
ORIGINAL RESEARCH
published: 22 March 2018

doi: 10.3389/fphys.2018.00218

Frontiers in Physiology | www.frontiersin.org 1 March 2018 | Volume 9 | Article 218

Edited by:

Kamiar Aminian,

École Polytechnique Fédérale de

Lausanne (EPFL), Switzerland

Reviewed by:

Leonardo Alexandre Peyré-Tartaruga,

Federal University of Rio Grande do

Sul (UFRGS), Brazil

Jean Slawinski,

Université Paris Nanterre, France

*Correspondence:

Frank J. Wouda

f.j.wouda@utwente.nl

Specialty section:

This article was submitted to

Exercise Physiology,

a section of the journal

Frontiers in Physiology

Received: 15 November 2017

Accepted: 26 February 2018

Published: 22 March 2018

Citation:

Wouda FJ, Giuberti M, Bellusci G,

Maartens E, Reenalda J, van Beijnum

BJF and Veltink PH (2018) Estimation

of Vertical Ground Reaction Forces

and Sagittal Knee Kinematics During

Running Using Three Inertial Sensors.

Front. Physiol. 9:218.

doi: 10.3389/fphys.2018.00218

Estimation of Vertical Ground
Reaction Forces and Sagittal Knee
Kinematics During Running Using
Three Inertial Sensors
Frank J. Wouda 1*, Matteo Giuberti 2, Giovanni Bellusci 2, Erik Maartens 1,3,

Jasper Reenalda 1,3, Bert-Jan F. van Beijnum 1,4 and Peter H. Veltink 1

1 Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, Netherlands, 2 Xsens

Technologies B.V., Enschede, Netherlands, 3 Roessingh Research and Development, Roessingh Rehabilitation Hospital,

Enschede, Netherlands, 4Centre for Telematics and Information Technology, University of Twente, Enschede, Netherlands

Analysis of running mechanics has traditionally been limited to a gait laboratory using

either force plates or an instrumented treadmill in combination with a full-body optical

motion capture system. With the introduction of inertial motion capture systems,

it becomes possible to measure kinematics in any environment. However, kinetic

information could not be provided with such technology. Furthermore, numerous

body-worn sensors are required for a full-body motion analysis. The aim of this study is to

examine the validity of a method to estimate sagittal knee joint angles and vertical ground

reaction forces during running using an ambulatory minimal body-worn sensor setup.

Two concatenated artificial neural networks were trained (using data from eight healthy

subjects) to estimate the kinematics and kinetics of the runners. The first artificial neural

network maps the information (orientation and acceleration) of three inertial sensors

(placed at the lower legs and pelvis) to lower-body joint angles. The estimated joint

angles in combination with measured vertical accelerations are input to a second artificial

neural network that estimates vertical ground reaction forces. To validate our approach,

estimated joint angles were compared to both inertial and optical references, while kinetic

output was compared to measured vertical ground reaction forces from an instrumented

treadmill. Performance was evaluated using two scenarios: training and evaluating on a

single subject and training on multiple subjects and evaluating on a different subject.

The estimated kinematics and kinetics of most subjects show excellent agreement

(ρ > 0.99) with the reference, for single subject training. Knee flexion/extension angles

are estimated with a mean RMSE<5◦. Ground reaction forces are estimated with a mean

RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and

maximal knee flexion during stance were compared, however, no significant differences

were found. With multiple subject training the accuracy of estimating discrete and

continuous outcomes decreases, however, good agreement (ρ > 0.9) is still achieved

for seven of the eight different evaluated subjects. The performance of multiple subject

learning depends on the diversity in the training dataset, as differences in accuracy were

found for the different evaluated subjects.

Keywords: machine learning, artificial neural networks, reduced sensor set, inertial motion capture, running,

kinetics
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1. INTRODUCTION

Running is a very popular form of physical activity, that is often
accompanied with a high occurrence of lower extremity injuries
(incidence rate varies between 19.4 and 79.3%; van Gent et al.,
2007). It is assumed that there is a correlation between the
development of these injuries and a runner’s technique (Goss
et al., 2012). Additionally, improvements in running technique
could lead to improved running performance (Kyröläinen et al.,
2001; Tartaruga et al., 2012; Folland et al., 2017). Identifying the
parameters in running technique that might be associated with
injury development and/or running performance improvement
requires a biomechanical analysis. This has traditionally been
performed inside a gait laboratory using a three-dimensional
optical motion capture system and force plates (Novacheck,
1998). The most relevant kinematic and kinetic parameters
analyzed are: joint angles (Devita and Skelly, 1992; Edwards
et al., 2012) and ground reaction forces (Cavanagh and Lafortune,
1980), as these are important determinants of running technique
(Goss et al., 2012). Discrete kinetic parameters that are related
to running injuries and/or performance are: loading rate and
peak vertical ground reaction forces (Crowell and Davis, 2011;
Goss et al., 2012; Schmitz et al., 2014), whereas maximal knee
flexion during stance is a relevant discrete kinematic parameter
(Edwards et al., 2012). However, a lab setting is not identical
to the regular running environment and may therefore result in
different kinematics and kinetics (Sinclair et al., 2013). Previous
studies have confirmed this, showing significant differences
between running on a treadmill and outdoors (Nigg et al.,
1995). Furthermore, dissimilarities in running kinematics can
also occur as a result of force plate targeting in overground
lab running (Challis, 2001). Therefore, a system capable of
measuring relevant parameters outside of a laboratory may
address these shortcomings.

