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ABSTRACT

This paper discusses one of the problems associated with
establishing acceptable vibration levels for rotating machinery
related to non collocation of critical vibration and available
measurement locations. A critical vibration location is any
point along the rotor which has a reduced clearance or a high
potential for rubbing, such as seal locations. Non collocation
occurs because the physical and/or environmental conditions at
the critical locations prohibit the installation of suitable
measurement transducers at those points. This leads to the
dilemma of correlating the critical and measured vibration
responses so the machine can be protected at the critical
locations using the known responses at the measurement
positions. This paper presents a method for estimating the
vibration amplitudes and phases, either synchronous or
nonsynchronous, at the critical locations using the known
vibration responses at the measurement points, the current
operating speed, the machine configuration data, and
optimization techniques. A computer program has been
developed for a personal computer running Windows 3.1
under DOS 5.0 which uses finite element modeling of the rotor
to create a calculated rotor response and a data acquisition
system to get the actual measured responses. A local
convergence algorithm is then implemented to minimize the
error between the calculated and measured vibration responses
at the measured locations. The calculated responses at the
critical locations then become the estimated vibration response
for these points. To evaluate the accuracy of the technique,
experiments were conducted using a rotor rig in which the
vibration responses at both the critical and measurement
locations were measured.

The computer program was then used to estimate the
vibration responses at the critical locations. The estimated
vibration responses were then compared with the measured

responses at the same location to evaluate the effectiveness of
the technique.

The results of these experiments are also included in this

Paper.

NOMENCLATURE
As = Element shaft cross sectional area
Ad = Disk cross sectional area
Db = Bearing damping
Ii = Element shaft inside diameter bending moment of

inertia
Jo = Element shaft outside diameter bending moment of

inertia
Kb = Bearing stiffness
Kd = Bearing direct dynamic stiffness
Kq = Bearing quadrature dynamic stiffiiess
IA = Disk length
Ls = Element shaft length
SNR = Signal to noise ratio

= Average circumferential fluid velocity
pd = Disk density
ps = Element shaft density
03 = Forcing function rotative speed

= Rotor rotative speed

INTRODUCTION

Non collocation of measurement and critical machinery
protection locations, any location along the rotor with a
reduced clearance or a high potential for rotor to stator contact,
has been a problem faced by machinery engineers ever since
the first measurement probes were installed on their
machinery. The process of trying to guess what the measured
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Figure 1. Typical modal probe installation on a multi-bearing
machine

vibration at the bearings will be just before the available
clearance is exceeded at an internal location is complicated by
unknown forcing functions, operation through several lateral
modes, and sparsity of measurement locations. For rigid
machines, these problems are easily overcome. However, for
flexible machines which must pass through several lateral
modes getting to operating speed, this becomes more difficult,
since the correlation between measured and critical vibration
responses changes with unbalance distribution, operating
speed, natural rotor modes, and other operating conditions.
The creation of two measurement locations near the bearings,
namely, "modal" probes, instead of just one, increases the
measurement location density, which can lead to an
improvement in the estimation of the actual operating mode. If
a multi-bearing machine train (Fig. 1) is considered, several
data interpolation/extrapolation techniques could be used,
some of which are outlined below.

Linear Extrapolation: For linear extrapolation, the
bearing closest to the desired location would be selected. The
equation of the straight line through these two data points
can then be used to fmd the response amplitude and phase
at other axial locations. This technique is useful for rigid
modes, but starts producing errors as soon as the rotor begins
to bend. Clearly, another technique must be found if
extrapolation for rotor bending modes is required.

Polynomial Extrapolation:	Polynomial extrapolation
requires that a polynomial of order one less than the number
of measurement locations be generated. This polynomial
equation can then be used to calculate the vibration response at
any axial location. This technique might seem to be ideal for
the task at hand. However, high order interpolation
polynomials tend to produce large errors for a great many
functions, especially if any noise contamination exists in the
measured signals.

