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Abstract
The wheel–rail contact forces are responsible for hunting instability of high-speed train and fatigue damage of the wheel and
rail. The wheel–rail contact forces are usually nonlinear, motion-dependent, time-varying and destabilizing, and cannot be
directly measured when the train is in motion. In this paper, we present a useful tool for engineers to estimate the wheel–
rail contact forces from train motion signals. In particular, an extended state observer is adopted to estimate the wheel–rail
contact forces of a high-speed train bogie from its motion measurements. We make use of the condition for observability
of the extended state observer to investigate the design of motion sensors in terms of the needed number and types. The
accurate estimated wheel–rail contact forces together with the corresponding motion measurements are then used to estimate
parameters of a wheel–rail contact force model with the help of recursive least squares algorithm. Extensive numerical
simulations are presented to demonstrate and validate the proposed method. The research concept and proposed method of
this paper are innovative. The results indicate that the extended state observer delivers excellent estimation performance for
the bogie with a limited number of motion measurements. The new findings of the paper can lead to the development of new
tools for engineers to use to monitor the health of wheel and rail from motion signals of the train.

Keywords High-speed train bogie · Extended state observer · Estimation of wheel–rail contact force · Parameter identification
of contact force model · Popov–Belevitch–Hautus test · Observability

1 Introduction

The wheel–rail contact forces are usually nonlinear, motion-
dependent, time-varying and destabilizing. The wear, irregu-
larity and fatigue of thewheel and rail are primarily due to the
wheel–rail contact forces. As the interest in high-speed train
continues to increase, stability and safety of operations have
received much attention from the research community. It has
become apparent that in order to design effective controls to
improve the performance of the train in motion, and to moni-

B Jian-Qiao Sun
jqsun@ucmerced.edu

Anni Zhao
azhao9@ucmerced.edu

Jingwen Huang
buct617@126.com

1 Department of Mechanical Engineering, University of
California, 5200 N Lake Road, Merced, CA 95343, USA

2 School of Logistics, Beijing Wuzi University, Beijing
101149, China

tor the health of thewheel and rail,we need a goodknowledge
about the wheel–rail contact forces. However, these contact
forces cannot be directly measured when the train travels at
high speed. Effective estimation of the wheel–rail contact
dynamics from the train motion signals becomes a highly
appealing approach. This paper presents such a method to
estimate the wheel–rail contact forces and the corresponding
parameters of a wheel–rail contact force model by making
use of the motion measurements of a bogie.

There have been many studies of estimation of the
wheel–rail contact forces in the literature. Various methods
for estimation have been considered, including the inverse
modeling, filter-based system identification method and
modern machine learning algorithm with neural networks.
The inverse identification technique was first proposed and
applied to the wheel–rail contact force estimation in [1].
Later, a low-cost and constrained inverse wagon model was
developed to estimate the wheel–rail contact forces [2]. The
gray box inverse wagon model estimation method [3] was
further investigated to overcome the limitations of the white
box approach in [2]. The indirect method is another form
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of inverse modeling. An indirect model-based estimation
method was proposed to investigate the wheel–rail contact
force based on the derailment criteria [4]. The lateral forces
on two different sides of the wheel were estimated through
the improved indirect method [5]. The inverse methods are
highly dependent upon the systemmodel and are not effective
with estimation of the time-varying dynamics.

The filter-based estimation of the wheel–rail interface
force was first proposed in [6] using the extended Kalman
filter, which was further developed in [7] as a nonlinear
estimator and applied in [8] to estimate the lateral track irreg-
ularities. The advantage of the extended Kalman filter lies in
that the parameters of the vehicle system can be estimated
separately, with the help of a linearized model of the sys-
tem. Kalman filter is a model-based estimation algorithm
which requires the full system state measured [9]. Kalman
filter is still a popular choice for researchers to estimate the
wheel–rail contact forces [10,11].Kalmanfilter, particle filter
and linear extended state observer are three state-of-the-art
real-time estimation algorithms [12]. Numerical simulations
prove that these three algorithms all have excellent perfor-
mance. The vast applications of Kalman filter mentioned
above indicate that the model-based estimation algorithm is
practical and has the potential to estimate wheel–rail dynam-
ics in real time.

Neural network from the machine learning area is another
technique that has been used to estimate the wheel–rail con-
tact forces and track irregularity [13] and to predict the safety
of railway vehicles [14]. Neural networks can approximate
the nonlinear complex functional relationship between the
vehicle response and the wheel–rail contact forces without
the need of a detailed model of the system.

