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Abstract Biomass can indicate plant growth status, so it
is an important index for plant growth monitoring. This
paper focused on the methodology of estimating the winter
wheat biomass based on hyperspectral field data, including
the LANDSAT TM and EOS MODIS images. In order to
develop the method of retrieving the wheat biomass from
remote sensed data, routine field measurements were
initiated during periods when the LANDSAT satellite
passed over the study region. In the course of the
experiment, five LANDSAT TM images were acquired
respectively at early erecting stage, jointing stage, earring
stage, flowering stage and grain-filling stage of the winter
wheat, and the wheat biomass was measured at each stage.
Based on the TM and MODIS images, spectral indices
such as NDVI, RDVI, EVI, MSAVI, SIPI and NDWI were
calculated. At the same time, the hyperspectral field data
was used to compute the normalized difference in spectral
indices, red-edge parameters, spectral absorption, and
reflection feature parameters. Then the correlation coeffi-
cients between the wheat biomass and spectral parameters
of the experiment sites were computed. According to the
correlation coefficients, the optimal spectral parameters for
estimating the wheat biomass were determined. The best-
fitting method was employed to build the relationship
models between the wheat biomass and the optimal
spectral parameters. Finally, the models were used to
estimate the wheat biomass based on the TM and MODIS
data. The maximum RMSE of estimated biomass was
66.403 g/m2.

Keywords LANDSAT TM, EOS MODIS, biomass
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1 Introduction

Crop biomass is the major index which can show crop
growth. N availability is an important determinant factor of
crop growth and productivity (Van Keulen et al., 1989).
Under non-water stress growth condition, the N status of a
crop is the major factor controlling the rate of biomass
accumulation (Jensen et al., 1990). The reflectance spectra
of all types of vegetation in the 0.4–2.4 µm spectral region
are remarkably similar. In near-infrared wavelengths, there
is a high reflectance as a result of leaf scattering, while in
visible wavelengths (0.4–0.7 µm) reflectance is low
because of chlorophyll absorption (Curran, 1989).
Research has shown that wheat total nitrogen has high
correlation with leaf area index (LAI) and chlorophyll
(Bao, 2006). Thus, vegetation reflectance can be used to
monitor crop growth, and estimate the plant biomass.
Numerous studies have been conducted, regarding the

potential of remote sensing technology as an effective
estimator of plant biomass. These studies have focused on
forest biomass estimation by employing the visible,
synthetic aperture radar (SAR), and lidar data. In addition,
studies have also considered crop biomass estimation.
Gitelson et al. (2003) used MODIS reflectance to estimate
the maize green leaf biomass. Svoray (2002) introduced
the water-cloud model into SAR data to estimate the aerial
aboveground biomass of herbaceous vegetation. Del Frate
conducted some experiments to estimate the sunflower
biomass using a neural network algorithm based on radar
data. Jin estimated the wheat and oat biomass based upon
active/passive remote sensing data at microwave bands.
Liu et al. (2002) retrieved the wheat biomass from
measured 1.4 and 10.65 GHz brightness temperatures.
The focus of this paper is estimating the winter wheat

biomass based on LANDSAT TM 5 and EOS MODIS
images. In section 2, the methods and data processes are
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outlined. Section 3 is a discussion of the experimental
results and conclusions are summarized in Section 4.

2 Materials and methods

2.1 Experimental site

The experimental area was located in the suburban
counties of Beijing city, China, with arid and semi-arid
environment. There were 25 and 27 winter wheat fields
selected from Chanping, Shunyi and Tongxian, respec-
tively in 2004 and 2005 (Fig. 1). These fields were located
between 115°58′–116°50′ E longitude and 39°30′–40°33′ N
latitude. Each field was a minimum of 4 ha and planted
with the same variety under the same sowing, fertilization,
and irrigation procedures. The largest latitudinal distance
among these fields was 53 km, and the largest longitudinal
distance was 47 km. The study area was flat, and fine clay
loam was the predominant soil texture.

2.2 Data acquisition

Field experiments were conducted on days when the
satellite LANDSAT 5 passed over Beijing. We acquired the
winter wheat biomass at eight growth stages for 2004–2005.
These eight growth stages were early erecting stage, late
erecting stage, jointing stage, booting stage, earring stage,
flowing stage, grain-filling stage and maturing stage.