Kinematic analysis can be performed in an ambulatory setting
using inertial measurement units (IMUs) (see for instance,
Roetenberg et al., 2013). Reenalda et al. (2016) have used
IMUs to measure the effects of fatigue on running mechanics
during an actual marathon. However, this approach requires
one sensor to be attached on each main body segment along
a continuous “kinematic chain,” and therefore results in a
large number of sensors and extensive subject preparation.
Data driven approaches were shown to have potential for
reducing the number of sensors in motion capture. Tautges
et al. (2011) proposed a method for full-body motion capture
by using a limited number of accelerometers; however, their
nearest neighbor approach requires a database of prerecorded
movements to be available at run-time. Wouda et al. (2016)
showed comparable performance with a reduced sensor setup
using an artificial neural network (ANN), trained to map five
orientations to a full-body pose. ANNs have the advantage to
create a “model” for mapping certain inputs to outputs based
on the dataset used for training (Alpaydin, 2009). Running
applications using a minimal inertial sensor set have mainly
focused on temporal outcomes, such as the use of gyroscopes
on the feet to estimate temporal running parameters (McGrath
et al., 2012). Bailey and Harle (2014, 2015) showed that with

foot-mounted IMUs this can be extended to estimate spatio-
temporal running parameters.

Ground reaction forces are also relevant outcome parameters
for running analysis (e.g., Cavanagh and Lafortune, 1980;
Novacheck, 1998; Riley et al., 2008; Caekenberghe et al., 2013;
Clark et al., 2014), since abnormal peak and/or loading rate
values can lead to impact and overuse injuries, when the
stress/frequency combination is above the runner’s threshold
(Hreljac, 2004; Milner et al., 2007). However, none of
the aforementioned approaches provided users with kinetic
information. Efforts to move kinetic analyses out of the
laboratory setting have proven to be effective for trunk
bending (Faber et al., 2016), gait (Karatsidis et al., 2017),
dance (Shippen and May, 2012), and running (Pavei et al.,
2017). However, aforementioned approaches require full-body
kinematic information. The peak vertical ground reaction forces
(vGRF) estimation approach of Charry et al. (2013) relied only
on tibial accelerations, but was not suitable for estimation of
kinetics during the whole stance phase. An approach relying
only on trunk accelerations was not sufficient for vGRF
estimation using amass-spring-dampermodel (Nedergaard et al.,
2017).

To the best of our knowledge, there is no system that can
provide runners with insights in both their kinematics and
kinetics in an outdoor setting. The aim of this study is to assess
the validity of a method to estimate knee joint angles and vertical
ground reaction forces during running using an ambulatory
minimal body-worn sensor setup. An ANN is trained to estimate
joint angles based on lower leg orientations relative to the pelvis,
similar to the approach presented in previous work (Wouda
et al., 2016). Corresponding performance is evaluated using both
inertial and optical full-body motion capture data. The estimated
joint angles in combination with sensor accelerations can be fed
into a second ANN which estimates (vertical) ground reaction
forces. The proposed method was evaluated using continuous
outcomes (vGRF and knee angle profiles) and discrete outcomes
(peak vGRF, loading rate, and maximal knee flexion during
stance). The findings of this study could have potential for future
applications in prevention of running injuries and improvement
of running performance.

2. MATERIALS AND METHODS

2.1. Measurement Protocol
Eight healthy experienced runners (8 males; age: 25.1± 5.2 years;
height: 183.7 ± 4.5 cm; weight: 77.7 ± 9.4 kg; body mass index:
23.0 ± 2.5 kg/m2) voluntarily participated in this research. The
runners were recruited from a local track and field club and all
reported no recent injuries. Subjects were instructed to run at 3
different speeds (10, 12, and 14 km/h, in this order) for 3 min
each on an instrumented treadmill, located at the gait laboratory
of the Roessingh Research and Development (Enschede, the
Netherlands). A warm-up session at a self-selected running
speed (of approximately 3 min) was performed by all subjects
preceding the measurements. The ethics committee of the
Faculty of Electrical Engineering, Mathematics and Computer
Science at the University of Twente approved this protocol
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and all subjects provided written informed consent prior to the
measurements.

2.2. Measurement Setup
Reference kinematics were recorded with an optical motion
capture system using the Plug-in Gait protocol1 (Nexus 1.8.5,
Vicon, Oxford, UK), with 41 retroreflective markers placed
directly on the runners’ skin, as shown in Figure 1. The
position of these markers was captured (at 100 Hz) by six
high-speed infrared cameras (MX-13, Vicon, Oxford, UK)
placed around the treadmill. Any object that could block the
camera view or produce undesired reflections was removed from
the measurement environment. Additionally, kinematics were
synchronously captured using the Xsens MVN Link inertial
motion capture system (Xsens, Enschede, the Netherlands),
consisting of 17 IMUs placed at both shoulders, upper arms,
lower arms, hands, upper legs, lower legs, feet, head, sternum,
and pelvis (Roetenberg et al., 2013). The required full-body
Lycra suit (for IMU placement) was modified with holes to
reduce motion artifacts of the retroreflective markers, which
are placed directly on the subject’s skin. Full-body kinematics
were exported using the accompanying software (MVN studio
4.3.7, Xsens, Enschede, Netherlands) at a selected sampling
frequency of 240 Hz. Subjects ran on a S-Mill instrumented
treadmill (ForceLink, Culemborg, the Netherlands), with a
running area of 250 × 100 cm, which can be seen in Figure 1.
The treadmill was equipped with a 1-dimensional force plate, able
to measure reference vGRF at 1,000 Hz. Data of the different
systems were synchronized using an analog synchronization
signal.

2.3. Data Processing
The different trials were cropped to contain only kinematic
and kinetic data of running at a steady speed, i.e., starting and
stopping of the treadmill was disregarded. Optical kinematic

1https://www.vicon.com/downloads/documentation/plug-in-gait-product-guide

data was processed using Plug-in Gait (Kadaba et al., 1990;
Davis et al., 1991). The optical and inertial motion data did not
require coordinate systems alignment as the outcome measures
were expressed in the joint frame, according to ISB conventions
(Wu et al., 2002). The vGRFs were low-pass filtered at 20
Hz using a zero-phase 6th order Butterworth filter, to remove
noise artifacts such as vibrations of the treadmill (Sloot et al.,
2015), while neither the optical nor inertial motion capture
data were filtered. Beside the temporal alignment (achieved with
an analog synchronization signal), the data were resampled at
120 Hz using linear interpolation (for the optical data) and
downsampling (for the inertial and vGRF data), such that all
synchronized data can be used in the proposed machine learning
approach. This data resampling does not significantly influence
the measured kinematics and kinetics, as was also concluded by
Pavei et al. (2017). For analysis, the kinematic and kinetic data
were segmented in stance phases using a 20 N threshold (Milner
and Paquette, 2015). All data processing and statistical analyses
was done in MATLAB R2017a (Mathworks, Inc., Natick, MA,
USA).