The wheel–rail contact forces are inherently nonlinear,
and change with the operating environment including tem-
perature, cross-winds, raining, etc. These make it a challenge
to model and estimate the contact forces. Moreover, the
wheel–rail contact forces determine the hunting stability of
the bogie system and play an important role in the mainte-
nance and fault detection of the high-speed train. Inverse
modeling, filtered-based estimation method, and machine
learning algorithm have been extensively applied to estimate
the wheel–rail contact force; however, these algorithms have
quite limitations on the dynamics model, matrices calcula-
tion and system signals. These deficiencies of the existing
algorithms motivate us to develop an algorithm to estimate
the slow time-varying wheel–rail contact forces by mak-
ing use of limited system signals without relying on the
unknown dynamics model. Furthermore, once the wheel–
rail contact forces are estimated, how to make full use of
the estimated contact force for maintenance and fault detec-
tion of the high-speed train will be another crucial question.
In this paper, the wheel–rail contact forces combined with
the time-varying gravitational stiffness effect are viewed as

unknown dynamics. An extended state observer (ESO) is
implemented to estimate the unknown dynamics due to the
wheel–rail interaction. Moreover, we would like to build a
relationship between the motion signals and wear prediction.
This will be a future study topic and has not been covered in
the literature.

The ESO was first proposed in [15] and is one of the core
concepts in the active disturbance rejection control (ADRC).
A linear ESO was proposed in [16] which was much simpler
to design than the general nonlinear ESO.Without exploiting
the mathematical model of uncertainties, the ESO has been
proven to be an effective approach to estimate disturbances
and uncertainties [17]. This is the key advantage of the ESO.
The ESO-based controls have been widely studied including
the control of DC motor [18], wind energy system [19] and
hypersonic vehicles [20]. A good survey about the develop-
ment of extended state observer can be found in reference
[21]. The extensive applications and accurate performance
of the ESOmotivate us to explore it for estimation of wheel–
rail interactions. Without dealing with either the complex
matrix calculation in Kalman filter or the data requirements
in machine learning, the ESO is simple to implement and
yields the same accurate results as Kalman filter and neural
networks would. To implement the ESO, the reconstructed
extended observer system is required to be observable. The
observability of the ESO has drawn much attention from
researchers when dealing with large-scale systems. The suf-
ficient condition for observability of the ESO for structural
systems with rigid body and elastic modes has been found in
[22]. To investigate the observability of the ESO for recon-
structed extended observer system, the special structure of
the ESO helps us find the minimum number of sensors to
estimate the wheel–rail dynamics, which has not been stud-
ied in other publications to the best of author’s knowledge.

In this paper, we adopt the linear ESO to estimate the
wheel–rail interactions from motion measurements for a
high-speed train bogie. We also investigate the observabil-
ity of the linear ESO when applied to the bogie system. The
main contributions of the paper are summarized below.

1. Thewheel–rail interactions arefirst treated as theunknown
dynamics which are estimated with an ESO from motion
signals. The proposed ESO is proven to be observable and
is shown to be able to capture the time-varying wheel–rail
interactions with the motion measurements using a lim-
ited number of sensors.

2. A regression method is proposed to identify two key
parameters of a wheel–rail contact force model: the lat-
eral creep coefficient fη and gravitational stiffness kgy .
The regression model is then used to compute the wheel–
rail contact forces. This result lays a foundation for further
study of wheel creep damage and fatigue in the future.
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The paper is organized as follows. Section 2 introduces
the model of the bogie. A brief discussion on the model
of the wheel–rail interaction and the influence of the con-
tact conicity is presented. Section 3 presents the design of
the ESO and discusses the observability of the ESO for the
bogie.A condition for determining the number ofmotion sen-
sors needed for observability is presented. Section 4 presents
the regression method for identification of the parameters of
the wheel–rail contact force model. Section 5 summarizes
the computational steps of the proposed method. Section 6
presents simulation results to demonstrate the performance
of the proposed method for estimating the wheel–rail contact
forces from motion signals. Section 7 concludes the paper.

2 Dynamic model of the bogie

Consider the eight degree-of-freedom mathematical model
of the bogie in [23,24]

Mz̈ + CD ż + Kz = −Kusz + Eu (1)

where z = [yw1, ϕw1, yw2, ϕw2, y f , ϕ f , ym1, ym2]T ∈ R
8×1

consists of eight linear and rotational displacements of the
bogie. u ∈ R

2×1 are two controls to be discussed later.M ∈
R8×8 is the symmetric and positive definite mass matrix.
CD ∈ R

8×8 is the symmetric semi-positive definite damping
matrix. K ∈ R

8×8 is the symmetric semi-positive stiffness
matrix. E ∈ R

8×2 is the matrix describing the influence of
controls on the motion of the bogie.

The matrix Kus is defined as:

Kus =
[
Kλ 04×4

04×4 04×4

]
∈ R

8×8 (2)

where

Kλ =

⎡
⎢⎢⎢⎣

kgy −2 fη 0 0
2λel0 fξ

r0
kgψ 0 0

0 0 kgy −2 fη
0 0 2λel0 fξ

r0
kgψ

⎤
⎥⎥⎥⎦ ∈ R

4×4 (3)

Kusz describes the wheel–rail interaction forces. The
matrix Kus ∈ R

8×8 is not symmetrical. An objective of this
work is to develop an extended state observer to estimate the
wheel–rail interaction forces from the signals of motion sen-
sors. Definition of all the matrices and their numerical values
can be found in Appendix A.