2.2.1 Canopy spectral measurements

All canopy spectral measurements were taken from a
height of 50 cm above canopy, under clear blue sky
between 10:00 and 14:00 in Beijing Local Time, using an
ASD FieldSpec Pro spectrometer (Analytical Spectral
Devices, Boulder, CO, USA) fitted with 25° field of view
fiber optics, which function in the 350–2500 nm spectral
region with a spectral resolution of 3 nm at 700 nm and
10 nm in the 1400–2500 nm range, and with a sampling
interval of 1.4 nm between 350 and 1050 nm, and 2 nm
between 1050 and 2500 nm. Measurements over a
40 cm�40 cm BaSO4 calibration panel were used for
calculation of reflectance. Vegetation and panel radiance
measurements were taken by averaging 20 scans at
optimized integration time with due care for dark current
correction at every spectral measurement (Huang et al.,
2004).

2.2.2 Satellite images

There were three LANDSATTM images acquired on April 1,
April 17 and May 19, 2004 at winter wheat’s erecting
stage, jointing stage and flowering stage, respectively. In
2005, two images were acquired on May 6 and May 22 at
the earring stage and grain-filling stage, respectively.
Spatial resolution for all TM images was 30 m.

Fig. 1 Experimental plots of Beijing in 2004 and 2005
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MODIS Surface Reflectance images of eight growth
stages were downloaded from the Land Process Distrib-
uted Active Archive Center (LPDAAC). The MOIDIS
images were 8-day gridded level-3 products with a spatial
resolution of 500 m per pixel, and in the sinusoidal
projection. For this product, corrections were made for the
effect of atmospheric gases and aerosols.

2.2.3 Biomass

At each site, a 0.6m�0.5m wheat sample was taken and
sealed in a plastic bag. The fresh samples were taken back,
then oven-dried at 60° until a constant weight was reached.
The wheat biomass was calculated by dividing dry weight
by sample area.

2.2.4 Image pre-processing

Coarse geometric correction of TM images was carried out
based on a 1∶10000 digitized raster map, and precise
geometric correction was completed using the GPS ground
control points. The geometric correction precision was
better than one pixel.
The Empirical Line (EL) calibration method was

employed for LANDSAT TM atmospheric correction. A
reservoir and another concrete airdrome were selected as
the dark and bright regions in the image for use in the EL
calibration. The field reflectance spectra of the reservoir
and concrete airdrome were measured by an ASD
FieldSpec Pro spectrometer when the TM image was
acquired. The image digital number (DN) spectra of the
dark and bright regions were extracted from the images
according to the GPS value recorded when the field spectra
were collected. A linear regression was calculated between
the field reflectance spectra and the image spectra. The
regression line was used to predict the surface reflectance
spectra for each pixel from its original image spectrum.
MODIS Image geo-correction procedure included

mosaic, re-projection and subset. These processes were
completed by the software of MRT. Scale factors of
reflectance data were obtained from the website of data
center, and were used to calculate the ground truth
reflectance.

3 Results and analyses

3.1 Relating biomass to hyperspectral data

Many studies have employed hyperspectral data to
estimate the plant biophysical and biochemical parameters,
including leaf area index (Vuolo et al., 2008), biomass (Ge
et al., 2007), chlorophyll content (Wu et al., 2008),
nitrogen (Tilling et al., 2007) and water content (Colombo
et al., 2008). In this study, spectral reflectance (Starks et al.,

2008), spectral indices (Zarco-Tejada et al., 2005), red
edge parameters (Cho et al., 2008), and spectral reflection
and absorption parameters (Liu, 2002) were widely used.

3.1.1 Normalized difference spectral indices

Normalized difference spectral index is formulated as
follows:

NDSIi ¼
jRiðB1Þ –RiðB2Þj
RiðB1Þ þ RiðB2Þ

, (1)

where i is the subscript of Normalize Difference Spectral
Index, Ri (B1) and Ri (B2) are the reflectance of B1 and B2
spectral band. In this study, 7 NDSIs were used to estimate
the winter wheat biomass. The wavelengths of B1 and B2
are listed in Table 1 (Liu, 2002).

