). The red curve
represents the adjusted model consisting of a linear combi-
nation of equations (6) and (10) corresponding to the
parameters apl, m, and a1 that best reproduce the observed
variance. The obtained parameter a1 (corresponding to the
amplitude of the sinusoidal signal) can now be used in the
linear combination of equations (6) and (8) for extrapolation
to the full length of the time series (black curve in Figure 4).
The values of the black curve at the full time series length
corresponds to the velocity variance when we take into
account both colored noise and a periodic signal.
[29] Note, that for t > T the variance introduced by an

annual signal decreases with t−4, even faster thanwhite noise.

3.4. Offsets and Velocity Changes

[30] Sometimes GPS time series are affected by offsets or
changes in rates. Sources for offsets could include antenna
changes or coseismic displacements. Velocity changes have

Table 2. Parameter Estimates of Example Time Series Shown in Figure 3

Noise
awn

(mm2/d)
afl

(mm2)
arw

(mm2/d)
tco(wn‐fl)
(days)

tco(fl‐rw)
(days)

tco(wn‐rw)
(days)

sn
2

(mm2/yr2)

White noise 142 2.22 × 10−14 2.22 × 10−14 6.38 × 1015 1.00 7.99 × 107 0.026
Flicker noise 4.94 4.26 2.22 × 10−14 1.16 1.92 × 1014 1.49 × 107 0.25
Random walk 2.22 × 10−14 2.22 × 10−14 0.143 1.00 1.15 × 10−13 3.34 × 10−7 2.52
White noise plus flicker noise 136 4.17 2.22 × 10−14 32.5 1.88 × 1014 7.81 × 107 0.25
White noise plus random walk 34.7 2.22 × 10−14 0.122 1.56 × 1015 1.82 × 10−13 169 2.33
Flicker noise plus random walk 2.21 4.67 0.143 0.473 32.8 4.01 2.53
White noise plus flicker noise

plus random walk
191 33.6 0.204 5.69 165 30.6 3.09
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been observed after large earthquakes but could also be
related to other effects like monumentation or water
pumping. These signals affect the AVR. Although no ana-
lytical expressions for these cases were derived, we want to
point out some characteristics.
[31] An offset in the time series causes a change in trend

of the AVR. In the case of “white noise + offset” the slope
variance shows a similar behavior like a random walk pro-
cess, which is in agreement with Williams [2003b]. If there
is a change of rate in the time series, it is possible that the
corresponding AVR of the rate shows a kink and increases
with t for a certain range of integration intervals.
[32] The above mentioned error models are not suitable for

uncertainty estimation of time series affected by offsets or
velocity changes since the models do not account for those
effects. However, it is possible to identify corresponding
patterns in the AVR and correct affected time series and/or
apply different kinds of error models.

4. TrigNet

[33] TrigNet is a network of about 50 continuously
operating GNSS base stations distributed throughout South
Africa (see Figure 5). Data span up to nine years for most of
the TrigNet sites and are freely available (http://www.
trignet.co.za/). They were processed using the Bernese GPS
Software, V5.0 [Dach et al., 2007] using state of the art
analysis strategies and standards. For consistency, orbit
products from the CODE (Center for Orbit Determination in
Europe) Analysis Center of the International GNSS Service
(IGS) were used [Dow et al., 2009]. Tracking data were
analyzed in daily batches in ionosphere‐free linear combi-

nation and phase ambiguities were resolved to integers.
Two‐hourly troposphere zenith delay and daily gradient
parameters were estimated for each station. Station veloci-
ties were retrieved by combining daily solutions at the
normal equation level. Some 30 IGS stations were included
into the network to realize the geodetic datum.
[34] The obtained velocities were rotated into a South

Africa fixed reference frame by an Euler rotation minimiz-
ing the velocity residuals [Malservisi et al., 2008]. Most
residual velocities are <1 mm/yr (Table 3), as expected for
an Archean cratonic region not affected by tectonic defor-
mation. In order to solve for any internal deformation the
velocity uncertainty is crucial. In theory, the residuals with
respect to the stable region like South Africa should be of
the same order of magnitude as the error. The formal error is
about 0.01–0.02 mm/yr for the horizontal components of
most sites, a magnitude smaller than the observed residuals,
suggesting a clear signal in the observed velocity field.
Given the almost random distribution of the azimuth of the
residuals we expect that for the majority of the sites this is
not the case and that the error is largely underestimated
because the formal error neglects time‐correlated noise.
[35] On the other hand, the application of the method