We first convert the equation of motion to the state space
form as:

ẋ(t) = Asx(t) + Buu(t) + B f f(t)

y(t) = Cx(t) (4)

where x(t) = [z, ż]T ∈ R
16×1 is the state vector, and all

other matrices are given by

As =
[

08×8 I8
−M−1Ks −M−1CD

]
∈ R

16×16,

Bu =
[
08×2

M−1E

]
∈ R

16×2,

B f =
⎡
⎣08×4

I4
04×4

⎤
⎦ ∈ R

16×4,

−M−1Kusz(t) =
[
f(t)
04×1

]
∈ R

8×1, f(t) ∈ R
4×1, C ∈ R

m×16, (5)

In denotes the n × n identity matrix. C is the output matrix.
The dimensionm ofC is equal to the number of the outputs or
motion sensors. The choice of the motion sensors determines
the observability of the system and is discussed in Sect. 3.1.
f(t) is referred to as the wheel–rail contact dynamics and
appears in the top four equations of motion in Eq. (1).

2.1 Model of wheel–rail contact forces

The parameters in the matrix Kλ in Eq. (3) are defined in
Table 1. These parameters describe the wheel–rail geome-
try and creep behavior. The wheel–rail contact equivalent
conicity λe in particular is a result of the wheel–rail inter-
action dynamics. In the linear theory, the wheel–rail contact
equivalent conicity λe is taken to be a constant. In the non-
linear theory, λe is usually taken as a time-varying nonlinear
function of the lateral displacement of the wheel set yw(t)
[25]. kgy , commonly known as the gravitational stiffness, is
a function of λe and the weight given by [26,27],

kgy = λeW

l0
(6)

where W is the weight of the bogie and 2l0 is the distance of
the contact spot.

It is apparent that the parameters in the matrix Kλ are all
dynamic and may change with time. Hence, the wheel–rail
contact forces and moments contributing to f(t) in Eq. (4)
cannot be determined a priori, and it is necessary to estimate
them in real time. In the following, we present necessary
equations in order to develop an algorithm for estimating the
wheel–rail contact forces and moments frommotion signals.

The top four lines in Eq. (1) involving the wheel–rail con-
tact forces and moments are listed below:

mw ÿw1 − kpy ẏw1 − bkpy ϕ̇w1 + kpy yw1 = −Fla1

Iwϕ̈w1 − l21kpx ϕ̇w1 + l21kpxϕw1 = −Mla1

mw ÿw2 − kpy ẏw2 − bkpy ϕ̇w2 + kpy yw2 = −Fla2

Iwϕ̈w2 − l21kpx ϕ̇w2 + l21kpxϕw2 = −Mla2

(7)
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Table 1 Definition of the parameters in the matrix Kλ

Symbol Description

kgy The gravitational stiffness

λe Wheel–rail contact conicity

2l0 Distance of the contact spot

fξ The longitudinal creep coefficient

fη The lateral creep coefficient

r0 The wheel rolling radius

where Fla1, Mla1, Fla2 and Mla2 are the wheel–rail contact
forces and moments, and by making use of the matrix Kλ,
can be expressed as:

Fla1 = 2 fη
v

ẏw1 − 2 fηϕw1 + kgy yw1

Mla1 = 2l20 fζ
v

ϕ̇w1 + 2λel0 fζ
r0

yw1 + kgψϕw1

Fla2 = 2 fη
v

ẏw2 − 2 fηϕw2 + kgy yw2

Mla2 = 2l20 fζ
v

ϕ̇w2 + 2λel0 fζ
r0

yw2 + kgψϕw2

(8)

Define a vector Fun = [Fla1, Mla1, Fla2, Mla2]T . By defini-
tion, we have

Kusz(t) =
[
Fun

04×1

]
(9)

Hence, the vector Fun is related to the unknown wheel–rail
contact dynamics f(t) as follows:

[
Fun

04×1

]
= −M

[
f(t)
04×1

]
(10)

If the wheel–rail interaction dynamics f(t) can be esti-
mated from an observer of the system in Eq. (4), the
components of the wheel–rail contact force vector Fun can
be computed fromEq. (10). Next, we discuss how to estimate
f(t) from motion signals.

3 Extended state observer

Let us now design an extended state observer to estimate the
time-varying wheel–rail contact dynamics f(t) in Eq. (4). In
order to estimate the wheel–rail contact dynamics f(t), we
introduce a new state vector as:

xn(t) = f(t) ∈ R
4×1 (11)

Define an extended state vector as: xe(t) = [x(t); xn(t)] ∈
R
20×1. The extended state equation reads

ẋe(t) = Aexe(t) + Beu(t) + Bhh

ye(t) = Cexe(t) (12)

where the output of the extended state system is kept to be
the same as the original output ye(t) = y(t) ∈ R

m×1. The
extended state system matrices and vectors Ae, Be, Ce, Bh ,
and h are given by