3.1.2 Vegetation Red-edge position (REP)

As for hyperspectral remote sensing technology, vegeta-
tion Red-edge spectral characteristics were usually
emphased (Horler et al., 1983; Baret et al., 1992; Curran
et al., 1995; Clevers et al., 2002). The red-edge represents
the region of abrupt change in leaf reflectance between
680 nm and 780 nm caused by the combined effects of
strong chlorophyll absorption in the red and leaf internal
scattering in the near-infrared wavelengths (Gates et al.,
1965). Increases in the amount of chlorophyll results in a
broadening of the major chlorophyll absorption feature
centered around 680 nm (Buschmann and Nagel, 1993;
Dawson and Curran, 1998) causing a shift in the slope and
REP towards longer wavelengths (Collins et al., 1977;
Clevers et al., 2002).
There are many algorithms to calculate Red-edge

spectral features (Liu et al., 2004; Bonham-Carter, 1988;
Miller et al., 1990; Railyan and Korobov, 1993; Dawson
and Curran, 1998). The inverted-Gaussian (IG) model
(Bonham-Carter, 1988; Miller et al., 1990), which
represents the reflectance red edge well, is defined as
follows:

RðlÞ ¼ Rs – ðRs –R0Þexp
– ðl0 – lÞ

2�2

� �
, (2)

where Rs is the maximal spectral reflectance, R0 is the
minimal spectral reflectance, l0 is the wavelength where
the reflectance is the minimum, and σ is the Gaussian
function deviation parameter. σ is the key parameter to
describe the Red-edge shape. If σ is larger, the Red-edge

Table 1 Wavelengths of B1 and B2

index 1 2 3 4 5 6 7

B1/nm 560 670 890 920 857 820 820

B2 /nm 670 890 980 980 1210 1650 2200
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reflectance increases more rapidly and the Red-edge
becomes steeper.
The Red-edge position, lp, is defined by the wavelength

of the maximum in the first derivative of Gaussian function
(Miller et al., 1990).

lp ¼ l0 þ �: (3)

This expression is graphically illustrated in Fig. 2, where
the IG model was fitted to the red edge reflectance in

685–780 nm region using the inverted-Gaussian model
(Miller et al., 1990).

3.1.3 Spectral absorption and reflection parameters

Spectral absorption and reflection parameters, such as
absorption peak depth, absorption region spectral area,
normalized absorption peak depth, reflection peak depth,
reflection region spectral area and normalized reflection
peak depth, can be used to estimate the plant biophysical
and biochemical parameters (Liu, 2002). Liu (2002)
defined these spectral absorption and reflection parameters
and used them to inverse the winter wheat biophysical and
biochemical parameters.

3.1.4 Biomass estimation models

According to the definition of the hyperspectral para-
meters, these parameters were calculated, and the correla-
tion coefficients between the hyperspectral parameters and
biomass were computed. The correlation coefficients are
shown in Table 2.
The spectral parameters, which have the maximum

values, are used to build the biomass estimation models by
the best-fitting method. The biomass retrieval models are
shown in Table 3.

Fig. 2 Inverted Gaussian reflectance model and red-edge para-
meters

Table 2 Correlation coefficients between the biomass and hyperspectral parameters