introduced by [Mao et al., 1999] produced errors signifi-
cantly larger (almost 1 order of magnitude) than the resi-
duals indicating that the uncertainties of the velocity field
are overestimated. Given the importance of the associated
error in the interpretation of such small residuals, it is clearly
important to make a more complete analysis of the uncer-
tainty associated with the studied velocity field. The AVR
provides a quick method to improve the error estimation.
Given the availability of specific algorithms to compute
time‐correlated uncertainties for GPS velocities like CATS,
the algorithm presented by Bos et al. [2008], or the one
presented here we strongly suggest that neither pure white
noise models nor empirical methods [e.g., Mao et al., 1999]
should be used for the estimation of velocity uncertainties

Figure 4. (top) Synthetic time series consisting of flicker
noise plus a sinusoidal signal with period T = 365 days
and amplitude a = 5 mm and (bottom) the corresponding
AVR. Green circles are based on four or fewer independent
bin pairs and thus are not included in the fitting. Blue circles
are based on more than four bin pairs and were used to fit a
linear combination of equations (6) and equation (10) (red
line). The obtained values are apl = 3.9, m = −2.0, and a1 =
4.7, which compares well to the amplitude of the periodic
signal. For extrapolation to the length of the time series the
obtained parameters were set into a linear combination of
equations (6) and (8) (black line). The calculated velocity
uncertainty in this case is sv = 0.20 mm/yr.

Figure 5. Spatial distribution of the South African GPS
network TrigNet.
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from continuous GPS or semipermanent sites with sufficient
amount of data.

5. CATS Versus AVR

[36] In order to estimate correct velocity uncertainties for
the TrigNet time series CATS and the AVR method were
applied. For both methods the same error model consisting
of a power law noise plus an annual signal was used. The
three components were treated independently in the calcu-
lation of the uncertainty, which is common practice. For the
majority of the sites the spectral indices computed for the

three components of the velocity are very similar, indicating
that all the components are subject to the similar type of
noise.
[37] In the case of the AVR an error model consisting of a

linear combination of equations (6) and (10) was adjusted to
the variances, solving for the parameters apl, m, and a1 by
weighted nonlinear least squares. In order to improve the
numerical stability of the least squares fit, only bins with
lengths t > 6 days were included in the parameter estima-
tion. To put more importance to the variances at greater t
and to stabilize the estimation of the parameters the com-
puted variances were weighted by t. In tests with synthetic

Table 3. TrigNet Residual Velocities, Their Uncertainties, and the Corresponding Spectral Indicesa

Site
Longitude

(deg)
Latitude
(deg)

Length
(days) Completeness

veast
(mm/yr)

vnorth
(mm/yr)

seast
CATS

(mm/yr)
snorth
CATS

(mm/yr)
seast
AVR

(mm/yr)
snorth
AVR

(mm/yr)