Ae =
[

As B f

04×16 04×4

]
∈ R

20×20, Be =
[
Bu

04×2

]
∈ R

20×2

Ce = [
C, 0m×4

] ∈ R
m×20, Bh =

[
016×4

I4

]
∈ R

20×4

h ≈ ḟ(t) ∈ R
4×1 (13)

It should be noted that h is an estimate of the deriva-
tive of the unknown dynamic force ḟ(t). Here we choose
ye = [yw1, ϕW1, yw2, ϕw2]T as the outputs of the system.
As mentioned in [10], the wheelset positions and velocities
can be derived from accelerometers, while the yaw angles
can be estimated from gyros [28]. This topic is beyond the
scope of this paper. However, it is validated that if the observ-
ability conditions in Sect. 3.1 are satisfied, the ESO is able
to estimate the unknown dynamics in the system with differ-
ent combination of sensors. This could lead to the topic of
optimal sensors placement. Here, we focus on the available
locations for the sensors to illustrate the performance of the
ESO.

A linear extended state observer (LESO) for the extended
state system in Eq. (12) can be designed as [16]:

˙̂xe(t) = Aex̂e(t) + Beu(t) + L(y(t) − ŷ(t)) (14)

ŷ(t) = Cex̂e(t) (15)

where L is the observer gain matrix, x̂e(t) is an estimate
of the extended state xe(t). Define the estimation error as
x̃e(t) = xe(t) − x̂e(t). Making use of Eqs. (12) and (14), we
obtain

˙̃xe(t) = (Ae − LCe)x̃e(t) + Bhh(t) (16)

Since the termBhh(t) can be viewed as an external distur-
bance to the observer, when the pair (Ae,Ce) is observable,
we can find a gain matrix L to make the matrix Ae − LCe

Hurwitz stable such thatAe −LCe converges 10 times faster
than the original system Ae.

Hence, when the ESO system is observable and h is
bounded, the estimation error x̃e(t) will be bounded. The
upper bound of the estimation error can be readily obtained
when the observer poles are selected [22].
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Even though the term Bhh(t) does not affect the observ-
ability of the ESO, a proper estimate of h(t) ≈ ḟ(t) will
affect the accuracy of the estimation of the unknown dynamic
forces. How to obtain the proper estimate of ḟ(t) is an issue
for another study. In the literature, it is common to assume
that h(t) = 0 [17,29].

3.1 Observability of ESO

In the following, we address the questions howmany motion
sensors should be used so that the system in Eq. (14) is
observable. We first study the observability of the ESO and
then consider the sensor choices for the bogie.

For the generality of discussion, we assume that x(t) ∈
R
n×1, As ∈ R

(n+p)×(n+p) and h(t) ∈ R
p×1. The observ-

ability matrix of the ESO is defined as:

O =

⎡
⎢⎢⎢⎢⎢⎣

Ce

CeAe

CeA2
e

...

CeAn−1
e

⎤
⎥⎥⎥⎥⎥⎦

(17)

WhenO has a full rank n, the system is observable. However,
when the order of the system is high (n � 1) and when the
statematrixAe is ill-conditioned, the numerical evaluation of
the rank of O becomes highly unreliable. We have observed
this difficultywith the statematrix of the bogie.Analternative
way to check observability is to use the PBH test as stated in
the following theorem.

Theorem 1 Consider the extended state matrix Ae ∈
R

(n+p)×(n+p) and the output matrix Ce ∈ R
m×(n+p). The

pair (Ae,Ce) is observable if and only if the matrix Oλ ∈
R

(n+p+m)×(n+p) defined as:

Oλ ≡
[
Ae − λeI(n+p)

Ce

]
(18)

has rank n + p for every eigenvalue λe of Ae, and for the
corresponding right eigenvector a of Ae such that Cea �= 0.

The proof of the theorem can be found in [30]. We shall
apply Theorem 1 to determine the observability of the pair
(Ae,Ce) for the ESO. The observability condition of the ESO
for large-scale systems has been studied before. In [22] and
[31], the observability condition of the ESO is found to be
m ≥ q. We have derived the observability condition using
the block matrix properties and proposed a different way to
check the rank of the matrixOλ. The results are summarized
with a lemma in Appendix B.

Remark 1 We should point out the implication of the observ-
ability condition m ≥ p. The number p of independent

unknown dynamics terms is clearly a lower bound for the
number of motion sensors needed to make the ESO observ-
able. This is the answer to the question of how many sensors
are needed.

Remark 2 Another condition of Theorem 1, Cea �= 0, has
to be checked separately to confirm the observability of the
ESO. A discussion of the physical implication of this condi-
tion is in order.

When Cea = 0 for an eigenvector a of the matrix Ae,
it indicates that for all the time t > 0, the entire array of
motion sensors that provide the output signals return zero
measurements of the system response consisting of a special
combination of the states specified by the eigenvector a of
the matrix Ae. This is a rather special case. At the hardware
design stage, we should avoid the sensor configuration such
that Cea = 0 may be true for an eigenvector of the matrix
Ae.

In the simulation studies, we shall check this condition for
observability.

