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ABSTRACT:

The low operational cost of using freely available remote sensing data is a strong incentive for water agencies to complement their

field campaigns and produce spatially distributed maps of some water quality parameters. The objective of this study is to compare

the performance of Sentinel-2 MSI and Landsat-8 OLI sensors to produce multiple regression models of water quality parameters

in a hydroelectric reservoir in Brazil. Physical-chemistry water quality parameters were measured in loco using sensors and also

analysed in laboratory from water samples collected simultaneously. The date of sampling corresponded to the almost simultaneous

overflight of Sentinel-2B and Landsat-8 satellites which provided a means to perform a fair comparison of the two sensors. Four

optically active parameters were considered: chlorophyll-a, Secchi disk depth, turbidity and temperature (the latter using Landsat-8

TIR sensor). Other six optically non-active parameters were also considered. The multiple regression models used the spectral

reflectance bands from both sensors (separately) as predictors. The reflectance values were based on averaging kernels of 30 m and

90 m. Stepwise variable selection combined with a priori knowledge based on other studies were used to optimize the choice of

predictors. With the exception of temperature, the other optically active parameters yielded strong regression models from both the

Sentinel and Landsat sensors, all with r2 > 0.75. The models for the optically non-active parameters produced less striking results

with r2 as low as 0.03 (temperature) and as high or better than > 0.8 (pH and Dissolved oxygen).

1. INTRODUCTION

The use of remote sensing techniques to assess water resources

started in the 60’s with the availability of the first digital satel-

lite images (Mertes et al., 2004). Initially, it was the presence

of chlorophyll-a (chl-a) in the water and the water surface tem-

perature that motivated the use of such techniques and also mo-

tivated the study of optical properties of water components to

determine if these water quality related parameters could be es-

timated remotely (Mishra et al., 2017). It is the relation between

the spectral behaviour of water and the presence of optically

active components (OAC) that make remote sensing and digital

image processing valuable tools to monitor the quality of wa-

ter. The fact that water has a very distinctive spectral signa-

ture, characterised mostly by its strong absorption in the near

and shortwave infrared makes it easily detectable using these

wavelengths (Teodoro, 2016). The interaction between solar

radiation and OAC alters the spectral properties of water and

can therefore be used as indicators of water quality (Barbosa et

al., 2019).

Traditional methods for monitoring water quality parameters

involving the extraction and analysis of water samples are

known to consume a lot of time and resources (Karaoui et

al., 2019, Yepez et al., 2018) and demand very specialised la-

bour (Giardino et al., 2010), even more so for large reservoirs.

In comparison, remotely monitoring some water quality para-

meters using satellite images can largely reduce these costs

while providing spatially distributed estimates with a higher

∗Corresponding author

frequency in time. A large number of satellite missions sys-

tematically acquire image and point data of the Earth with a

variety of spectral and spatial resolution. Some of these satel-

lites can be used to estimate water level through radar altimetry

while others equiped with optical sensors produce image data

that can be used to estimate water quality parameters. Within

the realm of missions providing systematic optical image ac-

quisition, the Landsat (National Air and Space Administration

- NASA) and Sentinel-2 (European Space Agency - ESA) pro-

grams offer high resolution optical image products in a free and

open data policy. The Landsat-8 satellite (launched in 2013)

is equipped with the Optical Land Imager (OLI) and offers a

revisit frequency of 16 days while Sentinel-2A (launched in

2015) and 2B (launched in 2017) is a twin satellite constella-

tion equipped with the MultiSpectral Imager (MSI) providing

together image data every 5 days almost anywhere.