2.4. Learning Approach
The proposed learning approach relies on data from three body-
worn sensors (placed at the pelvis and lower legs), which are fed
to a concatenation of two ANNs, as schematically represented
in Figure 2. The first artificial neural network (ANN1) maps
relative (to the pelvis) orientations (in quaternions) of the lower
legs to joints angles, whereas the second artificial neural network
(ANN2) maps the estimated joint angles in combination with
vertical sensor accelerations (in the global frame) to vertical
ground reaction forces. This architecture was chosen to allow
for independent training of the two ANNs. Additionally, the
proposed architecture separates the learning problems allowing
for "selective" re-training of the ANNs (for instance, additional
running environments can be included in the dataset of ANN1

without measuring GRFs simultaneously).

FIGURE 1 | The measurement setup, (A) shows a front and back view of the sensor and retroreflective marker placement (B) shows the measurement setup (only 2

cameras are visible in this angle). Subjects wore a Lycra suit to hold the IMUs in place, which was customized with holes to accommodate the placement of

retroreflective markers on the subject’s skin. In this manner it was possible to measure kinematics simultaneously using both an inertial and optical motion capture

system. The retroreflective markers were placed according to the Plug-in Gait protocol. To ensure retroreflective marker placement during the whole measurements,

tapes were placed around these markers. Note that written informed consent was provided for use of these images.
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FIGURE 2 | The IMU in the top left represents the sensors strapped to the lower legs and pelvis. Information from these sensors is used by two concatenated Artificial

Neural Networks (ANNs) to estimate kinematics and kinetics. ANN1 maps the relative orientations of the lower legs (with respect to the pelvis) to lower body joint

angles (hip, knee and ankle). ANN2 is trained to map the estimated kinematics in combination with the vertical (after transformation to the global frame) sensor

accelerations to the reference ground reaction forces.

TABLE 1 | The training and testing schemes for both the kinematic and kinetic

estimations are represented.

ANN1

Scheme Training input Training output Reference

1 3 IMU orientations IMU lower-body joint

angles

IMU lower-body joint

angles

2 3 IMU orientations Plug-In Gait lower-body

joint angles

Plug-In Gait lower-body

joint angles

ANN2

1 IMU lower-body

joint angles

vGRF (FP) vGRF (FP)

2 Plug-In Gait

lower-body joint

angles

vGRF (FP) vGRF (FP)

Where input to ANN1 is in all cases the measured relative orientations from the three
on-body IMUs (placed at the pelvis and both lower legs), and the output can be from
the inertial (IMU) or optical (Plug-In Gait) measurements. This is then input to the kinetic
estimation part (ANN2), for which the output is all cases the measured vertical Ground
Reaction Forces (vGRF) using the forceplates (FP).

Estimated kinematic outputs were being compared to
measured reference kinematics, which were obtained from
both inertial or optical motion capture systems. To that end,
two training schemes were evaluated, as shown in Table 1, to
test the proposed method irrespective of the motion capture
technology.

Previous studies have achieved varying performance in GRF
estimation (Shippen and May, 2012; Charry et al., 2013; Faber
et al., 2016; Karatsidis et al., 2017; Nedergaard et al., 2017;
Pavei et al., 2017). Therefore, several ANNs were trained using
combinations of different input features (joint angles, pelvis,
and lower leg vertical accelerations) to select the best set of
input features. The selection of these input features is based
on their physical relation to the ground reaction forces, where

joint angles define the continuous kinematic chain (Faber et al.,
2016; Karatsidis et al., 2017) and accelerations are related to force
according to Newton’s second law of motion.

In accordance with previous work of the authors (Wouda
et al., 2016), a two-layer (with 250 and 100 neurons) function
fitting neural network architecture was used for both ANNs,
capable of mapping non-linearities between input and output.
The networks were trained for 2,000 iterations and training was
stopped early if the gradient did not decrease for 6 consecutive
iterations or if the gradient was smaller than 1×10−6. The neural
network toolbox of MATLAB R2017a (Mathworks, Inc., Natick,
MA, USA) was used to design, train, and evaluate the ANNs
described above.

Two different evaluation scenarios were evaluated to
show single (section 3.1) and multiple subject (section 3.2)
performance:

1. For each subject, evaluation was done using all running data
at 12 km/h, while data with other speeds (i.e., 10 and 14 km/h)
are used for training.

2. All data from one subject were used at turn for evaluation,
while all data of remaining subjects were used for training.
Note that, for the sake of simplicity, we will show only results
corresponding to data of running at 12 km/h.

Scenario 1 would require every new user to perform a training
phase. Scenario 2 could potentially produce a more generic
model, although the lack of personalization of the network may
result in decreased performance.

2.5. Outcome Measures
The performance of the proposed method was evaluated by
comparing both discrete and continuous outcomes, as commonly
done in similar works about biomechanical analysis of running
(Cavanagh and Lafortune, 1980; Devita and Skelly, 1992; Crowell
and Davis, 2011; Edwards et al., 2012; Schmitz et al., 2014).
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For the knee flexion/extension (F/E) the similarity between
the estimates and reference was calculated using the Pearson’s
correlation coefficient (ρ) and Root Mean Squared Error (RMSE)
(as defined by Ren et al., 2008). The mean ρ over these different
strides was calculated using a Fisher transformation to obtain
a more representative average Pearson’s correlation coefficient
(Corey et al., 1998). Additionally, the maximum knee F/E angle
during the stance phase was evaluated using a paired t-test
(significance level of 0.05) and Bland-Altman plot (Bland and
Altman, 1986). Estimated vGRFs (normalized to body weight,
BW) were also evaluated using both continuous (ρ and RMSE)
and discrete metrics (loading rate and peak vGRF). The kinetic
analysis was however limited to the stance phase of each leg (as
there is no contact during swing phase). Since the passive vGRF
peak is not clearly defined for mid- or forefoot strikers, this event
was determined using the peak acceleration from the lower leg
IMUs (Willy et al., 2008). Using this event the loading rate was
calculated as the slope of vGRF between 20 and 80 percent of the
passive vGRF peak time (Willy et al., 2008; Crowell and Davis,
2011).