4 Parameter identification

Let us consider the lateral force Fla1 as an example. We
use the motion signals to identify the parameters in Eq. (8)
including the lateral creep coefficient fη and gravitational
stiffness kgy . The recursive least squares (RLS) algorithm is
adopted. The lateral creep coefficient fη describes the contact
condition between the wheel and rail, and the gravitational
stiffness kgy is related to the normal force at the wheel–rail
contact point. These two parameters are important for wheel
health monitoring and fatigue analysis.

Recall the first line of Eq. (7). The lateral force Fla1 on
a wheel consists of two parts: the lateral creep force and
gravitational stiffness effect.

Fla1 = Fcreep + Fgravi t y (19)

where

Fcreep = 2 fη
v

ẏw1 − 2 fηϕw1 (20)

Fgravi t y = kgy yw1 (21)

The lateral creep coefficient fη and the gravitational stiffness
kgy are slowly time-varying during the train operation. Thus,
it is important to identify these two parameters.

Let Fla1(i) denote the estimate of the lateral force Fla1 at
the i th sample time step. ẏw1(i), yw1(i) and ϕw1(i) are the
motion measurements at the same time. By definition, we
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have

Fla1(i) =
(
2 ẏw1(i)

v
− 2ϕw1(i)

)
fη + kgy yw1(i)

≡ ϕT (i)η (22)

where ϕ(i) ∈ R
2×1 is a vector of the motion signals and

η ∈ R
2×1 is a vector of the unknown parameters.

ϕ(i) =
[
2 ẏw1(i)

v
− 2ϕw1(i), yw1(i)

]T

(23)

η = [ fη, kgy]T (24)

Define an objective function as:

J = 1

2

ns∑
i=1

(Fla1(i) − ϕT (i)η̂)2 (25)

where ns is the number of sampled data points of the motion
signals and η̂ is an estimate of the parameter vector η. η̂ is
determined to minimize the objective function J . Introduce
a data vector and a data matrix as:

Fla1 = [Fla1(1), Fla1(2), · · · , Fla1(ns)]T ∈ R
ns×1 (26)

φ(ns) = [ϕ(1),ϕ(2), · · · ϕ(ns)]T ∈ R
ns×2 (27)

Assume that for a given number ns of data points, the data
matrix φTφ(ns) ∈ R

2×2 is non-singular. The optimal esti-
mate of the parameter can be obtained as:

η̂(ns) = P(ns)φ
TFla1 (28)

where

P(ns) = (φT (ns)φ(ns))
−1 (29)

The optimal estimate can be computed with the recursive
least squares algorithm when there is a sufficient number of
data points, i.e., when ns � 1 [32]. Making use of Eqs. (28)
and (29), we re-write the estimated parameter as:

η̂(ns) = P(ns)
ns∑
i=1

ϕ(i)Fla1(i) (30)

= P(ns)

[ns−1∑
i=1

ϕ(i)Fla1(i) + ϕ(ns)Fla1(ns)

]
(31)

= P(ns)[P−1(ns − 1)η̂(ns − 1) + ϕ(ns)Fla1(ns)]
(32)

From Eq. (29), we have

P−1(ns) = φT (ns)φ(ns) =
ns∑
i=1

ϕ(i)ϕT (i)

=
ns−1∑
i=1

ϕ(i)ϕT (i) + ϕ(ns)ϕ
T (ns)

= P−1(ns − 1) + ϕ(ns)ϕ
T (ns) (33)

where P−1(ns − 1) can be computed as:

P−1(ns − 1) = P−1(ns) − ϕ(ns)ϕ
T (ns) (34)

The final recursive equations are summarized as follows:

η̂(ns) = η̂(ns − 1) + K(ns)[Fla1(ns) − ϕT (ns)η̂(ns − 1)] (35)

where

K(ns) = P(ns)ϕ(ns)

= P(ns − 1)ϕ(ns)[I + ϕT (ns)P(ns − 1)ϕ(ns)]−1

(36)

P(ns) = [I − K(ns)ϕ
T (ns)]P(ns − 1) (37)

The convergence of parameter estimation and prediction
error are discussed in Sect. 6.

Remark 3 In this section, we have only considered the lat-
eral force Fla1 and the identification of the two associated
parameters. The same estimation algorithm can be applied
to other forces and moments Mla1, Fla2 and Mla2. Other
parameters listed in Table 1 can also be estimated from the
motion signals.

5 The algorithm

We are now ready to summarize the steps to estimate the
wheel–rail interaction dynamics f(t) and identify the param-
eters of a wheel–rail contact force model represented by the
matrix Kλ.

1. Design an extended state observer (ESO) to estimate f(t)
from the state Eq. (4).

2. From Eq. (10), we compute the components of the vector
Fun without the need for the accurate parameters in the
matrix Kλ.

3. With the extensive motion measurements together with
the estimated wheel–rail contact forces Fun , we apply
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a regression method to identify the parameters of the
wheel–rail contact forcemodel inEq. (8).Once theparam-
eters of the model are identified, the components of the
wheel–rail contact force vector Fun that are responsible
for creep and fatigue damages can then be predicted from
the regression model such as the one in Eq. (22).