Recent research in many parts of the world involving water

quality have made use of data from Landsat-8 (Liu, Wang,

2019, González-Márquez et al., 2018, Mushtaq, Nee Lala,

2017), Sentinel-2 (Karaoui et al., 2019, Potes et al., 2018) or

both (Dutra et al., 2019, Yadav et al., 2019, Watanabe et al.,

2018). Table 1 gives a list of some of these authors with the

sensor they used and the parameters they analysed. In paral-

lel to the development of remote sensing applications for wa-

ter quality, spatial modelling together with statistical inference

have become common use for creating distributed models of

bio-optical parameters of water quality. Correlation as well as

simple and multiple regression analysis have been used widely

for this purpose (Mainali et al., 2019).
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Author Parameter Sensor

Liu, Wang
(2019)

Turbidity OLI

González-
Márquez et al.
(2018)

Turbidity, DO, condutivity,
pH, depth

OLI

Mushtaq, Nee
Lala (2017)

pH, COD, DO, alkalinity,
hardness, chloride, TDS,
TSS, turbidity, condutivity,
phosphate

OLI

Karaoui et al.
(2019)

OD, nitrate, total phos-
phorus, phosphate, chl-a

MSI

Potes et al.
(2018)

Chl-a, turbidity, cyanobac-
teria

MSI

Dutra et al.
(2019)

Chl-a, CDOM, TSS, tur-
bidity

OLI & MSI

Yadav et al.
(2019)

Chl-a OLI & MSI

Watanabe et
al. (2018)

Chl-a OLI & MSI

Table 1. Water quality studies using MSI, OLI or both.

In Brazil, the legislation requires managing agencies of large

reservoirs to periodically monitor a number of water qual-

ity parameters that they must make publicly available to so-

ciety, regardless of their use (water supply, energy, leisure,

etc.). This is the case of the Três Marias Reservoir in Minas

Gerais constructed in the 50’s mostly for regulating the dis-

charge of the São Francisco River and to generate hydroelectric

power (Cachapuz, 2006). Up to now, this has been performed

by traditional in situ methods of water sampling and laboratory

analysis. The time and efforts allocated to in situ monitoring

hinders actions of environmental preservation and control in a

satisfactory time frame, especially given the peculiarities and

size of such reservoirs (Karaoui et al., 2019).

The high costs associated with this practice has brought the

CEMIG (Companhia Energética de Minas Gerais) to investig-

ate alternate methods of monitoring using remote sensors both

on satellite and aerial platforms. The objective is to optimise

the in situ campaigns and to reduce the number of parameters

requiring laboratory analysis and to provide a distributed ver-

sion of some of these parameters, mostly for the OACs. Within

this general workframe, our objective is to evaluate which para-

meters and to what extent the sensors on-board the Landsat-8

and Sentinel-2 satellite can provide satisfactory estimates. In

this study we used a fully empirical approach through multiple

regression to create models of both OAC and NOAC (Non Op-

tically Active Components) for the particular case of the Três

Marias Reservoir.

2. METHODOLOGY

2.1 Study Area

The Três Marias Reservoir is located within the São Francisco

Basin in Central Minas Gerais (18o10” e 19o00”S; 44o50” e

45o35”W). It flooded an area of 1090 km2 at its maximum

level (576.2 m) to contain approximately 20 Gm3 of water.

With these dimensions, Três Marias occupies the ninth and

tenth place in ranking of Brazilian reservoirs in terms of area

and volume respectively (von Sperling, 1999). The reservoir is

characterised by a highly dentritic shape (Figure 1) and is inser-

ted in a two seasons semi-humid climate, one dry winter season

and one wet summer receiving most (>85%) of the 1440 mm

of rain yearly.

2.2 Aquisition of In Situ Limnological Data

The water sampling was done between 8H00 and 14H00 local

time on 4 October 2019. The sampling locations were selec-

ted considering a number of factors including depth, affluents,

land use of surrounding areas (presence of agriculture and urban

areas) and pisciculture activities. It was also important to do the

sampling with shortest time possible to reduce possible changes

in the water properties. The date was selected for corresponding

to the special condition of having both Landsat-8 and Sentinel-

2B overflying the reservoir within about 10 minutes, a situation

that only occurs every 80 days. On that particular day, the sky

was completely free of clouds and atmospheric attenuation was

considered almost null.

Figure 1. Três Marias Reservoir with the location of the 13

sampling points.