Spline Fits: The mathematicians answer to the errors
introduced by high order polynomials are spline fits.
Generally, spline fits replace a single high order polynomial
with several lower order polynomials, each of which is used for
some portion of the data range. In order to smooth the
transitions from one polynomial to the next, both the response

amplitude and phase, and several of its derivatives are forced
to be identical for adjoining polynomials at the transition
points. The measurements give the response vectors, but there
are no measurement devices that measure derivatives directly.
Therefore, they must be calculated from the response
amplitudes. Modal probes allow the first derivative to be
approximated reasonably well. However, to calculate the
second derivative, another point is necessary. A spline fit
algorithm would go to the next available data point to get this
required information. However, if we notice how far that point
is from the desired location, across a rotor span, you have to
wonder whether this point provides any useful information
about the second derivative at the original location. Based on
this, spline fits are not good candidates for extrapolation of
responses along machine trains.

Cubic Polynomials: If each rotor span is processed
separately, a cubic polynomial could be constructed which
passes through the four measurement locations at the support
bearings. This allows good approximations up to and
including the second bending mode for the selected rotor span.
Assuming that no more relevant information was available, this
technique would probably give the best results in the field.

There exists, however, some additional information which
could lead to better extrapolated responses. The physical
configuration of the system is useful data that is often
overlooked. This includes the bearing locations with their
stiffnesses, the operating speed, and the physical description of
the rotor. There are several methods suitable for using the
system information in conjunction with the measured data to
extrapolate vibration responses. The eigenvectors can be
computed, and used as a new modal coordinate system. The
number of degrees of freedom can then be reduced by
discarding all coordinates except those that describe the
desired modes. Either optimization or auto correlation
techniques could then be used to determine the coefficients of
each mode. The response at the desired location could then be
obtained by translating back to the original coordinate system.
This paper explores an alternate approach based on finite
element or transfer matrix techniques to compute vibration
responses at the measured locations and optimization of the
unbalance force distribution to minimize the error between
these computed responses and the actual measured responses.
Similar techniques have been used for machinery parameter
identification by other researchers (Nordmann, Diewald
(1990), Mottershead (1991), Muszynska, et al (1992)). A
computer program implementing this process, along with
preliminary results from experimental testing, is presented.

FINITE ELEMENT OPTIMIZATION TECHNIQUE

The flow diagram for the computer program is shown in
Figure 2. The first task for the machinery engineer consists of
inputting the system configuration. This includes portioning
the rotor into finite elements, identifying the bearing locations
and stiffnesses, the measurement locations, the critical or
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COMPUTE SYSTEM MATRE(
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CALCUIATE FORCED RESPONSE

REFDIE FORCE DISTRIBUTION

STORE VIRTUAL DATA

INCREMENT DATA SAMPLE

extrapolation locations, and the unbalance forces. The only
constraint in portioning the rotor is that measurement and
critical locations must occur at the left end of an element. For
good modeling accuracy, the rotor must be broken into enough
elements for adequate representation. This usually results in
more computational nodes than desired extrapolation points.
In order to specify which computational nodes correspond with
extrapolation locations, the concept of virtual measurement
locations is used Measurement locations can be declared as
either real or virtual. Real measurement locations get their data
directly from the data acquisition system. The virtual locations
receive their data from the program's computed response data
at the node corresponding with that location once the
optimization is complete. The computed data at other
computational nodes is discarded. This technique reduces the
amount of memory required for data storage, and also formats
the extrapolated data as if it were measured data, thereby
allowing the use of the same presentation routines for both
types of data. If all the system parameters — rotor
configuration, support stiffnesses, operating speed, and
unbalance force distribution — were known, the responses at
the extrapolation locations could be computed directly.
However, this is usually not the case. The rotor parameters,
dimensions and materials of the shaft and attached disks, can
be obtained from drawings or measurements. The bearing
stiffnesses are a little harder to obtain since they depend on
installation and operating conditions. However, reasonably
good approximations may be obtained using perturbation or
other techniques. The use of this program in conjunction with
synchronous perturbation techniques to determine bearing
stiffnesses is discussed by Muszynslca, et al (1992). If the
unbalance force distribution were known, the responses at the
critical locations could be computed directly without any
optimization. However, this is rarely the case. The goal of the
optimization technique is to get a good enough approximation
to the actual unbalance force distribution that it can be used to
compute the responses at the critical locations. Any known
unbalance forces can be input. However, unbalance forces
specified at this time for locations which will be defmed as
optimization locations will only be used to compute initial
conditions.