It should be noted that the regression method can be
applied to the entire wheel–rail contact force vectorFun . This
is, however, the topic of a separate study.

6 Simulations

In this section, we present simulations to demonstrate the
ability of theESO to estimate theunknownwheel–rail contact
forces of the bogie and the effectiveness of the parameter
identification algorithm. We assume that the bogie traveling
at speed v is under a pre-designed full state feedback control
to maintain its stability [24].

u(t) = −Kcx(t) (38)

whereKc is the feedback gain matrix and x(t) is the original
system state.

The simulations are based on the model in Eq. (1) with all
the parameters provided in Table 4. The sample time of the
simulation is �t = 0.0001 seconds.

6.1 Sensor selection and observability of ESO

Recall that the number of unknownwheel–rail contact forces
is p = 4. According to Lemma 1, we must have m ≥ p
so that the ESO is observable. That is to say, we must
pick four or more outputs. Assume that we use m motion
sensors to measure the displacements in the vector z =
[yw1, ϕw1, yw2, ϕw2, y f , ϕ f , ym1, ym2]T ∈ R

8×1. Numeri-
cal results of the PBH test for observability are summarized
in Table 2 where different numbers of displacements are con-
sidered. The results show that the observability matrix Oλ

has a full rank when m ≥ p = 4. In the meantime, we can
also verify that the condition Cea �= 0 of Theorem 1 holds.
Hence, the ESO for the bogie is observable when m ≥ 4 and
can indeed estimate the unknown wheel–rail contact dynam-
ics accurately. This will be demonstrated later.

It is seen from the table that the computed rank of the
observability matrixO with ill-conditioned system matrices
is not reliable. Theoretically, when the number m of outputs
is equal to the degrees of freedom 8 of the bogie, the system
must be observable. However, the rank of the observability
matrix O indicates that the system is not observable. The
PBH test avoids the numerical difficulties in dealing with
ill-conditioned matrices.

Table 2 Numerical results of
the rank of the two observability
matrices for the extended state
of the bogie as a function of the
number m of motion sensors

m rank(O) rank(Oλ)

3 7 19

4 9 20

6 9 20

8 9 20

0 5 10 15 20
-5

0

5 10-3

0 5 10 15 20
0

0.5

1
10-5

Fig. 1 Top: Comparison of the estimated output ŷ1(t) from the ESO
with the reference system output y1(t) at the train speed v = 360km/h.
Bottom: The norm of the output error vector ey(t)

In the above numerical study, we use the displacement
signals. If we use the velocities of the corresponding dis-
placements instead, we shall arrive at the same conclusion
on observability of the ESO.

6.2 Estimation of wheel–rail contact forces

Next, we report the results of estimation of the unknown
wheel–rail contact dynamics. We select m = 6 as an exam-
ple. The train speed is v = 360km/h. The observer gain L is
chosen such that the observer poles are 8 to 10 times faster
than the poles of the closed-loop control system. The accu-
racy of the ESO estimation is examined in terms of the norm
of the output error defined as:

||ey(t)|| = ||ŷ(t) − y(t)|| (39)

where || · || denotes the L2 norm.
The top sub-figure of Fig. 1 compares the estimated and

true value of the first component of the output vector ŷ1(t)
and y1(t). Note that y1(t) = yw1(t). The estimated output
ŷ1(t) tracks the true value closely. The error ey(t) of the entire
output vector is shown in the bottom sub-figure of Fig. 1. The
error is of order 10−5.

The estimated wheel–rail contact dynamics are shown in
Fig. 2. For each component of wheel–rail contact dynamics
f(t), the estimated contact dynamics f̂(t) closely follow the
reference f(t). These and other simulation results indicate
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Fig. 2 Comparison of the estimated wheel–rail contact dynamics f̂(t)
from the ESO with the reference f(t) at train speed v = 360km/h
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Fig. 3 Comparison of the estimated wheel–rail contact dynamics f̂(t)
from the ESO with the reference f(t) at train speed v = 100km/h

that the ESO can indeed estimate the outputs and states with
a high accuracy, and the extended state f(t), i.e., the wheel–
rail contact dynamics with small bounded errors.

We also investigate the robustness of the ESO to distur-
bances. At t = 11s, a square-impulse disturbance d(t) is
introduced as:

d(t) = 5 × 10−3(H(t − 11) − H(t − 11.6)) (40)

where H(t) is the Heaviside step function. The results in Fig.
2 show that the observer tracks the output andwheel–rail con-
tact dynamics quickly and is hence robust to disturbance. To
further test the performance, the ESO is applied to the bogie
at different train speeds: v = 100km/h and v = 200km/h.
The results are shown in Figs. 3 and 4.