During the sampling of the 13 points, some parameters were

measured in loco using specialised sensors: dissolved oxygen

(DO), pH, temperature (T◦), Secchi disk depth, turbidity, col-

our, conductivity and oxidation-reduction potential (ORP). The

remaining parameters were analysed in laboratory the follow-

ing days and included: chlorophyll-a, -b, -c, total carbon (TC),

organic carbon (OC), nitrogen (N), phosphorous (P), chlorate,

sulphate, total iron and total suspended solid. For these ana-

lyses, about nine litres of water were collected at each sampling

point.

The parameters directly liable to be monitored through optical

remote sensing were Secchi disk depth, turbidity, chlorophyll-
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a (chl-a) and colour. The thermal bands of Landsat-8 (TIRS)

were also considered to estimate the surface water temperat-

ure. Some of the remaining parameters could also be estimated

through statistical inference as indicators of the dynamic pro-

cesses within the water body. These depend on indirect relation

between the OAC and their NOAC counterparts and would only

be applicable to the particular situation of the reservoir on the

day of sampling. Only some of these parameters will be ana-

lysed here.

2.3 Remote Sensing Data Acquisition and Pre-processing

Our study used freely available Level 2 data from the

Landsat-8 (https://earthexplorer.usgs.gov) and Sentinel-2B (ht-

tps://sentinel.esa.int) satellites. Level 2 image data are pre-

processed to include top-of-atmosphere (TOA) radiometric and

geometric corrections and are supplied as spectral reflect-

ance data. The Sentinel-2B satellite overflew the reservoir at

10:12:49 and Landsat-8 at 10:03:31 local time. Both images

had less than 1% of cloud and no atmospheric interference of

any kind could be observed.

The acquired images were converted from TOA reflectance to

bottom-of-atmosphere (BOA) reflectance meaning that any at-

mospheric interference in the spectral response has been re-

duced to a minimum. The Sentinel-2B image was converted

using the MAJA (MACCS ATCOR Joint Algorithm (Lonjou

et al., 2016)) pre-processing supplied by the Centre National

d’Études Spatiales (CNES). The Landsat-8 image were pro-

cessed using the Landsat-8 Surface Reflectance Code (LASRC

(Landsat-USGS, 2018)) provided by the United States Geolo-

gical Service (USGS). The Level 2 Landsat image does not

come with the thermal infrared sensor (TIRS) bands, so, in this

case the Level 1 image was used. For the temperature, because

of reported radiometric errors of ±1◦K and ±2◦K for Landsat-

8 TIRS bands 10 and 11 respectively (USGS, 2019), only band

10 was used to produce water surface temperature data using

Equation 1.

ρλ =
MρQcal +Aρ

cos(90o − θSE)
(1)

where ρλ = Top Of Atmosphere (TOA) planetary

reflectance

Mρ = Band-specific multiplicative rescaling

factor from the metadata

Qcal = Quantized and calibrated standard

product pixel values (DN)

Aρ = Band-specific additive rescaling factor

from the metadata

θSE = Local sun elevation angle

To simplify the extraction of spectral data for building the stat-

istical models, all Sentinel-2B 20 m bands and 60 m band 1

(coastal) were resampled to 10 m, making them all compatible

within the same dataset. The same was done with Landsat-8

band 10 (TIRS) but at 30 m in this case. The spectral inform-

ation (reflectance and temperature) was extracted considering a

neighbouring kernel of 3 pixels × 3 pixels (30 m× 30 m for the

MSI sensor and 90 m× 90 m for the OLI sensor) to account for

any imprecision of the navigation GNSS or the image geometry

but also for the drifting of the boat during the few minutes of

collecting. In addition an extraction kernel of 90 m× 90 m was

also created for the Sentinel-2B data so that a fair comparison

can be made with the Landsat-8 data. The extracted spectral

values were combined with the water sampling data in the same

spreadsheets for analysis.

2.4 Regression models

Multiple linear regressions were produced with RStudio (v.

1.5.5109) to analyse the relationship between some of the water

quality parameters and the mean reflectance values of the three

analysis kernels (two for Sentinel-2B, one for Landsat-8). At

this stage, a completely empirical approach was adopted which

can yield robust models in many cases (Matthews, 2011). The

selection of predictors was performed using two different ap-

proaches:

• The first approach used a hybrid bidirectional stepwise

method by which the predictors are iteratively selected first

by addition (forward) and then by removing the ones hav-

ing a poor contribution (backward) (James et al., 2013);

• The second approach used predictors most quoted in pre-

vious work by other authors, many of which were quoted

in the Introduction section. This was performed in an at-

tempt to generate comparable results. Only the OACs were

considered for this approach.