3. RESULTS

Section 3.1 shows performance of the proposed method for
training and evaluating on a single subject, where the difference
between both sets is the running speed (scenario 1). Section 3.2
is about generalization of this approach over different subjects
(scenario 2).

3.1. Single Subject Learning
3.1.1. Kinematics Estimation
The accuracy of estimated knee F/E angles based on different
references (full-body IMU motion capture system or optical
Plug-In Gait output) is presented in Table 2. The estimates
provided by most individually trained ANNs have excellent
agreement (ρ > 0.99) with the reference joint angles.

Furthermore, only subject eight shows significant differences in
performance between the different references.

Mean (and standard deviation) of the estimated knee F/E
angle profiles are shown in Figure 3 for a representative subject
(S03). The largest difference between the estimate and its
respective reference can be seen at the largest flexion angle,
which is overestimated in all cases. As observed before in Table 2,
differences between the estimates based on the various references
are limited (4◦ on average).

Table 3 shows the mean (and standard deviation) of the
maximal knee F/E angle for each subject. Only inertial results
and the corresponding estimates are presented in this table for
conciseness. The mean difference in maximal knee flexion angle
during stance between the estimate and its reference are <2◦ for
all subjects, and this result shows no significant differences (p >

0.05). A small bias of 0.4◦ was found with limits of agreement
–4.1 to 4.9◦ for the comparison between the estimated maximal
knee F/E angle during stance and the corresponding reference.
Figure 4A shows the related Bland-Altman plot. Occasional
outliers (for three of the evaluated subjects) can be observed,
which are mostly overestimating the maximal knee F/E angle
during stance.

3.1.2. Kinetics Estimation
Table 4 shows an overview of performance when different
combinations of input features (joint angles, pelvis and lower
leg accelerations) are evaluated. On average the best results
(marked in bold for individual subjects) were achieved using a
combination of all vertical accelerations and joint angles as input
features. Therefore, results presented below are obtained when
ANN2 was trained using these features.

The estimated ground reaction profiles of a representative
subject (S03) are shown in Figure 5 for ANN2 based on both
reference kinematics (IMUs and Plug-In Gait). Similarly to what
was observed for the estimated knee F/E angles, differences
between the networks (ANN2) trained on the various references
are minimal. Largest differences between the estimated and

TABLE 2 | Accuracy of estimated knee flexion/extension (F/E) angles (using ANN1) with different training outputs (namely: IMU or Plug-in Gait-based), using single subject

training and evaluation.

Subjects IMU Plug-in Gait

Left F/E Right F/E Left F/E Right F/E

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 0.99 3.24 (1.53) 0.99 4.38 (1.71) 0.99 3.56 (0.97) 0.99 4.76 (1.46)

S02 0.99 1.74 (0.48) 0.99 1.77 (0.54) 0.99 4.14 (1.39) 0.99 3.79 (1.41)

S03 0.99 2.65 (0.64) 0.99 2.05 (0.53) 0.99 3.70 (1.22) 0.99 2.58 (0.72)

S04 0.99 2.60 (0.47) 0.99 2.26 (0.58) 0.99 3.02 (1.28) 0.99 3.59 (1.41)

S05 0.99 3.39 (1.79) 0.99 3.55 (2.05) 0.99 4.03 (1.19) 0.99 4.49 (1.33)

S06 0.99 3.57 (0.67) 0.99 3.52 (0.64) 0.99 2.62 (0.54) 0.99 2.27 (0.63)

S07 0.99 3.30 (0.57) 0.99 2.86 (0.51) 0.99 5.27 (1.14) 0.99 5.41 (1.21)

S08 0.99 3.95 (1.70) 0.99 3.17 (1.49) 0.98 7.33 (2.68) 0.98 8.41 (3.02)

Pearson’s correlation coefficient (ρ) is calculated for each stride and averaged over approximately 200 strides for each subject (S01, S02, S03, S04, S05, S06, S07, and S08). The Root
Mean Squared Error (RMSE) is calculated similarly over all strides. Training of the artificial neural networks was performed using running data at 10 and 14 km/h, while 12 km/h running
data was used for evaluation.
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FIGURE 3 | Mean (and standard deviation band) of the flexion/extension knee joint angle (in degrees) estimates are presented (normalized to the stride cycle)

compared to their respective references (IMU and Plug-In Gait output). These estimates were obtained from training (using running data at 10 and 14 km/h) and

evaluating (using running data at 12 km/h) on a single subject, similar results were obtained for the other subjects. The top row shows the angles of the left side and

the bottom row presents the right side. At the top of each graph Pearson’s correlation coefficient, root mean square error (RMSE) and the standard deviation (between

the brackets) are specified, which were calculated for the estimate compared to its respective reference kinematics.

TABLE 3 | The mean (and standard deviation) of discrete outcome measures for both the estimate and its corresponding reference (based on inertial full-body motion

capture data) of all subjects.