6.3 Estimation of parameters

This section presents the results of parameter identification.
The estimated parameters with the RLS algorithm are shown
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Fig. 4 Comparison of the estimated wheel–rail contact dynamics f̂(t)
from the ESO with the reference f(t) at train speed v = 200km/h
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Fig. 5 Top: Convergence of the parameter estimation. Bottom: Percent-
age error of the estimated parameters

Table 3 Comparison between the nominal and estimated parameters

Symbol Nominal value Estimated value Percentage error

fη 8624000 8765500 1.6412

kgy 27596 27742 0.5249

in Fig. 5. The nominal and estimated values of the parameters
are listed in Table 3 for comparison. The percentage error is
introduced to describe the accuracy of the estimation

Err(%) = | f̂η − fη |
fη

× 100 (41)

From Table 3, we can see that the percentage error of the
estimation is quite small. All simulation results show that
it is possible to estimate the parameters from motion mea-
surements of the bogie with a reliable accuracy. The lateral
creep coefficient fη is estimated with 1.6412% error, and the
gravitational stiffness kgy is estimated with 0.5249% error.
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Fig. 6 Comparison of the predicted lateral force F̂la1 with the observed
lateral force Fla1 at train speed v = 360km/h

The predicted force F̂la1 is calculated by using Eq. (22)
with the estimated parameters as shown in Fig. 6. It can be
seen from the figure that the predicted force has small errors,
which indicates that the estimated parameters are close to
their nominal values used in the simulation. The root mean
square (RMS) error is introduced to quantify the accuracy of
the predicted force F̂la1.

eRMS =
√√√√ 1

ns

ns∑
i=1

(F̂la1(i) − Fla1(i))2 (42)

eRMS is calculated to be 2.32 × 10−5 for the predicted force
F̂la1 in Fig. 6.

7 Conclusion

In this paper, we have developed a method to estimate the
wheel–rail contact forces of the high-speed train bogie from
itsmotionmeasurements. The extended state observer is used
to estimate the wheel–rail contact dynamics, from which the
components of the contact forces can be computed. We have
studied the condition for observability of the extended state
observer as a function of number of motion sensors. The
observed wheel–rail contact forces together with the corre-
sponding motion measurements are then used to estimate
parameters of the wheel–rail contact force model. These
results can help engineers to monitor the health of wheel
and rail from motion signals. We should note that the knowl-
edge of wheel–rail contact forces provides a foundation for
wheel damage prediction. This will be the topic of a sepa-
rate study. Extensive numerical simulations have been done.
The results indicate that the extended state observer delivers
excellent estimation performance for the bogie with a limited
number of motion measurements. Finally, we should point

out that the study reported in this paper is built on the knowl-
edge of the simplified mathematical model of the bogie. The
algorithm is proved to be efficient. The methodology devel-
oped in this work is applicable to a train compartment when
a complex nominal model of the system is available. This
could be an interesting topic for future studies.
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Appendix A systemmatrices

The matricesM,CD ,K and E of the bogie are given as [23]:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mw

Iw
mw

Iw
m f

I f
mm

mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 fη
v

2l20 fξ
v

2 fη
v

2l20 fξ
v

csy + 2cmy −cmy −cmy

l22csx + l2mcmy −lmcmy lmcmy

−cmy −lmcmy cmy

−cmy lmcmy cmy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E =
[
0 0 0 0 1 le 0 0
0 0 0 0 1 −le 0 0

]T

K =
[
K11 K12
K21 K22

]
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where

K11 =

⎡
⎢⎢⎣
kpy

l21kpx
kpy

l21kpx

⎤
⎥⎥⎦

K12 = K21 =

⎡
⎢⎢⎣

−kpy −bkpy 0 0
0 −l21kpx 0 0

−kpy bkpy 0 0
0 l21kpx 0 0

⎤
⎥⎥⎦

K22 =

⎡
⎢⎢⎣
2kpy + ksy + 2kmy 0 −kmy −kmy

0 k66 −lmkmy lmkmy

−kmy −lmkmy kmy 0
−kmy lmkmy 0 kmy

⎤
⎥⎥⎦

and k66 = l22ksx + 2l21kpx + 2b2kpy + 2l2mkmy .

Appendix B observability lemma

Lemma 1 The observability matrixOλ is full rank if the fol-
lowing conditions hold.

1. For λe �= 0,

r((In − B f hB
+
f h)Ash(In − C+C)) = min(r(In − B f hB

+
f h),

r(In − C+C)) (B1)

For λe = 0,

r((In − B f B
+
f )As(In − C+C)) = min(r(In − B f B

+
f ),

r(In − C+C)) (B2)

2. The number of the outputs m ≥ p

where m is the number of rows of the matrix C, p is the
number of columns of the matrix B f , and λe is an eigenvalue
of the matrix Ae.

The proof of the lemma is presented below.

B.1 Properties of blockmatrix rank

Let us first review the mathematical properties of the rank of
blockmatrices.Consider thematricesM ∈ R

m×n ,N ∈ R
l×n ,

P ∈ R
m×k , and 0 ∈ R

l×k . We use r(·) to denote the rank of a
matrix. The rank of blockmatrices has the following equality
properties [33,34].