The adoption of this double strategy aimed at creating mod-

els with a reduced number of predictors as well as being more

objective while avoiding over-fitting problems a too numerous

number of predictors would create.

2.5 Model Validation and Accuracy Estimation

Four evaluation metrics were used to characterise the perform-

ance of the models. The Coefficient of Determination (r2)

gives an estimate of the proportion of variance explained by

the model. The r2 is only a valid estimator if its significance is

high. A significance level of 95% (p < 0.05) was used here.

The Mean Absolute Error (MAE) gives an idea of the aver-

age vertical distance between the predicted and the observed

value. The Root Mean Square Error (RMSE) and Normalised

Root Mean Square Error (NRMSE) are typically used to evalu-

ate models but are rather sensitive to outliers.

3. RESULTS AND DISCUSSION

3.1 Water Quality in the Três Marias Reservoir

The sampling point results obtained both in loco and in the post-

campaign laboratory are presented in Table 2 and 3. Of the

ten variable presented in these tables, only four are considered

optically active (Table 2).

A rapid analysis of the 13 sampling points collected in the reser-

voir reveals a decrease of the water quality from the North end

towards the South end which is upstream. In particular the two

affluents (São Francisco River on the left and Paraopeba River

on the right) appear much more turbid then the rest of the points.

Conversely, the two northernmost points (1 and 2) show a Sec-

chi disk transparency of almost 6 m (turbidity of 0.2 NTU).

Sampling points 3 to 6 are all within the central-north portion of

the reservoir and are characterised by the presence of fish farms

(pisciculture) in the reservoir’s marginal water and by intense
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Sampling Chl-a Temp. Secchi Turbidity

Point µg/L Co cm NTU

1 1.94 27.2 600 0.24

2 1.78 27.0 484 0.20

3 2.08 26.6 449 0.65

4 2.15 28.0 441 0.32

5 1.63 28.3 283 0.53

6 8.10 27.6 244 1.06

7 5.68 28.4 242 0.53

8 7.76 28.4 238 1.11

9 4.40 27.6 216 1.04

10 4.38 27.8 212 1.10

11 5.35 28.2 244 1.08

12 4.30 28.0 219 1.08

13 3.82 27.9 199 1.11

Table 2. Values obtained for the four optically active component

parameters.

Sampling DO pH TC OC Condut. ORP

Point mg/L mg/L mg/L mV mV

1 7.40 8.20 19.8 13.3 61.5 447.6

2 7.45 8.08 17.3 10.8 64.1 460.2

3 7.76 8.30 21.8 15.2 77.5 449.1

4 7.68 8.36 34.2 27.6 81.1 444.

5 7.81 8.51 16.8 9.9 90.0 438.7

6 7.99 8.54 22.0 15.0 92.0 442.5

7 8.17 8.60 23.9 16.8 96.8 426.5

8 7.66 8.41 28.9 21.9 84.2 440.9

9 7.76 8.34 50.4 43.3 79.7 452.3

10 7.68 8.31 28.8 21.7 77.9 455.9

11 7.73 8.30 25.5 21.4 77.2 459.0

12 7.58 8.26 62.7 55.7 75.1 464.2

13 7.62 8.29 29.9 22.8 66.8 468.0

Table 3. Values obtained for the four non optically active

component parameters.

agricultural activities (centre pivot) in the areas near the reser-

voir shore. This is particularly observable at Point 6 which has

the greatest values of chl-a (8.10 µg/L). Although this concen-

tration of chl-a is much higher than for the remaining samples,

this does not constitute a state of eutrophication according to the

State Water Agency (IGAM). However it should be mentioned

that these measurements were made during the dry season when

the water quality is often better.