Subjects Max knee F/E angle (degrees) vGRF peak (BW) Loading rate (BW/s)

Reference Estimate Reference Estimate Reference Estimate

S01 45.41 (3.56) 45.05 (3.94) 2.79 (0.08) 2.83 (0.06) 44.39 (7.37) 45.52 (8.05)

S02 42.96 (1.55) 42.56 (1.29) 2.96 (0.07) 2.94 (0.05) 50.72 (4.93) 46.38 (6.25)

S03 35.18 (1.25) 35.55 (1.06) 2.95 (0.08) 3.00 (0.08) 58.41 (6.86) 51.90 (7.47)

S04 41.11 (1.22) 41.68 (1.17) 2.81 (0.07) 2.82 (0.05) 56.97 (8.71) 50.55 (7.60)

S05 36.38 (2.08) 38.24 (4.36) 3.21 (0.10) 3.12 (0.08) 68.77 (7.65) 64.86 (7.44)

S06 35.12 (3.05) 34.30 (2.63) 3.01 (0.09) 3.07 (0.08) 48.56 (5.13) 53.81 (5.57)

S07 39.24 (1.92) 40.85 (2.37) 2.99 (0.08) 2.98 (0.12) 58.06 (8.37) 51.73 (6.10)

S08 39.45 (1.99) 39.58 (1.65) 3.02 (0.08) 3.02 (0.07) 47.92 (7.23) 44.88 (6.11)

Mean 39.36 (3.72) 39.72 (3.59) 2.97 (0.13) 2.97 (0.10) 54.23 (7.86) 51.20 (6.44)

p-value 0.31 0.79 0.08

These estimates were obtained by training and evaluating on a single subject. Outcomes are averaged over approximately 400 steps (left and right combined). P-values are calculated
using a paired t-test with the subject mean values.

reference vGRF can be seen at the beginning of stance phase.
However, peak values are estimated with high accuracy, resulting
in correlation coefficients larger than 0.96.

Results for the discrete outcomes (peak vGRF and loading
rate) can be found in Table 3. Mean peak vGRF differences
between the estimate and its reference are within 0.09 BW
for all subjects, which resulted in no significant differences
(p > 0.05). Variation between the estimate and its reference

is larger for the loading rate, however this difference is still
not significant (p > 0.05). Figures 4B,C show the Bland-
Altman plots for both the peak vGRF and loading rate. A
small bias of 0.01 BW is present in the estimated peak vGRF,
with limits of agreement –0.17 to 0.18 BW. The loading rate
is estimated with a bias of –2.9 BW/s with limits of agreement
–16 to 10 BW/s. Both plots show occasional outliers for multiple
subjects.
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FIGURE 4 | The left side shows the correlation plot of the discrete outcome measures: maximal knee flexion angle during stance (A), peak vGRF (B), and loading rate

(C). The right side shows the corresponding difference plots of those three discrete outcome measures. Approximately 4,000 data points are shown, where different

subjects are represented by the various colors.

3.1.3. Variation in Running Speeds
Extrapolation capabilities of the proposed approach were
investigated by evaluating different running speeds for
subject 3. Figure 6 shows RMSEs for the evaluated speeds,
where the remaining trials are in the training dataset. This

figure shows that the most accurate continuous estimation
can be achieve when an intermediate speed (12 km/h) is
used, rather than the ones which are slower (10 km/h)
or faster (14 km/h) than those in their respective training
datasets.
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TABLE 4 | Accuracy of the estimated vertical ground reaction force (vGRF) using different input features (namely: joint angles (θjoint ), pelvis vertical acceleration (aP ), all
(pelvis, left and right lower leg) vertical accelerations (aP+L) or a combination of these).

Subjects Features

aP aP+L θjoint aP & θjoint aP+L & θjoint

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 L vGRF 0.97 0.26 (0.03) 0.98 0.21 (0.03) 0.99 0.20 (0.06) 0.99 0.15 (0.04) 0.99 0.12 (0.03)

R vGRF 0.96 0.26 (0.02) 0.99 0.17 (0.02) 0.99 0.21 (0.05) 0.99 0.16 (0.04) 0.99 0.15 (0.04)

S02 L vGRF 0.94 0.33 (0.03) 0.97 0.23 (0.02) 0.98 0.24 (0.07) 0.97 0.24 (0.05) 0.97 0.25 (0.03)

R vGRF 0.97 0.27 (0.03) 0.97 0.25 (0.03) 0.96 0.29 (0.08) 0.96 0.28 (0.06) 0.97 0.25 (0.04)

S03 L vGRF 0.96 0.29 (0.03) 0.99 0.14 (0.03) 0.99 0.20 (0.07) 0.99 0.12 (0.04) 0.99 0.10 (0.03)

R vGRF 0.95 0.32 (0.03) 0.99 0.11 (0.03) 0.99 0.16 (0.05) 0.99 0.10 (0.03) 0.99 0.09 (0.02)

S04 L vGRF 0.96 0.25 (0.03) 0.99 0.14 (0.03) 0.99 0.16 (0.05) 0.99 0.17 (0.04) 0.99 0.15 (0.04)

R vGRF 0.96 0.27 (0.03) 0.99 0.13 (0.04) 0.99 0.20 (0.07) 0.99 0.13 (0.04) 0.99 0.11 (0.03)

S05 L vGRF 0.97 0.28 (0.04) 0.98 0.25 (0.05) 0.95 0.37 (0.11) 0.97 0.30 (0.07) 0.97 0.30 (0.07)

R vGRF 0.98 0.27 (0.03) 0.98 0.25 (0.05) 0.93 0.44 (0.14) 0.96 0.33 (0.08) 0.96 0.33 (0.08)

S06 L vGRF 0.95 0.32 (0.03) 0.98 0.22 (0.04) 0.95 0.38 (0.09) 0.96 0.34 (0.07) 0.96 0.30 (0.05)

R vGRF 0.94 0.35 (0.04) 0.98 0.21 (0.04) 0.93 0.42 (0.10) 0.95 0.36 (0.06) 0.95 0.33 (0.05)

S07 L vGRF 0.91 0.40 (0.30) 0.96 0.27 (0.04) 0.93 0.38 (0.10) 0.96 0.30 (0.06) 0.96 0.28 (0.05)

R vGRF 0.93 0.38 (0.03) 0.96 0.28 (0.04) 0.96 0.33 (0.08) 0.96 0.29 (0.07) 0.97 0.25 (0.06)

S08 L vGRF 0.97 0.27 (0.02) 0.99 0.12 (0.02) 0.99 0.20 (0.07) 0.99 0.14 (0.04) 0.99 0.11 (0.03)

R vGRF 0.96 0.28 (0.03) 0.99 0.14 (0.03) 0.98 0.24 (0.07) 0.99 0.19 (0.05) 0.99 0.12 (0.04)

The evaluated set of features is shown above each column. These results were obtained using single subject training and evaluation. Pearson’s correlation coefficient (ρ) is calculated for
each contact and averaged over approximately 200 stance phases for each subject (S01, S02, S03, S04, S05, S06, S07 and S08). The Root Mean Squared Error (RMSE) is calculated
similarly over all contacts, and the standard deviation of the RMSE is shown in brackets. The highest correlations (ρ) and smallest RMSE are shown in bold.