nCATS nAVR

East North East North

HRAO 27.69 −25.89 3374 0.89 −0.51 −0.20 0.09 0.06 0.05 0.05 −0.59 −0.59 −0.31 −0.45
SUTH 20.81 −32.38 3372 0.90 0.18 0.11 0.10 0.05 0.46 0.06 −0.78 −0.60 −1.31 −0.60
HNUS 19.22 −34.42 3320 0.67 −0.08 −0.06 0.04 0.05 0.05 0.06 −0.40 −0.47 −0.43 −0.47
GEOR 22.38 −34.00 3274 0.52 −0.77 −0.27 0.05 0.04 0.05 0.07 −0.65 −0.59 −0.58 −0.64
PELB 25.61 −33.98 3267 0.51 0.02 −0.03 0.07 0.18 0.15 0.32 −0.75 −1.00 −0.90 −1.06
ELDN 27.83 −33.04 3266 0.70 −0.20 −0.05 0.04 0.04 0.03 0.05 −0.57 −0.55 −0.42 −0.55
BFTN 26.30 −29.10 3185 0.61 2.59 −1.18 0.29 0.09 1.83 0.47 −1.17 −0.85 −1.80 −1.34
UMTA 28.67 −31.55 3164 0.71 0.49 −0.24 0.03 0.05 0.02 0.04 −0.48 −0.65 −0.27 −0.39
BETH 28.33 −28.25 3164 0.78 −0.13 −0.04 0.03 0.03 0.03 0.05 −0.48 −0.52 −0.33 −0.57
PMBG 30.38 −29.60 3159 0.44 0.20 −0.12 0.05 0.04 0.05 0.04 −0.60 −0.55 −0.51 −0.36
LSMH 29.78 −28.56 3159 0.62 0.15 0.13 0.03 0.04 0.02 0.03 −0.45 −0.54 −0.23 −0.39
KLEY 24.81 −28.74 3159 0.60 0.27 −0.03 0.11 0.04 0.11 0.10 −0.80 −0.55 −0.70 −0.78
DRBN 30.95 −29.97 3155 0.57 0.27 −0.12 0.05 0.05 0.03 0.08 −0.60 −0.65 −0.35 −0.64
HARB 27.71 −25.89 3150 0.88 −0.07 0.07 0.05 0.06 0.03 0.07 −0.62 −0.63 −0.30 −0.61
SBOK 17.88 −29.67 3134 0.79 −0.02 −0.31 0.06 0.06 0.05 0.08 −0.63 −0.68 −0.53 −0.64
DEAR 23.99 −30.67 3125 0.67 −0.10 −0.20 0.03 0.04 0.02 0.08 −0.55 −0.64 −0.28 −0.72
CALV 19.76 −31.48 3125 0.77 −0.27 −0.11 0.09 0.07 0.16 0.12 −0.76 −0.65 −0.89 −0.75
ULDI 31.42 −28.29 3108 0.66 0.24 0.00 0.04 0.06 0.03 0.11 −0.49 −0.64 −0.28 −0.76
RBAY 32.08 −28.80 3098 0.50 0.27 −0.30 0.06 0.05 0.11 0.03 −0.57 −0.54 −0.78 −0.21
LGBN 18.16 −32.97 3003 0.71 0.18 0.02 0.05 0.06 0.06 0.11 −0.64 −0.69 −0.59 −0.80
ERAS 27.70 −23.69 2949 0.64 −0.06 −0.23 0.05 0.05 0.03 0.05 −0.55 −0.55 −0.23 −0.42
MBRG 29.45 −25.77 2927 0.71 0.14 0.72 0.09 0.09 0.10 0.17 −0.76 −0.75 −0.74 −0.94
PTBG 29.47 −23.92 2924 0.62 −0.26 0.23 0.06 0.04 0.12 0.06 −0.62 −0.52 −0.78 −0.54
NSPT 30.98 −25.48 2879 0.72 −0.04 0.05 0.06 0.11 0.06 0.25 −0.63 −0.81 −0.54 −1.00
PBWA 31.13 −23.95 2843 0.71 0.32 0.00 0.07 0.06 0.07 0.04 −0.67 −0.63 −0.56 −0.45
SIMO 18.44 −34.19 2703 0.51 −0.58 0.10 0.04 0.09 0.06 0.10 −0.34 −0.60 −0.41 −0.50
SUTM 20.81 −32.38 2578 0.92 −0.21 0.20 0.04 0.05 0.03 0.07 −0.45 −0.61 −0.26 −0.60
EMLO 29.98 −26.50 2561 0.78 −0.03 0.01 0.04 0.09 0.06 0.11 −0.54 −0.77 −0.57 −0.78
KMAN 23.43 −27.46 2531 0.79 0.20 −0.12 0.05 0.07 0.06 0.10 −0.59 −0.67 −0.51 −0.70
KSTD 27.24 −27.66 2529 0.61 −0.18 −0.42 0.06 0.05 0.11 0.06 −0.64 −0.58 −0.72 −0.53
MFKG 25.54 −25.81 2456 0.56 0.19 1.49 0.06 0.12 0.11 0.17 −0.60 −0.86 −0.79 −0.93
ANTH 26.72 −30.68 2260 0.77 0.02 0.20 0.05 0.06 0.07 0.08 −0.53 −0.59 −0.57 −0.61
TDOU 30.38 −23.08 2106 0.71 0.26 −1.89 0.12 0.15 0.29 0.39 −0.77 −0.85 −0.99 −1.11
GRNT 24.53 −32.25 2092 0.59 0.61 −0.05 0.09 0.07 0.03 0.04 −0.61 −0.46 −0.02 −0.12
BWES 22.57 −32.35 1987 0.56 0.34 0.20 0.17 0.08 0.06 0.08 −0.65 −0.54 −0.14 −0.46
PRET 28.28 −25.73 1901 0.83 0.16 −1.62 0.07 0.12 0.06 0.65 −0.59 −0.79 −0.45 −1.43
PSKA 22.75 −29.67 1694 0.85 0.14 −0.03 0.11 0.08 0.06 0.10 −0.66 −0.60 −0.18 −0.58
QTWN 26.92 −31.91 1679 0.78 0.74 1.15 0.16 0.15 0.54 0.31 −0.77 −0.75 −1.18 −0.90
NYLS 28.41 −24.70 1307 0.73 0.04 −0.17 0.09 0.08 0.14 0.11 −0.49 −0.43 −0.57 −0.46
GDAL 29.41 −25.16 1307 0.47 −0.10 0.57 0.11 0.08 0.12 0.09 −0.54 −0.47 −0.26 −0.35
MBRY 18.47 −33.95 1266 0.48 −0.07 0.23 0.17 0.33 0.08 0.11 −0.34 −0.52 0.11 0.15
GRHM 26.51 −33.32 1177 0.79 −0.07 0.23 0.07 0.27 0.11 0.39 −0.45 −0.81 −0.53 −0.85
UPTN 21.26 −28.41 1039 0.68 0.32 −0.68 0.14 0.17 0.12 0.12 −0.55 −0.64 −0.23 −0.27
SPRT 30.19 −24.67 969 0.89 2.04 −0.73 0.43 0.69 0.48 0.38 −0.84 −1.03 −0.78 −0.21
MALM 18.73 −33.46 850 0.85 0.18 0.06 0.16 0.15 0.20 0.19 −0.50 −0.48 −0.40 −0.42
STBS 18.84 −33.84 841 0.89 0.04 0.79 0.16 0.18 0.19 0.18 −0.50 −0.57 −0.40 −0.32
BENI 28.34 −26.20 794 0.87 6.66 2.71 0.51 0.22 0.67 0.30 −0.85 −0.59 −0.24 −0.38
KRUG 27.77 −26.08 791 0.86 0.03 −2.13 1.21 0.46 1.78 0.92 −1.21 −0.93 −1.19 −1.05
VERG 27.90 −26.66 788 0.91 −0.99 0.79 0.13 0.18 0.24 0.24 −0.43 −0.55 −0.52 −0.51
CTWN 18.47 −33.95 628 0.93 −0.07 0.23 0.37 1.25 0.54 1.12 −0.30 −0.69 −0.30 −0.30
UPTA 21.26 −28.41 508 0.87 0.18 −0.45 0.23 0.39 0.24 0.36 −0.41 −0.66 −0.19 −0.32