Two sampling points are located near the northern extremity of

an island called Mangabal and also have relatively high con-

centrations of chl-a compared with the remaining points (ex-

cept Point 6). Algaes and or cyanobacterias were in fact visu-

ally observable as can be seen on Figure 2. Although not

yet considered a bloom, these observations are good indicators

of the necessity to continuously monitor the reservoir’s water

(Barbosa et al., 2019).

The sampling points 9 through 13 are all located near the con-

fluence between the São Francisco River (9, 10 and 11) and the

Paraopeba River (12 and 13). These sample appear to be the

worst in terms of water quality. Not only the transparency is

poor (Secchi disk depth of 1.9 m) but this is where the highest

concentrations of carbon (total carbon or TC) and organic car-

bon (OC) were recorded and are often indicative of water pol-

Figure 2. The presense of algaes and/or cyanobacteria was

observed near sampling points 7 and 8.

lution (Moore, 1998). It is also important to emphasize that this

stretch of the reservoir presents a turbulent flow, thus differing

from the other locations analysed in this article.

3.2 Multiple Regression Results

The first set of multiple regression models were created using

the hybrid bi-directional stepwise approach. The second set

combined the stepwise approach with a priori information from

previous authors. After executing the stepwise regression, the

poor predictors were removed except if indicated by the refer-

ence authors and until the level of significance is above 95%.

The a priori selection of predictor bands was based on articles

by Yadav et al. (2019), Dutra et al. (2019) Watanabe et al.

(2018) and Potes et al. (2018) for the chl-a models. The Secchi

disk depth was based on papers from Bonansea et al. (2015),

Rodrı́guez et al. (2014) and Giardino et al. (2010) while tur-

bidity used references from Liu and Wang (2019), González-

Márquez et al. (2018) and Mushtaq and Nee Lala (2017). Sur-

face temperature was based on a simple regression between

Landsat’s thermal band 10 and the temperature measured in the

field. Table 4 shows the results for nine parameters for the two

Sentinel kernels and 10 parameters for the Landsat one. Table 5

describes the equations resulting from these regression models.

Parameter MSI:

30×30 m

MSI:

90×90 m

OLI:

90×90 m

Method

Chl-a B2, B3,

B4, B5

B2, B3,

B4, B5

B2, B3,

B4

Stepwise +

a priori

Secchi B1, B3 B1, B3 B1, B3 Stepwise +

a priori

Turbidity B1, B3 B1, B3 B1, B3 Stepwise +

a priori

Temp. — — B10 —

OC B4, B8 B4, B8 B4, B5 Stepwise

DO B2, B4,

B6, B11

B2, B4,

B6, B11

B2, B4,

B6, B7

Stepwise

pH B1, B3,

B6, B8

B1, B3,

B6, B8

B1, B3,

B6, B5

Stepwise

TC B2, B3,

B5, B8

B2, B3,

B5, B8

B2, B3,

B5

Stepwise

Condut. B1, B2,

B3, B8

B1, B2,

B3, B8

B1, B2,

B3, B5

Stepwise

ORP B1, B4,

B6

B1, B4,

B6

B1, B4,

B5

Stepwise

Table 4. Selection of spectral bands and method used.

The multiple regression models for the optically active compon-

ents chlorophyll-a, Secchi disk depth and turbidity yielded high
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Sentinel-2/MSI - 30×30 m kernels

Dependent

variable

Equation r2

Chl-a 26.447 + (-1672.777 * B2) + (266.620 *

B3) + (1402.560 * B4) + (-58.610 * B5)

0.71

Secchi 391.9 + (22403.1 * B1) + (-16175.8 * B3) 0.85

Turbidity 0.4329 + (-54.6776 * B1) + (42.4338 * B3) 0.78

pH 12.2621 + (-246.4698 * B1) + (29.4987 *

B3) + (300.0727 * B6) + (-140.2648 * B8)

0.89

DO 9.2505 + (-171.0251 * B2) + (236.9708 *

B4) + (76.8288 * B6) + (-150.7815 * B11)

0.85

ORP 262.09 + (9550.20 * B1) + (-1922.66 * B4)

+ (-5096.10 * B6)