reflectance
and spectral
parameters

4/3/2005 4/15/2004 4/21/2005 5/8/2005 5/18/2004 5/22/2005 6/2/2004

455 – 0.627 – 0.706 – 0.741 – 0.35 0.198 – 0.239 – 0.144

550 – 0.566 – 0.731 – 0.665 – 0.254 0.205 – 0.29 – 0.001

680 – 0.753 – 0.765 – 0.796 – 0.515 0.038 – 0.296 – 0.527

980 0.627 0.364 0.385 0.214 0.246 0.132 0.389

1090 0.644 0.459 0.43 0.319 0.268 0.195 0.388

1200 0.375 – 0.054 0.095 – 0.068 0.169 – 0.063 0.156

1285 0.38 – 0.048 0.095 – 0.038 0.141 – 0.055 0.135

1468 – 0.686 – 0.717 – 0.748 – 0.611 0.004 – 0.34 – 0.598

1685 – 0.468 – 0.629 – 0.581 – 0.454 0.015 – 0.313 – 0.461

2200 – 0.649 – 0.713 – 0.741 – 0.619 0.045 – 0.334 – 0.602

[670,890] 0.85 0.799 0.797 0.624 0.091 0.308 0.538

[890,980] 0.837 0.906 0.823 0.725 0.535 0.489 0.679

[920,980] 0.844 0.909 0.818 0.722 0.486 0.49 0.647

[857,1210] 0.825 0.884 0.823 0.743 0.459 0.465 0.692

[820,1650] 0.826 0.849 0.799 0.746 0.333 0.396 0.657

[820,2200] 0.81 0.799 0.785 0.733 0.161 0.358 0.643

REP 0.71 0.894 0.686 0.575 – 0.012 0.392 0.291

Lo 0.815 0.82 0.76 0.467 0.25 0.335 0.481

Lwidth – 0.775 – 0.493 – 0.7 0.557 – 0.522 0.015 – 0.615

depth 672 0.849 0.785 0.788 0.622 0.122 0.298 0.563

area 672 0.855 0.828 0.798 0.568 0.099 0.333 0.552

ND 672 – 0.821 – 0.855 – 0.772 – 0.518 – 0.052 – 0.363 – 0.409
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3.2 Relating biomass to TM data

3.2.1 The optimal spectral indices for estimation of the
biomass

Numerous studies have successfully related various
spectral indices using ratios of red and infrared reflectance

with crop vigor, condition, and biomass. In this study, six
spectral indices were employed, as shown in Table 4.
These indices were related to crop LAI, biomass, pigments
and plant water content.
As only five TM images were acquired, it was difficult to

search the optimal spectral indices to retrieve the wheat
biomass during the whole growth period. However, the

(Continued)

reflectance
and spectral
parameters

4/3/2005 4/15/2004 4/21/2005 5/8/2005 5/18/2004 5/22/2005 6/2/2004

depth 980 0.862 0.912 0.803 0.736 0.461 0.492 0.631

area 980 0.861 0.912 0.802 0.743 0.411 0.504 0.64

ND 980 0.286 0.433 – 0.311 – 0.649 0.293 – 0.24 0.122

depth 1190 0.871 0.892 0.788 0.769 0.252 0.444 0.571

area 1190 0.868 0.894 0.79 0.768 0.253 0.443 0.587

ND 1190 – 0.536 – 0.777 – 0.808 – 0.698 – 0.117 – 0.393 – 0.571

depth 1450 0.792 0.761 0.761 0.706 0.109 0.313 0.578

area 1450 – 0.767 – 0.786 – 0.333 0.052 – 0.464 0.165 – 0.554

ND 1450 – 0.107 0.483 0.501 0.401 0.167 0.365 0.493

P_depth 560 – 0.401 – 0.472 – 0.742 – 0.63 – 0.063 – 0.126 – 0.349

PND 560 0.797 0.718 0.823 0.512 0.099 0.145 0.63

P_area 560 0.792 0.704 0.826 0.56 0.098 0.141 0.622

P_depth 920 0.738 0.728 0.738 0.41 0.488 0.259 0.652

PND 920 0.842 0.883 0.796 0.721 0.381 0.515 0.503

P_area 920 0.846 0.865 0.79 0.728 0.302 0.542 0.436

P_depth 1100 0.499 – 0.672 – 0.071 – 0.025 – 0.297 – 0.033 – 0.486

PND 1100 0.862 0.896 0.789 0.77 0.24 0.475 0.585

P_area 1100 0.864 0.897 0.787 0.765 0.277 0.462 0.591

P_depth 1280 – 0.557 – 0.718 – 0.764 – 0.639 0.216 – 0.172 – 0.288

PND 1280 0.817 0.786 0.75 0.749 – 0.066 0.34 0.522

P_area 1280 0.78 0.766 0.777 0.662 – 0.308 0.189 0.441

P_depth 1690 – 0.08 – 0.488 – 0.659 – 0.411 – 0.227 – 0.399 – 0.545

PND 1690 0.734 0.747 0.751 0.546 0.112 0.227 0.65

P_area 1690 0.719 0.74 0.761 0.548 0.162 0.248 0.658

P_depth 2230 – 0.562 – 0.301 – 0.469 – 0.544 0.512 – 0.27 – 0.351

PND 2230 0.519 0.635 0.748 0.314 0.449 0.031 0.369

P_area 2230 0.54 0.662 0.762 0.385 0.379 0.066 0.433

Note:r(0.05,26)= 0.381,r(0.01,26)= 0.487. the description of the spectral parameters can be found in the reference paper 20