The second task shown in the flow diagram is to determine
which elements contain unbalance forces that will be involved
in the optimization process. Allowing control over the number
of optimization variables lets the user trade length of time to
get a solution, with the resolution of the approximation to the
unbalance distribution. At this point in the program, all of the
initial data available to the user has been input to the program.
The program also uses transient data captured by a data
acquisition system from the machine. For brevity, the
optimization process will be explained using only one speed,
but is actually performed at each sampled rotative speed
contained in the data.

The first step in the optimization loop is to obtain the
measured data that will be used as the reference data. Initial
values are then assigned to the unbalance forces selected as
optimization variables. The next step is to compute the system

INPUT ROTOR CONFIGURATION

SELECT FORCE OPTIMIZATION LOCATIONS

Figure 2. Flow diagram for computer program to extrapolate
measurements to other axial locations

stiffness matrix. In order to build an algorithm that can
operate efficiently on a personal computer, some limitations
and special techniques have been implemented in the
construction of both the element and system stiffness matrices.
The limitations are a result of only allowing the modeling
elements to be axisynunetric cylindrical elements or external
disks attached to the shaft elements with no gyroscopic effects,
and assuming rigid foundations at the support locations. These
limitations are not inherent to the finite element calculation
technique, which is not the primary subject of this paper, but
have been imposed on this program to drastically reduce the
computational time to produce the system response to a
particular unbalance distribution without significantly affecting
the accuracy of the results for the rotor system being used as a
test case. This produces a much more efficient environment
for research into the optimization techniques, the primary
research subject of this paper, since results from changes to the
program algorithms can be obtained much quicker. Once the
optimization algorithms have been finalized, the limitations in
the finite element modeling can be removed allowing more
complex rotor systems to be modeled accurately. These
limitations do make the current program inadequate for some
machines. However, it is still applicable to a large number of
rotating machines currently in service. This is especially true
if the computed response is allowed the same magnitude of
error usually inherent in the measurement process. These
limitations force the system stiffness matrix to be the
narrowest band symmetric formulation possible, which not
only allows the use of the simplest and fastest matrix inversion
algorithms, but also reduces the amount of computer memory
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Figure 3. Layered construction of element stiffness matrix
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Figure 4. System forced response equations, showing layered construction of stiffness and force matrices

required to store the matrix, an important consideration when
using personal computers with DOS operating systems.

Besides element modeling limitations, superposition is used
to reduce computational time. As shown in Figure 3, each
element stiffness matrix is constructed in layers. The base
layer contains all of the stiffness terms for the element that do
not contain optimization variables. That is, if the element is
not selected as an optimization location the base layer contains
all three layers, mass, shaft stiffness, and bearing stiffness, and
the optimization layer is empty. If the shaft stiffness of the
element is selected as an optimization parameter then the shaft
stiffness layer is placed in the optimization layer instead of the
base layer. The same is true for the bearing stiffness layer if
the bearing stiffness is selected as an optimization parameter.
The mass layer is always placed in the base layer since mass
can not be selected as an optimization parameter. The system
matrix is also constructed in layers, a base layer and an
optimization layer, as shown in Figure 4. The system base
layer is generated using the element base layers, while the
system optimization layer is generated from the element

optimization layers. This speeds computations since only the
terms associated with the optimization variables need to be
recomputed for each iteration instead of the whole system
matrix. It should also be noted that the unbalance force matrix
is constructed in layers in the same manner as the system
stiffness matrix. Now that the force and stiffness matrices
exist, it is time to solve for the response matrix. It should be
noted that for data extrapolation, all of the optimization
variables are contained in the force matrix. If a solution
technique is used in which the system matrix can be modified
once and then used in its modified form for future calculations,
a significant reduction in computational time will result. This
can be accomplished with either full inversion or LU
decomposition. This program uses a variation of LU
decomposition, square root method (Al-Khafaji, et al, 1986),
which takes into account the banded symmetric diagonal form
of the stiffness matrix to reduce the computation necessary
to produce the decomposed form. After the response has been
calculated, the least squared error is computed between
the measured and calculated data. If the error is acceptably
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small, the required calculated responses are placed in the
virtual measurement locations, and the program proceeds to
the next rotative speed. If the error is too large, the program
uses Powell's method of discarding the direction of largest
decrease (Press, et al, 1986) to control the optimization
directions and Brent's method (Press, et al, 1986) for finding
the minimum along a direction to refme the force distribution.
A new response matrix is computed using the new force
distribution, and the error recomputed. This process is
repeated until the error between the calculated and measured
responses is acceptably small.