0.65

Condut. -152.77 + (-1400.65 * B1) + (6477.29 *

B2) + (-2380.85 * B3) + (-1755.82 * B8)

0.69

TC -44.25 + (4558.89 * B2) + (-2865.50 * B3)

+ (10289.91 * B5) + (-13255.30 * B8)

0.63

OC -6.427 + (2828.828 * B4) + (-2780.688 *

B8)

0.46

Sentinel-2/MSI - 90×90 m kernels

Dependent

variable

Equation r2

Chl-a 18.420 + (-1263.615 * B2) + (413.934 *

B3) + (52.127 * B4) + (710.274 * B5)

0.75

Secchi 396.3 * (22408.6 * B1) + (-16290.6 * B3) 0.84

Turbidity 0.4532 + (-56.9454 * B1) + (43.5723 * B3) 0.80

pH 11.6424 + (-216.0938 * B1) + (28.5913 *

B3) + (368.9336 * B6) + (-239.9383 * B8)

0.79

DO 8.9055 + (-129.5866 * B2) + (192.3651 *

B4) * (36.4049 * B6) + (-116.7094 * B11)

0.83

ORP 296.98 + (7568.51 * B1) + (-1567.75 * B4)

+ (-3717.99 * B6)

0.62

Condut. -144.80 + (-2472.14 * B1) + (7325.98 *

B2) + (-2567.43 * B3) + (-1486.76 * B8)

0.76

TC 5.676 + (1710.054 * B2) + (-2737.135 *

B3) + (14253.121 * B5) + (-14800.586 *

B8)

0.49

OC -4.841 + (2779.807 * B4) + (-2794.718 *

B8)

0.45

Landsat-8/OLI - 90×90 m kernels

Dependent

variable

Equation r2

Chl-a 15.717 + (-1247.530 * B2) + (192.236 *

B3) + (846.290 * B4)

0.67

Secchi 511.9 + (21335 * B1) + (-17343.6 * B3) 0.81

Turbidity 0.2294 + (-59.2739 * B1) + (48.0012 * B3) 0.80

Temperature -147.6961 + (0.5924 * B10) 0.03

pH 9.9977 + (-110.1097 * B1) + (17.4231 *

B3) + (49.6782 * B5)

0.43

DO 9.5867 + (-127.1909 * B2) + (115.4625 *

B4) + (-223.5492 * B6) + (227.0583 * B7)

0.69

ORP 316.16 + (7054.50 * B1) + (-903.87 * B4)

+ (-3313.56 * B5)

0.43

Condut. -108.62 + (-7534.79 * B1) + (11877.90 *

B2) + (-2931.28 * B3) + (-901.26 + B5)

0.69

TC -67.62 + (3658.91 * B2) + (3658.91 * B2)

+ (-166.73 * B3) + (-1225.28 * B5)

0.62

OC -20.95 + (2577.36 * B4) + (-1444.90 * B5) 0.54

Table 5. Regression equations for the water quality models for

the Sentinel-2 using 30x30 kernels (top), 90x90 kernels (middle)

and Landsat-8 using 90x90 kernels (bottom).

coefficients of determination (r2) ranging from 0.75 to 0.85 for

both Sentinel and Landsat and for both kernel sizes (30×30 and

90×90). This proves that the spectral bands resulting from the

two selection methods are good predictors, especially the MSI

instrument with 90×90 kernels.

However, the temperature model produced a very low r2 value

of 0.03. We attribute this poor result mainly to the time dif-

ference between the in situ measurements and the time Land-

sat sensed the scene (≈10H00). It is also reported that the

Landsat-8 TIR sensor suffers from calibration problems which

hinders the absolute conversion from radiance to temperature

(Montanaro et al., 2014) but that does not explain the very low

r2 obtained. Applying a radiance-to-temperature transforma-

tion would probably be preferable to the statistical inference

we used in this article but since we had no usable in situ tem-

perature to validate the data we simply left out the temperature

models for future field campaigns when we will acquire tem-

peratures samples within a short time lag close to the satellite

sensing time.

The Sentinel-2B MSI sensor produced better results than the

Landsat-8 OLI for all parameters except for the carbon (total

and organic). The greater number of spectral bands (red edge

and near infrared) and shortwave infrared and the finer spectral

resolution of bands 3–7 and 8a can probably explain this result.