Additionally, discrete outcome measures were evaluated for
the same subject, which are presented in Table 5. The peak
vGRF and maximal knee flexion during stance also show that
interpolating speeds results in more accurate outcomes than
extrapolating. However, this trend is not present for the loading
rate accuracy.

3.2. Multiple Subject Learning
The generalization performance of both ANNs were evaluated by
training with all different combinations of subjects in the training
and evaluation datasets. Table 6 (top-half) shows the results of
kinematics for the different evaluated subjects. Seven out of
the eight subject show correlations larger than 0.9, indicating
good agreement. However, the RMSE is expectantly larger than
for single subject learning (section 3.1). The estimated knee
F/E angles for subjects 1 and 3 are significantly less accurate.
Additionally, the mean estimated knee F/E angle profiles of
subject 4 are shown in Figure 7, with the measured references
used for comparison. The stance phase (until approximately 30%
of the stride cycle) is estimated with higher accuracy than the
swing phase, same behavior can be seen for single subject learning
(Figure 3).

Results of the kinetic estimations can be seen in Table 6

(bottom-half) . Similar to the joint angles, vGRFs are mostly

estimated with correlations larger than 0.9 indicating good
agreement with the measurements. However, subjects 1 and
3 show lower correlation coefficients, as was also seen for
the kinematics. Vertical ground reaction force profiles of one
representative subject (S04) are shown in Figure 8, which shows
an increase in RMSEs compared to the single subject learning
(Figure 5). The maximum estimated ground reaction forces are
mostly comparable to the reference.

The accuracy of estimating discrete outcome measures is
shown in Table 7. The estimation accuracy varies between
different subjects and outcome measures. However, in most
cases an increase in error can be seen when comparing to the
single subject training (Table 3). Additionally, an increase in the
standard deviations of the different estimated outcome measures
can be seen. However, the estimated outcome measures and
the corresponding references were not found to be significantly
different.

4. DISCUSSION

This work shows that sagittal knee kinematics and vGRF can be
estimated using only three inertial sensors placed on the lower
legs and pelvis, in particular, the peak vGRF, maximal knee F/E
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FIGURE 5 | Mean (and standard deviation band) of the estimated ground reaction forces (in BW) are presented (normalized to the stance phase) compared to their

respective references (IMU and Plug-In Gait joint angle output). These estimates were obtained from training and evaluating on a single subject, similar results were

obtained for the other subjects. The top row shows the forces of the left contacts and the bottom row presents the right contacts. At the top of each graph Pearson’s

correlation coefficient, root mean square error (RMSE) and the standard deviation (between the brackets) are specified, which were calculated for the estimate

compared to its respective reference kinematics.
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TABLE 5 | The variation in discrete outcome measures for different speeds in subject 3.

Parameter Speed Reference (IMU) Estimate

Left Right Left Right

Max knee flexion (degrees) 10 km/h 34.49 (1.10) 33.90 (1.20) 30.57 (0.98) 30.24 (1.22)

12 km/h 35.64 (1.20) 34.71 (1.13) 36.18 (0.71) 34.92 (0.98)

14 km/h 36.93 (1.24) 35.11 (1.16) 38.22 (1.58) 36.23 (2.76)

peak vGRF (BW) 10 km/h 2.85 (0.06) 2.77 (0.06) 2.76 (0.07) 2.67 (0.08)

12 km/h 3.00 (0.06) 2.90 (0.07) 3.06 (0.04) 2.93 (0.05)

14 km/h 3.13 (0.07) 3.00 (0.07) 2.96 (0.13) 2.92 (0.10)

Loading rate (BW/s) 10 km/h 52.92 (5.82) 55.11 (6.10) 46.05 (5.92) 56.05 (8.37)

12 km/h 55.47 (6.12) 61.34 (6.29) 47.67 (6.28) 56.13 (6.03)

14 km/h 63.25 (7.31) 67.17 (9.78) 59.11 (9.06) 55.52 (13.91)

The mean (and standard deviation) of peak vGRF, loading rate and max knee flexion during stance are shown for both the estimate and its corresponding reference (based on inertial
full-body motion capture data), these are calculated over approximately 400 steps (left and right combined). The artificial neural networks were trained using running data of two speeds
(different from the evaluation speed), while the shown speed was used for evaluation.

TABLE 6 | Accuracy of the estimated knee flexion/extension (F/E) angles (by ANN1) and vertical ground reaction forces (vGRF) (by ANN2) using different training outputs

(namely: IMU or Plug-in Gait-based) by training on data of all subjects except for one which is used for the evaluation at 12 km/h.

Knee F/E angle accuracy

Subjects IMU Plug-in Gait

Left F/E Right F/E Left F/E Right F/E

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 0.88 19.11 (4.92) 0.83 19.47 (3.66) 0.77 25.05 (2.20) 0.83 23.57 (2.13)

S02 0.99 8.57 (0.74) 0.99 8.09 (0.79) 0.98 11.87 (1.08) 0.98 6.76 (0.71)

S03 0.95 14.92 (1.54) 0.94 11.08 (1.32) 0.91 15.19 (1.54) 0.91 22.57 (4.03)

S04 0.98 8.35 (0.76) 0.98 6.68 (1.12) 0.93 11.36 (0.93) 0.98 6.90 (0.94)

S05 0.98 9.89 (1.10) 0.98 7.00 (1.28) 0.96 19.62 (3.62) 0.97 7.41 (1.43)

S06 0.98 7.33 (1.00) 0.99 6.99 (1.07) 0.97 7.70 (0.99) 0.98 8.76 (1.46)

S07 0.98 5.88 (0.68) 0.99 4.83 (0.99) 0.98 6.83 (0.81) 0.98 6.62 (0.85)