1.

r

([
M P
N 0

])
= r(N) + r(P) + r((Im − PP+)

M(In − N+N)) (B3)

2.

r(In − M+M) = n − r(M) (B4)

r(Im − MM+) = m − r(M) (B5)

where M+, N+ and P+ are the Moore–Penrose inverse
of M, N and P, respectively.

B.2 Observability matrixO�

Before we present the proof of the lemma, let us introduce
the matrices of the ESO.

Ae =
[

As B f

0p×n 0p×p

]
∈ R

(n+p)×(n+p),

Ce = [
C, 0m×p

] ∈ R
m×(n+p) (B6)

where As ∈ R
n×n , B f ∈ R

n×p, C ∈ R
m×n . λe is an eigen-

value of matrix Ae. We apply the PBH test in Theorem 1 to
determine the observability of pair (Ae,Ce) and study the
rank of the matrix Oλ for every eigenvalue λe of the matrix
Ae,

Oλ =
[
Ae − λeI(n+p)

Ce

]
=

⎡
⎣As − λeIn B f

0p×n −λeIp
C 0m×p

⎤
⎦

=
[
Ash B f h

C 0m×p

]
(B7)

where B f h and Ash are defined as:

Ash =
[
As − λeIn

0p×n

]
∈ R

(n+p)×n,

B f h =
[

B f

−λeIp

]
∈ R

(n+p)×p (B8)

B.3 Proof of the lemma

The goal of the proof is to show that the matrixOλ has a full
rank under the conditions stated in the lemma. Making use
of Property 1 of block matrices in Eq. (B3), we obtain the
rank of the matrix Oλ as:

r(Oλ) = r(C) + r(B f h) + r((In+p − B f hB
+
f h)Ash(In − C+C))

= m + p + r((In+p − B f hB
+
f h)Ash(In − C+C)) (B9)

where we have used the results r(C) = m and r(B f h) =
r(B f ) = p.
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Table 4 Parameters of the bogie
system

Symbol Description Value

mw Mass of the wheelset 2585 kg

Iw Yaw inertia of the wheelset 2024 kg·m2

m f Mass of the frame 7186 kg

I f Yaw inertia of the frame 9.75×103 m

mm Mass of motor 1765 kg

λe Wheel–rail contact conicity 0.1

kpx Primary longitudinal stiffness per axle 40 kN/mm

kpy Primary lateral stiffness per axle 6 kN/mm

ksx Secondary longitudinal stiffness 0.8 kN/mm

ksy Secondary lateral stiffness 0.8 kN/mm

csx Yaw damper damping 10 kN·s/m
csy Secondary lateral stiffness 60 kN·s/m
2l1 Lateral spacing of primary suspension 2.2 m

le Longitudinal distance from end beam 1 m

2b Wheel base 2.5 m

2l0 Distance of the contact spot 1.493 m

2l2 Lateral spacing of the secondary suspension 1.9 m

lm Distance from motor suspension to the frame 0.5 m

r0 Wheel rolling radius 0.625 m

fζ Longitudinal creep coefficient 8.144×106 N

fη Lateral creep coefficient 8.624×106 N

fmy Motor suspension frequency 1.8 Hz

ξmy Motor suspension damping ratio 0.2

kgy Gravitational stiffness -

kgψ Secondary lateral stiffness -

v Train speed 360 km/h

Since the eigenvalues of the matrix Ae consist of the
nonzero eigenvalues of the matrixAs and p zero eigenvalues
associated with the extended states, we consider these two
cases separately.

Making use of Property 2, we have

r(In+p − B f hB
+
f h) = n + p − r(B f h) = n (B10)

r(In − C+C) = n − r(C) = n − m (B11)

If Condition 1 for λe �= 0 in Lemma 1 holds, we have

r((In+p − B f hB
+
f h)Ash(In − C+C))

= min(r(In+p − B f hB
+
f h), r(In − C+C))

= min(n, n − m) = n − m

(B12)

Hence,

r(Oλ) = n + p (B13)

That is, the observability matrix Oλ is full rank.

For the zero eigenvalues λe = 0, the rank of the block
matrix can be obtained as follows:

r(Oλ) = r

⎛
⎝

⎡
⎣ As B f

0p×n 0p×p

C 0m×p

⎤
⎦

⎞
⎠ = r

([
As B f

C 0m×p

])

= r(C) + r(Bf ) + r((In − B f B
+
f )As(In − C+C))

(B14)

Based on Property 2, the rank of matrices (In − B f B
+
f ) can

be obtained as:

r(In − B f B
+
f ) = n − r(B f ) = n − p (B15)

When both Condition 1 for λe = 0 and Condition 2 (m ≥
p) of Lemma 1 hold, we obtain the following:

r((In − B f B
+
f )As(In − C+C))

= min(r(In − B f B
+
f ), r(In − C+C))

= min(n − p, n − m) = n − m

(B16)
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Hence, the matrix Oλ has a full rank, which is given by

r(Oλ) = m + p + (n − m) = n + p (B17)

This completes the proof of the lemma.
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