Table 3 Biomass retrieval model based on the hyperspectral parameters at different growth stages

growth stage model pptimal spectral parameter R2

late erecting stage y = 884.96x+ 9.868 depth 1190 0.759

jointing stage y = 43.571x – 42.686 area 980 0.833

booting stage y = 604.11x+ 85.259 P_area 560 0.682

earring stage y = 3257.8x – 159.16 PND 1100 0.593

flowering stage y = 6611.9x+ 125.26 [890,980] 0.286

grain-filling stage y = 105.88x – 322.48 P_area 920 0.294

maturing stage y = 2608.2x+ 234.3 [857,1210] 0.479
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field measurements could provide the hyper-spectral data
of wheat during the whole growth period. Combining the
hyper-spectral data and TM sensors’ spectral responding
functions, the TM spectral reflectance was simulated.
Using the simulated reflectance, the spectral indices of the
experiment sites were acquired at the eight stages. These
data were enough to research the retrieval of the wheat
biomass during the whole growth period.
In order to retrieve the wheat biomass, we needed to

search the optimal indices from these spectral indices.
Based on the simulated reflectance, the spectral indices
were calculated. Then the correlation coefficients between
the spectral indices and biomass of the experiment sites
were computed. Correlation analysis results are shown in
Table 5.
As shown in Table 5, all spectral indices had significant

correlation at 1% level with the biomass at erection stage.
The spectral index NDWI had the highest correlation with
the biomass at jointing, booting, earring, grain-filling, and
maturing stages. At flowering stage, EVI had the highest

correlation with the biomass compared to other spectral
indices.
In order to validate the analysis result based on the

simulated data, the five TM image data were used. The
same analysis method was employed to the TM data. The
correlation coefficients between the biomass and spectral
indices are shown in Table 6.
Table 6 shows that the optimal indices were NDVI,

NDWI, NDWI, EVI and NDWI at the five stages,
respectively. This conclusion was consistent with the
analysis result based on the simulated data. Therefore, the
simulated data could be used to study the optimal spectral
indices for retrieving biomass.
Table 5 shows that NDWI had the highest correlation

coefficients with the biomass at the five stages. Compared
with other spectral indices, NDWI had better correlation
with the biomass at the other three stages. Considering the
simplicity of the optimal indices, NDWI was confirmed to
be the optimal index.
Due to the definition, NDWI was the optimal index of

Table 4 Spectral indices used in this paper

acronym index equation reference

NDVI normalized difference vegetation index NDVI =(TM4—TM3)/(TM4+ TM3) Rouse et al., 1974

RDVI renormalized difference vegetation index RDVI =(TM4—TM3)/SQRT(TM4+ TM3) Rougean & Breon, 1995

MSAVI modified soil-adjusted vegetation index (2TM4+ 1—SQRT((2TM4+ 1)^2–8(TM4—TM3)))/2 Qi et al., 1994

EVI enhanced vegetation index 2.5(TM4—TM3)/(1+ TM4+ 6TM3–7.5TM1) Huete et al., 1996

SIPI structure insensitive pigment index SIPI =(TM4—TM1)/(TM4—TM3) Peñuelas et al., 1995

NDWI normalized difference water index NDWI =(TM4—TM5)/(TM4+ TM5) Gao, 1996

Table 5 The correlation coefficients of wheat biomass and spectral indices based on the simulated data

Date 4/1/2004 4/3/2005 4/15/2004 4/21/2005 5/8/2005 5/18/2004 5/22/2005 6/2/2004

phenophase early erecting
stage

late erecting
stage

jointing stage booting stage earring stage flowering stage grain-filling stage maturing stage