S08 0.98 6.36 (1.18) 0.99 4.66 (0.92) 0.98 6.29 (1.09) 0.99 7.21 (0.89)

vGRF accuracy

Subjects IMU Plug-in Gait

Left vGRF Right vGRF Left GRF Right vGRF

ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ ) ρ RMSE (σ )

S01 0.92 0.45 (0.10) 0.90 1.25 (0.25) 0.94 0.52 (0.11) 0.86 0.56 (0.08)

S02 0.95 0.31 (0.08) 0.99 0.16 (0.03) 0.98 0.22 (0.04) 0.97 0.27 (0.05)

S03 0.95 0.50 (0.18) 0.98 0.60 (0.09) 0.83 0.81 (0.19) 0.97 0.38 (0.07)

S04 0.98 0.26 (0.06) 0.95 0.32 (0.05) 0.95 0.34 (0.19) 0.98 0.30 (0.05)

S05 0.99 0.21 (0.05) 0.97 0.32 (0.07) 0.97 0.33 (0.08) 0.99 0.20 (0.07)

S06 0.98 0.25 (0.04) 0.94 0.36 (0.03) 0.97 0.28 (0.04) 0.99 0.20 (0.04)

S07 0.96 0.30 (0.04) 0.98 0.22 (0.04) 0.97 0.29 (0.05) 0.97 0.27 (0.05)

S08 0.93 0.46 (0.05) 0.98 0.24 (0.04) 0.91 0.44 (0.05) 0.98 0.28 (0.04)

Pearson’s correlation coefficient (ρ) is calculated for each stride and averaged over approximately 200 strides for each different test subject (S01, S02, S03, S04, S05, S06, S07 and
S08). The Root Mean Squared Error (RMSE) is calculated similarly over all strides.
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FIGURE 7 | Mean (and standard deviation band) of the flexion/extension knee joint angle (in degrees) estimates are presented (normalized to the stride cycle)

compared to their respective references (IMU and Plug-In Gait joint angle output). These estimates were obtained from training on multiple subjects and evaluating on

a different subject, and were comparable to the other evaluated subjects. The top row shows the angles of the left side and the bottom row presents the right side.

At the top of each graph Pearson’s correlation coefficient, root mean square error (RMSE) and the standard deviation (between the brackets) are specified, which were

calculated for the estimate and its respective reference kinematics.

0 20 40 60 80 100

Stance Phase (%)

0

0.5

1

1.5

2

2.5

3

3.5

L
e

ft
 v

G
R

F
 (

B
W

)

 = 0.978, RMSE = 0.26 (0.06)

IMU

Estimated

0 20 40 60 80 100

Stance Phase (%)

0

0.5

1

1.5

2

2.5

3

3.5

R
ig

h
t 
v
G

R
F

 (
B

W
)

 = 0.950, RMSE = 0.32 (0.05)

IMU

Estimated

0 20 40 60 80 100

Stance Phase (%)

0

0.5

1

1.5

2

2.5

3

3.5

L
e

ft
 v

G
R

F
 (

B
W

)

 = 0.953, RMSE = 0.34 (0.19)

Plug-In Gait

Estimated

Subject 4 (12km/h)

0 20 40 60 80 100

Stance Phase (%)

0

0.5

1

1.5

2

2.5

3

3.5

R
ig

h
t 
v
G

R
F

 (
B

W
)

 = 0.981, RMSE = 0.30 (0.05)

Plug-In Gait

Estimated

FIGURE 8 | Mean (and standard deviation band) of the estimated vertical ground reaction forces (in BW) are presented (normalized to the stance phase) compared to

the measured reference. These estimates were obtained from training on multiple subjects and evaluating on a different subject, and were comparable to the other

evaluated subjects. The top row shows the forces of the left contacts and the bottom row presents the right contacts. At the top of each graph Pearson’s correlation

coefficient, root mean square error (RMSE) and the standard deviation (between the brackets) are specified, which were calculated for the estimate and its respective

reference kinematics.
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TABLE 7 | The mean (and standard deviation) of discrete outcome measures for both the estimate and its corresponding reference (based on inertial full-body motion

capture data) of all subjects.

Subjects Max knee F/E angle (degrees) vGRF peak (BW) Loading rate (BW/s)

Reference Estimate Reference Estimate Reference Estimate

S01 45.41 (3.56) 65.90 (24.61) 2.79 (0.08) 3.82 (0.96) 44.39 (7.37) 33.86 (35.59)

S02 42.96 (1.55) 33.04 (1.19) 2.96 (0.07) 2.92 (0.13) 50.72 (4.93) 43.91 (7.38)

S03 35.18 (1.25) 40.21 (5.38) 2.95 (0.08) 2.72 (0.64) 58.41 (6.86) 38.72 (8.27)

S04 41.11 (1.22) 38.35 (3.73) 2.81 (0.07) 2.86 (0.14) 56.97 (8.71) 70.75 (12.11)

S05 36.38 (2.08) 41.88 (3.81) 3.21 (0.10) 3.15 (0.19) 68.77 (7.65) 48.87 (17.20)

S06 35.12 (3.05) 37.42 (2.68) 3.01 (0.09) 3.01 (0.12) 48.56 (5.13) 41.47 (3.58)

S07 39.24 (1.92) 38.97 (3.65) 2.99 (0.08) 2.91 (0.08) 58.06 (8.37) 58.19 (8.75)

S08 39.45 (1.99) 38.36 (1.68) 3.02 (0.08) 3.17 (0.23) 47.92 (7.23) 56.06 (10.79)

Mean 39.36 (3.72) 41.77 (10.08) 2.97 (0.13) 3.07 (0.34) 54.23 (7.86) 48.98 (12.10)

p-value 0.47 0.26 0.37

These estimates were obtained by training on multiple subjects and evaluating on a different subject (using running data at 12 km/h). Outcomes are averaged over approximately 400
steps (left and right combined). P-values are calculated using a paired t-test with the subject mean values.

angles during stance, and the knee F/E angles and vGRF profiles
are estimated with no significant differences with respect to the
reference.