EXPERIMENTAL RESULTS
To test the validity of the technique and the program, a

small rotating machine was constructed using oilite bearings,
and a 0.375 inch diameter shaft 18 inches long with two heavy
discs attached. The system was driven by a 0.1 hp motor
through a flexible coupling. Synchronous measurements were

P0930./.
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Figure 5. Block diagram of experimental rotor rig and
instrumentation used to verify operation of computer program

to extrapolate vibration responses

taken with an eight- channel data acquisition/filtering system
and then downloaded to the personal computer for post
processing. Figure 5 is a block diagram of the system. The
rotor was modeled by twenty-six elements, as shown in Figure
6 . Notice that each probe location has a corresponding
computational node which can be directly compared with the
measured value during the optimization process. The bearing
stiffness values were determined using synchronous force
perturbation methodology and this program with the bearing
stiffness parameters as the optimization variables. Once these
values were determined, they were assumed to be constant,

Figure 6. Experimental rotor rig shaft showing finite
element construction and measurement transducer locations

which fixed all the terms in the system stiffness matrix. At
this point, a start-up was performed and data collected from all
of the measurement locations. Different sets of modal probes
were selected at each end of the rotor, and the responses at the
other measured locations were then extrapolated and compared
with the actual measured responses. If one of the modal
probes was located near an antinodal point, the extrapolated
and measured responses are virtually identical. As both the
modal probes approach a nodal point, the error in the
extrapolated responses tends to increase (see Figure 7), but

9a

Figure 7. Extrapolated data for measurement planes 3, 4 5, and 6 using measurement planes 1,2, 7, and 8 as modal measurement
locations presented in the form of polar plots of synchronous vibrations. Solid lines are measured data, broken lines are extrapolated

data.
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are still within 20 percent, an acceptable range for machinery
diagnostic work. The noise or uncertainty of the measurements
seems to be fairly constant along the shaft, which produces
good signal-to-noise ratio (SNR) near the antinodal points and

algorithms may improve results even further. Both items are
currently under investigation. Computational complexity can
be reduced to give acceptable performance on personal
computers, and as computational power is increased, either

	1.8441	 '	 •	'	•L	I	" I	" "I	'''''

I	I	I	.1	 T	I	I
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Figure 8. Unbalance force distribution versus rotative speed created during optimization process. Solid lines are computed responses;
broken lines are the unbalance forces used to create the transient data. The left plot is the direct component of the unbalance force,

while the right is the quadrature component. "Direct" and "quadrature" refer here to orthogonal coordinates referenced to the
measurement transducers.

poorer SNR near the nodal points. The quality of the
extrapolation is directly proportional to the SNR. This
indicates that the technique is highly accurate as long as good
SNRs are maintained in the measured data. The computed
force distribution required to optimize the error term is almost
identical with the unbalance force used to generate the data
(see Figure 8). This indicates that the method might enhance
balancing techniques, requiring no calibration weight runs to
get the unbalance distribution. Effectively, the influence
vectors are calculated from the system stiffness matrix so the
manual calibration runs can be eliminated.

FINAL REMARKS

The technique of extrapolating vibration response from
measured planes to other axial locations on the rotating
machine using finite element modeling, optimization theory,
and actual measured responses provides useful information for
machinery protection and diagnostics. It worked acceptably
well for the laboratory experiments performed to evaluate
whether the technique would work under controlled conditions.
It must be recognized that these experiments were not designed
to be field representative. More work must be done to validate
the procedure for field use. However, the preliminary results
are encouraging. If good SNRs can be maintained in the field,
the technique will probably produce acceptable results.
Currently, measurements tend to be taken at the bearings,
which are usually near nodal points. This practice doesn't
produce optimal measured data. However, the greater density
of measurements, when modal probes are used, increases the
database and improves the technique's performance.
Additional data processing and different optimization

speed or modeling complexity can be increased. In short, the
procedure can enhance future diagnostic systems, but further
research into error terms and SNR increases may be necessary
to allow the technique to function adequately for inexperienced
users in field applications.
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