NDVI 0.888 0.852 0.806 0.796 0.606 0.091 0.312 0.551

RDVI 0.888 0.869 0.792 0.739 0.518 0.305 0.294 0.593

EVI 0.888 0.858 0.780 0.731 0.491 0.332 0.292 0.621

MSAVI 0.891 0.868 0.784 0.731 0.492 0.325 0.289 0.606

SIPI – 0.782 – 0.816 – 0.734 – 0.729 – 0.577 – 0.192 – 0.287 – 0.500

NDWI 0.883 0.828 0.842 0.797 0.745 0.317 0.390 0.693

Note: r(0.05,25)= 0.396, r(0.01,25)= 0.505, r(0.05,27)= 0.381, r(0.01,27)= 0.487

Table 6 Correlation coefficients of wheat biomass and spectral indices based on TM data

date 4/1/2004 4/15/2004 5/6/2005 5/19/2004 5/22/2005

phenophase early erecting stage jointing stage earring stage flowering stage grain-filling stage

NDVI 0.847 0.614 0.782 0.312 0.342

RDVI 0.814 0.629 0.748 0.492 0.389

EVI 0.829 0.787 0.706 0.641 0.330

MSAVI 0.804 0.622 0.752 0.496 0.390

SIPI – 0.762 – 0.757 – 0.638 – 0.637 – 0.252

NDWI 0.842 0.803 0.833 0.579 0.544
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biomass estimation. In our study, NDWI was composed of
TM reflectance at the near infrared and short infrared band.
TM near infrared reflectance could depict the greenness of
vegetation, and its shortwave infrared reflectance could
denote the water content information of vegetation.
Vegetation biomass has a direct relation with greenness
and an indirect relationship with water content. Therefore,
NDWI was selected as the optimal spectral index to
estimate the biomass.
The correlation coefficients between NDWI and the

biomass decreased as wheat grew before the flowering
stage and increased after flowering stage. During the
flowering stage, the correlation coefficient was minimal. At
early growth stage, the sensitivity of wheat field reflectance
spectrum to the biomass was the highest, and the
sensitivity decreased with wheat growth. The sensitivity
was the lowest during the flowering stage because the
wheat canopy was the most flourishing. At this stage, the
sensitivity approached the minimum value. After the
flowering stage some leaves began to fall, therefore, the
sensitivity increased.

3.2.2 The biomass estimation models

Using the best-fitting method to build the biomass
estimation model, the wheat biomass estimation models
were developed and illustrated in Figs. 3–7. Figures 3–7
show that the accuracies of biomass estimation were high
during the vegetative stage from the erecting to the earring
stage. Using the best-fitting method, a biomass estimation
model was built for the vegetative stage and the resulting
model is shown in Fig. 8.

3.3 Relating biomass to MODIS data

3.3.1 MODIS optimal spectral indices for biomass
estimation

In searching the optimal spectral indices, we used the
MODIS data on the days when the biomass was measured
at the experiment fields. First, the correlation coefficients
between the biomass and spectral indices were calculated,
and the results are shown in Table 7.
The optimal index was SIPI at erecting and jointing

stages. Near infrared reflectance was the optimal index
from booting to grain-filling stages. During the maturing
stage, shortwave infrared reflectance was the optimal index
and furthermore near infrared reflectance had the highest
correlation coefficient with the biomass at the vegetative
stage. A similar result was found that the correlation
between the biomass and spectral indices was the lowest
during the flowering stage.
At erecting and jointing stages, wheat canopy could not

cover the fields completely. Therefore, crop geometric
structure had an apparent effect on the relation between the

biomass and spectrum. As SIPI could weaken crop structure
effect, SIPI had higher correlation with the biomass.

Fig. 3 Relation between NDVI and biomass on April 1, 2004
(early erecting stage)

Fig. 4 Relation between NDVI and biomass on April 17, 2004
(jointing stage)

Fig. 5 Relation between NDVI and biomass on May 6, 2005
(earring stage)
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The analysis results for TM data showed that NDWI had
higher correlation with the biomass at most stages.
However, this conclusion was not found when using

MODIS data. The main reason was MODIS shortwave
infrared sensor’s SNR was lower.

3.3.2 Biomass estimation model

As MODIS eight-day reflectance had eliminated the effects
of cloudy and view angle, it was used to build a wheat
biomass estimation model at vegetative stage (Fig. 9).