Estimation of joint angles for a single subject has shown
to be more accurate (average RMSE < 5◦) than was achieved
in previous work of the authors (average RMSE ≈7◦) (Wouda
et al., 2016). This can partly be explained by the difference in
composition of the training databases between both methods,
since the current dataset had less variation of motions, i.e., only
running. This approach requires obtaining reference kinetics and
kinematics of each subject, i.e., each subject has to run on an
instrumented treadmill.

Additionally, multiple subject learning results showed good
agreement (ρ > 0.9) for most subjects in the continuous
outcomes. However, the ANNs could not generalize over
all idiosyncrasies of the individual subjects as RMSEs and
differences in discrete outcomes increased, expectantly. Subjects
had different landing patterns (heel, mid, or forefoot striking),
which may be a reason for the degraded performance shown
for example in subject 1. By including more subjects different
models could be trained for each different landing phenotype.
Alternatively, larger soft-tissue artifacts of the inertial sensors
compared to the other subjects may explain the degraded
performance.

No significant differences were found between any of the
reference and estimated discrete outcome measures, for both
evaluation scenarios. However, the required accuracy would
largely be defined by the application of interest. An example of
such an application could be tracking kinematic/kinetic changes
due to fatigue, since they may relate to increased chance of injury
(Reenalda et al., 2016). However, more data (specific for such an
application, e.g., running under fatigue) should be acquired to
evaluate if the proposed approach can track such differences.

The running mechanics in this work are estimated based on
inertial or optical motion capture data. Each of these technologies
have their advantages and disadvantages (Field et al., 2011).
Differences in the reference knee F/E profiles for the different

technologies are observed for the results in section 3.1.1, which
can be explained by differences in the underlying models of
the human body and their assumptions (Kainz et al., 2016).
However, the estimated kinematics based on the different
technologies are similar to their respective measured kinematics.
This shows that the method has potential to be applied in this
context irrespective of the preferred technology for recording
training data. Therefore, the proposed method has potential to
estimate output based on other kinematic references, such as
biomechanical models driven by optical data (Delp et al., 2007;
Stief et al., 2013).

The measured dataset contains only treadmill running,
however, the proposed method is not limited to be applied
under these conditions. Evaluating the proposed method in a
different setting (e.g., outdoor running) might result in less
accurate estimations of knee F/E angles and vGRFs. To improve
such results, the dataset can be extended by including running
at different slopes of the treadmill. Furthermore, 3D ground
reaction forces could be measured using pressure insoles for
example (Rouhani et al., 2010), which enables data collection
in any running environment for training data collection.
Extrapolating kinematic and kinetic data outside of the training
dataset appears to be more difficult than interpolating such
data. This was shown by the degraded performance after
training with different running speeds or extrapolating over
various subjects. This indicates that careful construction of
the training dataset is required to obtain the best possible
performance.

A limitation of the proposed method is that only vertical
kinetics can be estimated. This can be contributed to the
available measurement setup, since it would require a treadmill
instrumented with a force plate that can measure three-
dimensional forces. However, our proposed method could be
extended using the three-dimensional GRF estimation approach
of Karatsidis et al. (2017) using full-body inertial motion capture.
Furthermore, only sagittal plane knee kinematics could be
estimated in the proposed approach, possibilities of estimating

Frontiers in Physiology | www.frontiersin.org 12 March 2018 | Volume 9 | Article 218

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wouda et al. Running Performance With Minimal Sensing

kinematics of other joints and/or planes would require additional
research.

The concatenated ANN approach allows for training the
ANN1 (kinematics) independent of the ANN2 (kinetics). This
enables the use of only inertial motion capture data in various
environments for training ANN1. Instead of concatenating
two ANNs, a single ANN could be trained to map relative
orientations and vertical accelerations to ground reaction forces
and joint angles. Initial tests show comparable results for single
subject training, however, multiple subject training was less
successful.When one ANN is trained to estimate both kinematics
and kinetics, cross-dependencies between features and outputs
become important, which is less so for concatenated ANNs. This
can be seen in the differences in accuracy between estimation
of kinematics (ANN1) and kinetics (ANN2) for multiple subject
training in section 3.2.

Figure 5 shows differences in the measured reference vGRF
between left and right stance phases, which can also be
seen from the estimated output. This could indicate that the
proposed method is capable of detecting differences between
left and right kinetics. Note that, given the relatively short
duration of the running sessions, effects of fatigue could not be
evaluated using the current setup, but it is an interesting future
development.

The estimated vertical ground reaction forces (ρ > 0.99 and
RMSE < 0.27 BW) using the proposed method are comparable
to that of Faber et al. (2016) (R2 > 0.981 and RSME < 10 N),
who estimated GRFs during a bending task by using a full-body
inertial motion capture system. Karatsidis et al. (2017) evaluated
a similar approach on walking using inertial sensors, where the
errors are comparable to the ones reported in the proposed
method. Charry et al. (2013) showed that by exploiting only tibial
accelerations to estimate peak vGRFs an approximate RMSE of
6% can be achieved, however this method was only applied to
training and testing on individual subjects. Shippen and May
(2012) estimated vGRF more accurately (3% error) than the
proposed method, by relying on full-body optical motion capture
for their method. Pavei et al. (2017) reported similar performance
in estimation of the loading rate, while our proposed method
was shown to estimate peak vGRFs more accurately. Charry et al.
(2013) reported peak vGRF estimation errors of approximately

6%, whereas our proposed method is able to estimate peak vGRF
with an accuracy of <0.10 BW (≈3.5%).

5. CONCLUSIONS

This work has shown the potential of estimating kinetics (vGRF)
and kinematics (knee F/E angles) during running using a
minimal on-body sensor setup (namely, three sensor devices
placed on the lower legs and pelvis). Best performance can be
obtained when the proposed approach is applied to a single
subject. Training over multiple subjects was shown to be possible,
since good agreement between the estimates and references were
achieved, however the RMSEs are larger than for single subject
training. In other words, the proposed method has potential to
be applied for individual subjects, and with additional research
can be extended for running in various environments.
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