Sentinel’s band 1 (coastal) would also be useful because of its

potential penetration in the water but has calibration problems

that causes a large vertical banding in the images. The two

kernel sizes for the MSI results appear to have relatively little

effect on the results.

Table 6 shows all the accuracy metrics used to evaluate the mod-

els. Although the p < 0.05 critical value was used, we observe

that many models are under 0.01 (99%) including the chl-a,

Secchi disk depth and turbidity for all three kernel size - sensor

combinations. The TC model with the MSI sensor (30 m ker-

nel) yielded p = 0.06, which could still be considered accept-

able with r2 = 0.63. Because the stepwise method was used

to remove predictors, it has been suggested that the critical p

value could be relaxed (Babyak, 2004). The MAE, RMSE and

NRMSE all show the same trend in the values. The MAE is

particularly interesting as it gives a more realistic idea of the

kind of precision one can expect from these models.

3.3 Relation Between Optically Active and Non-active

Parameters

Three of the four optically active components parameters have

yielded very good and significant results. These results can also

explain some of the good results obtained for the optically non-

active parameters such as pH, DO, conductivity and carbon (TC

and OC) through indirect relationships.

With r2 of 0.85, 0.83 and 0.69 for the three kernels (MSI 30,

MSI 90 and OLI 90), dissolved oxygen achieved the highest

score among the optically non-active parameters. This can be

related to the higher concentrations of chlorophyll associated

with photosynthesis, hence production of oxygen by chloro-

phyllian organisms. The pH models achiever r2 of 0.89, 0.79

and 0.43 for the three testing satellite data, the latter with

p = 0.14 can be discarded. The pH is also related with the

amount of chlorophyll and tend to increase with the presence

of algaes and cyanobacteria if other factors do not have a more

important influence. Conductivity models are also associated

with relatively high r2 (0.69, 0.76 and 0.69). The conductivity
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Sentinel-2/MSI - 30×30 m kernels

Parameter r2 MAE RMSE NRMSE p-value

Chl-a (µg/L) 0.71 0.77 0.92 42.0 < 0.01

Secchi (cm) 0.85 40.51 48.52 36.8 < 0.01

Turbidity (NTU) 0.78 0.13 0.16 44.6 < 0.01

pH 0.89 0.03 0.04 30.5 < 0.01

DO (mg/L) 0.85 0.06 0.07 36.2 < 0.01

ORP (mV) 0.65 4.61 6.51 56.3 0.01

Condut. (mV) 0.69 4.38 5.58 53.0 0.03

TC (mg/L) 0.63 8.23 10.01 57.7 0.06*

OC (mg/L) 0.46 7.46 9.26 70.3 0.04

Sentinel-2/MSI - 90×90 m kernels

Parameter r2 MAE RMSE NRMSE p-value

Chl-a (µg/L) 0.75 0.65 0.84 38.6 < 0.01

Secchi (cm) 0.84 39.77 49.48 37.5 < 0.01

Turbidity (NTU) 0.80 0.13 0.16 42.9 < 0.01

pH 0.79 0.05 0.06 43.4 < 0.01

DO (mg/L) 0.83 0.06 0.08 38.6 < 0.01

ORP (mV) 0.62 5.20 6.78 58.6 0.02

Condut. (mV) 0.76 3.70 4.87 46.1 0.01

TC (mg/L) 0.49 7.87 9.11 68.4 0.19*

OC (mg/L) 0.45 7.50 9.33 70.8 0.04

Landsat-8/OLI - 90×90 m kernels

Parameter r2 MAE RMSE NRMSE p-value

Chl-a (µg/L) 0.67 0.84 1.03 47.3 < 0.01

Secchi (cm) 0.81 39.72 54.15 41.1 < 0.01

Turbidity (NTU) 0.80 0.13 0.16 42.7 < 0.01

Temperature (o) 0.03 0.42 0.53 94.3 0.52*

pH 0.43 0.08 0.10 75.1 0.14*

DO (mg/L) 0.69 0.08 0.11 53.1 0.03

ORP (mV) 0.43 6.22 8.32 71.9 0.14

Condut. (mV) 0.69 4.76 5.59 53.0 0.03

TC (mg/L) 0.62 6.50 7.81 58.7 0.02

OC (mg/L) 0.54 7.50 8.51 64.6 0.01

* models not considered valid using the p < 0.05 critical value.