3.4 Application of the biomass estimation models

The previous sections showed that the wheat biomass
could be retrieved during the vegetation stage based on the
TM or MODIS images. The biomass estimation model in
Fig. 8 was used to analyze TM images during the
vegetative stage and the biomass of the experimental
region can be seen in Figs. 10–12. We used the model in
Fig. 9 to calculate the plant biomass of wheat fields based
on MODIS images (Figs. 13–15)

4 Conclusion and discussion

Conclusions could be drawn based on previous correlation
analyses and biomass estimation results:
(1) During the whole growth stage of winter wheat, the

correlation coefficients between winter wheat biomass and
hyperspectral parameters were higher before the flowering
stage. Among these hyperspectral parameters, spectral
absorption and reflection feature parameters had the
highest correlation with the biomass. Therefore, based on
the optimal spectral parameters, the biomass estimation
models were built. The R2 values of these models were
higher than 0.5 before the flowering stage.
(2) With regard to wheat biomass estimation based on

TM images, NDWI was a proper spectral index. The
reason was NDWI could reflect plant greenness and water
content, which was very important to biomass accumula-
tion. The correlation coefficients between the biomass and
NDWI increased during the vegetative stage and decreased
during the reproductive stage. During the flowering stage,
the correlation coefficient was minimal.
(3) While the correlation coefficients between biomass

and NDWI were low during the reproductive stage, only
the data from the vegetative stage were used to fit the wheat
biomass estimation model. The relation between NDWI and
wheat biomass could be described by a logarithm equation.
The wheat biomass estimation model had a R2 of 0.8944
and the estimated biomass had a RMSE of 66.403 g/m2.
(4) With respect to wheat biomass estimation based on

MODIS images, SIPI was the optimal index for retrieval of
the biomass at erecting and jointing stages and near
infrared reflectance was the optimal index for the other
stages. NDWI was not the optimal index because MODIS
shortwave infrared sensor’s SNR was low. The correlation

Fig. 7 The relation between NDVI and biomass on May 22,
2004 (grain-filling stage)

Fig. 8 The relation between NDVI and biomass on vegetative
stage

Fig. 6 Relation between NDVI and biomass on May 19, 2004
(flowing stage)
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coefficients change in regularity was comparable to the
results from the TM analyses. During the vegetative stage,
near infrared reflectance was the optimal index to estimate
the wheat biomass.
(5) The relation between the biomass and near infrared

reflectance could be best-fitted by a linear function based

on the data generated during the vegetative stage. The
model had a R2 of 0.8905 with a RMSE of 65.361 g/m2.
Biomass estimation accuracy based on MODIS data was
similar, with biomass estimation accuracy based on TM
data. In searching the optimal spectral indices for
estimating the wheat biomass, we found the optimal

Table 7 Correlation coefficient between biomass and MODIS spectral indices

date 4/1/2004 4/3/2005 4/15/2004 4/21/2005 5/8/2005 5/18/2004 5/22/2005 6/2/2004 vegetative
stage

phenophase early erecting
stage

late erecting
stage

jointing stage booting stage earring stage flowering stage grain-filling
stage

maturing stage

MODIS1 – 0.349 – 0.794 – 0.708 – 0.452 – 0.667 – 0.049 – 0.444 – 0.410 – 0.523

MODSI2 0.529 0.546 0.713 0.681 0.846 0.333 0.576 – 0.351 0.909

MODIS3 – 0.409 – 0.620 – 0.519 – 0.369 – 0.692 0.015 – 0.412 – 0.610 – 0.417

MODIS5 0.025 0.329 0.354 0.671 0.491 0.358 0.122 – 0.641 0.627

NDVI 0.769 0.821 0.753 0.550 0.729 0.288 0.505 0.301 0.795

RDVI 0.828 0.797 0.766 0.580 0.766 0.318 0.535 0.218 0.864

EVI 0.827 0.776 0.764 0.605 0.761 0.313 0.550 0.062 0.869

MSAVI 0.842 0.781 0.758 0.581 0.776 0.324 0.546 0.193 0.877

SIPI – 0.748 – 0.832 – 0.833 – 0.605 – 0.629 – 0.243 – 0.475 0.090 – 0.693

Fig. 9 Relation between biomass and MODIS shortwave infra-
red reflectance during vegetative stage

Fig. 10 Biomass map on April 1, 2004

Fig. 11 Biomass map on April 17, 2004

Fig. 12 Biomass map on May 6, 2005
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indices of TM and MODIS were different. This result was
due to differences in the SNR sensor and image pixel
spatial resolution.
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