aLength indicates the time span covered by the time series. The uncertainties were calculated using CATS and the AVR method presented here. The
formal error is on the order of 0.01–0.02 mm/yr in most cases.
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time series this weighting clearly improved the parameter
estimation. This method is similar to the use of the logarithm
of the data, a common practice in inversion methods when
dealing with data with very different scales. Finally, the
velocity uncertainties were estimated by extrapolating the

linear combination of equations (6) and (8) to the full length
of the time series. As an example, Figure 6 shows the time
series and the corresponding slope variance at Hermanus
(HNUS).

Figure 6. (left) Time series and (right) corresponding AVRs (green and blue circles) of the velocities for
the three components of the GPS site at Hermanus (HNUS), South Africa. Variances that are based on
more than six bin pairs (blue circles) were used to fit an error model (red line), which consists of a linear
combination of power law noise (equation (6)) and an annual signal (equation (10)). The following
parameters were obtained: apl (north) = 22.3, m (north) = −2.53, a1 (north) = 1.32, apl (east) = 16.3,
m (east) = −2.57, a1 (east) = 0.58, apl (up) = 225, m (up) = −2.53, and a1 (up) = 3.26. The rate uncertainty is
the result of the extrapolation of the black curve (see Figure 4). The stars in the variance plots denote the
variances of the velocities; the corresponding standard deviations are s (north) = 0.065 mm/yr, s (east) =
0.045 mm/yr, and s (up) = 0.053 mm/yr.
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[38] In general, the calculations led to comparable results
for both methods as summarized in Table 3 and Figure 7.
Note, that the calculation times are significantly different, on
a standard desktop PC (Dual Core 2.93 GHz, 4 GB RAM)
the analysis of the network using CATS takes several days,
while it takes only a few minutes (hours in the case of
overlapping bins) to calculate the uncertainties using the
AVR of the rate.
[39] The results calculated with the Allan variance tend to