Table 6. Evaluation metrics for all models and for the three

image situations considered (MSI-30, MSI-90 and OLI-90)

of water is related with the concentration of ions, specifically

dissolved salts from inorganic material. These chemical ana-

lysis were not available for this article but TC concentrations

could include carbonates. Higher pH values are also related to

greater conductivity. These relations are observable in Table 2

and Table 3 and bring an explanation to the strength of these

models.

Figure 3 and Figure 4 illustrate the maps that were generated

for the chl-a and turbidity models and for both the MSI and

OLI sensors.

CONCLUSION

This study aimed at comparing the performance of Sentinel-2’s

MSI and Landsat-8’s OLI sensors for estimating water quality

parameters through empirical statistical inference using regres-

sion. Both sensors performed very well for creating multiple

regression models of three optically active components: chl-a,

Secchi disk depth and turbidity. Furthermore, the MSI sensor

performed slightly better than the OLI one. For the optically

non-active parameters, the MSI sensor had a more evident ad-

vantage over the OLI sensor. While the former produced five

(a)

(b)

Figure 3. Maps produced using the chlorophyll-a (a) and

turbidity (b) models for the Sentinel-2 MSI sensor.
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(a)

(b)

Figure 4. Maps produced using the chlorophyll-a (a) and

turbidity (b) models for the Landsat-8 OLI sensor.

models with r2 > 0.6, the latter only three. These parameters

have no direct effect on the at-sensor radiance but are the con-

sequence of the optically active parameters recorded. As such

these models are not exportable to other locations or even for

the same location at different times.

For the MSI sensor, the size of the MSI kernel (30×30 vs

90×90) had little effect on the results; some parameter models

were better with the 90 m kernel (chl-a, turbidity, conductivity),

some were worse (Secchi depth, pH, DO). These averaging ker-

nels were used instead of single pixel vectors because 1) only

an hand-held navigation GNSS with an estimated precision of

≈5 m was used and, 2) the boat was not anchored and wind

(although very light) and current affected the boat’s location

during the sampling.

No valid temperature model could be produced using Landsat-

8’s TIR sensor. Sampling delays were probably the major cause

for this poor results but might also be attributed to the calibra-

tion problems of the sensor.

We explain the difference between the two sensors based on

their differences. Firstly, the MSI has more bands, especially

in the visible-near infrared region (three red-edge bands: 700–

800 µm). On top of these additional bands, some of the MSI

bands have a finer spectral resolution like the green (3), red

(4) and near infrared (8a) bands. Finally, the MSI spatial res-

olutions are of 10 m (4 bands), 20 m (6 bands) and 60 m (3

bands) whereas all the OLI bands have a single spatial resolu-

tion of 30 m. Other authors that have compared the performance

of statistical models with these two sensors have reached sim-

ilar conclusions (Yadav et al., 2019, Govedarica, Jakovljević,

2019).

The field campaign lasted about six hours which probably

caused problems for the surface temperature that responds very

quickly to the sun elevation. Although the remaining para-

meters are considered more stable, they are still affected by

the changing conditions of temperature and illumination. This

means that conducting faster sampling near the image acquisi-

tion time could potentially improve these models as well. Fu-

ture campaigns will try to reduce these effects by using two

teams instead of one.
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Companhia Energética de Minas Gerais (CEMIG, project GT-

0607). The authors are most grateful to the GT-0607 Team who

made this article possible.

REFERENCES

Babyak, M., 2004. What you see may not be what you get: a

brief, nontechnical introduction to overfitting in regression-type

models. Psychosomatic medicine, 66(3), 411–421.

Barbosa, C., Novo, E., Martins, V., 2019. Introdução ao

sensoriamento remoto de sistemas aquáticos: princı́pios e
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