be slightly more conservative. A possible reason for this
difference could be how white noise, that is likely to be
present in the time series, is treated in the two methods.
[40] The shift toward higher uncertainties in our method

becomes more apparent for sites with larger uncertainty s,
probably because these time series are in general shorter thus
more influenced by white noise. Another reason for dis-
crepancies of the two methods could be non Gaussian noise.
The estimation of the spectral index in our method is based on
the assumption of Gaussian distributed noise and the result
could deviate from the one obtained by a different method.
[41] In general, the results of the two methods are more

similar in cases where the selected error model fits well the
computed AVR (i.e., the red curve fits well the blue dots in
the variance plots like in Figure 6). This behavior empha-
sizes the importance of the right choice of the error model

Figure 7. Scatterplots of (left) the spectral indices and
(right) the calculated velocity uncertainties of (top) the north
and (bottom) the east components of the TrigNet data set
using CATS and AVR.

Figure 8. Horizontal residual velocity field of the South African GPS network TrigNet. The velocities
are plotted with two error ellipses (95% confidence interval) corresponding to the different methods of
uncertainty estimation (see Table 3). Blue ellipses correspond to the uncertainties calculated with
CATS, and red ellipses correspond to the uncertainties calculated by the AVR method.
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and also shows the potential of the AVR to visually check
whether an error model is suitable or not.

6. Conclusion

[42] Although CATS provides a broad set of different error
models and a more robust estimation of the velocity uncer-
tainty being based on MLE, the method presented here gets
similar results and is faster for many choices of error models.
The computation time is on the same order than for the
algorithm presented by Bos et al. [2008] in the case of
overlapping bins. The AVR has also the advantage to sepa-
rate the estimation of the velocity uncertainty into two
independent steps. First the variance is calculated as a
function of varying bin length. In a second step an error
model is used to compute the velocity uncertainty. This
provides the possibility to choose an error model according
to the computed variances and eventually the possibility to
change the model in the case that the fit of the variance is not
satisfactory without having to redo the full analysis. It is thus
possible to dedicate more effort in the choice and the
adjustment of the error model.
[43] Once the error is estimated correctly, the residual

velocities for the TrigNet GPS network are of the same order
than the estimated uncertainties for the majority of the sites in
Figure 8, as expected for stable rigid plate setting. Some of
the sites do still present significant residuals. In particular,
some sites in the region around Johannesburg (e.g., HRAO)
show a clear velocity signal that is likely caused by human
induced deformation. Sites in the northeastern part of South
Africa (e.g., PBWA or ULDI) have significant eastward
residuals possibly associated with the deformation at the
complex plate boundary between the Nubian and Somalian
plates [Stamps et al., 2008]. We also want to point out that
some of the residuals can be associated with monumentation
problems. In particular, PRET is installed on an unstable
building, while QTWN and GEOR are combinations of
multiple sites loosely connected by survey ties. BFTN and
TDOU show high temporal correlations and relatively large
errors, which could be related to local hydrological effects or
monumentation problems. It is important to note that this
interpretation of the velocity field as tectonic or nontectonic
deformation is only possible after a correct estimation of the
effects of time‐correlated noise on the velocity uncertainties.
[44] Figure 9 shows the standard deviations of the veloc-

ities for the three components of the TrigNet sites. As
expected for sites that are subject to similar noise the shapes
of the curves are quite similar for the different sites, but also
for the three components with the up component being
shifted toward larger uncertainties. The bump at t ≈ 183 days
that is present in most of the curves results from the seasonal
signal present in the time series. Apart from that the almost
linear behavior in the log‐log plot indicates that a power law
assumption is reasonable, although a trend to convexity is
present in some curves suggesting a piecewise power law
behavior. The curves of a few sites differ significantly from
the average shape and are very likely subject to additional
processes. They possibly require additional processing and
modeling and the velocities obtained should be handled with
special care. Note, that the method presented here provides
this kind of analysis independently of assumptions on the
error model.

Figure 9. Standard deviations of the rates for three compo-
nents of the TrigNet sites as a function of bin length. Most
of the sites show an almost linear behavior in the log‐log
plot and a bump at t ≈ 183 days. The shapes of most of
the curves are similar, indicating similar sources of noise
for the majority of the sites, which is also true for the differ-
ent components.
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