
Estimation, Planning and Mapping for

Autonomous Flight Using an RGB-D Camera in

GPS-denied Environments

Abraham Bachrach*, Samuel Prentice*, Ruijie He, Peter Henry, Albert S. Huang,

Michael Krainin, Daniel Maturana, Dieter Fox and Nicholas Roy

Abstract RGB-D cameras provide both color images and per-pixel depth estimates.

The richness of this data and the recent development of low-cost sensors have com-

bined to present an attractive opportunity for mobile robotics research. In this paper,

we describe a system for visual odometry and mapping using an RGB-D camera,

and its application to autonomous flight. By leveraging results from recent state-

of-the-art algorithms and hardware, our system enables 3D flight in cluttered envi-

ronments using only onboard sensor data. All computation and sensing required for

local position control are performed onboard the vehicle, reducing the dependence

on unreliable wireless links. However, even with accurate 3D sensing and position

estimation, some parts of the environment have more perceptual structure than oth-

ers, leading to state estimates that vary in accuracy across the environment. If the

vehicle plans a path without regard to how well it can localize itself along that path, it

runs the risk of becoming lost or worse. We show how the Belief Roadmap (BRM)

algorithm (Prentice and Roy, 2009), a belief space extension of the Probabilistic

Roadmap algorithm, can be used to plan vehicle trajectories that incorporate the

sensing model of the RGB-D camera. We evaluate the effectiveness of our system

for controlling a quadrotor micro air vehicle, demonstrate its use for constructing

detailed 3D maps of an indoor environment, and discuss its limitations.

Abraham Bachrach and Samuel Prentice contributed equally to this work.

Abraham Bachrach, Samuel Prentice, Ruijie He, Albert Huang and Nicholas Roy

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Cambridge, MA 02139.

e-mail: abachrac, ruijie, albert, prentice, nickroy@mit.edu

Peter Henry, Michael Krainin and Dieter Fox

University of Washington, Department of Computer Science & Engineering, Seattle, WA.

e-mail: peter, mkrainin, fox@cs.washington.edu.

Daniel Maturana

The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. e-mail: dimatura@cmu.edu

1

2 Bachrach et. al.

1 Introduction

Unmanned air vehicles (UAVs) rely on accurate knowledge of their position for

decision-making and control. As a result, considerable investment has been made

towards improving the availability of global positioning infrastructure, including

utilizing satellite-based GPS systems and developing algorithms to use existing RF

signals such as WiFi. However, most indoor environments and many parts of the

urban canyon remain without access to external positioning systems, limiting the

ability of current autonomous UAVs to fly through these areas.

Localization using sonar ranging (Leonard and Durrant-Whyte, 1991), laser

ranging (Thrun et al., 2000) or camera sensing (Se et al., 2002) has been used ex-

tremely successfully on a number of ground robots and is now essentially a com-

modity technology. Previously, we have developed algorithms for MAV flight in

cluttered environments using laser range finders (Bachrach et al., 2009a) and stereo

cameras (Achtelik et al., 2009). Laser range finders that are currently available in

form factors appropriate for use on a MAV are very high precision, but only provide

range measurements along a plane around the sensor. Since these sensors can only

detect objects that intersect the sensing plane, they are most useful in environments

characterized by vertical structures, and less so in more complex scenes.

Fig. 1 Our quadrotor micro air vehicle (MAV). The RGB-D camera is mounted at the base of the

vehicle, tilted slightly down.

Structured light RGB-D cameras are based upon stereo techniques, and thus

share many properties with stereo cameras. The primary differences lie in the range

and spatial density of depth data. Since RGB-D cameras illuminate a scene with a

structured light pattern, they can estimate depth in areas with poor visual texture

but are range-limited by their projectors. This paper presents our approach to pro-

viding an autonomous micro air vehicle with fast and reliable state estimates and

a 3D map of its environment by using an on-board RGB-D camera and inertial

measurement unit (IMU). Together, these allow the MAV to safely operate in clut-

tered, GPS-denied indoor environments. The control of a micro air vehicle requires

accurate estimation of not only the position of the vehicle but also the velocity –

estimates that our algorithms are able to provide. Estimating a vehicle’s 3D motion

from sensor data typically consists of estimating its relative motion at each time step

Autonomous Flight Using an RGB-D Camera 3

by aligning successive sensor measurements such as laser scans or RGB-D frames, a

process most often known as “visual odometry” when comparing camera or RGB-D

images.

Given knowledge of the relative motion of the vehicle from sensor frame to sen-

sor frame, the 3D trajectory of the vehicle in the environment can be estimated by

integrating the relative motion estimates over time. Given knowledge of the vehicle

position in the environment, the locations of obstacles in each sensor frame can also

be used to construct a global map. While often useful for local position control and

stability, visual odometry methods suffer from long-term drift and are not suitable

for building large-scale maps. To solve this problem, we also demonstrate how our

previous work on RGB-D Mapping (Henry et al., 2010) can be incorporated to de-

tect loop closures, correct for accumulated drift and maintain a representation of

consistent pose estimates over the history of previous frames.

However, the fast dynamics of UAVs have stringent requirements in terms of

state estimation accuracy. The RGB-D sensor has a limited range and field of view,

which strongly affects its reliability for state estimation on UAVs. When position

information is temporarily not available from the onboard sensors, the state estimate

will diverge from the true state much faster than on a ground vehicle, giving the

UAV greater sensitivity to sensor limitations as it moves through the environment.

Our approach to addressing this sensitivity is based on the Belief Roadmap (BRM)

algorithm (Prentice and Roy, 2007; He et al., 2008a; Prentice and Roy, 2009). The

BRM is a generalization of the Probabilistic Roadmap (PRM) algorithm (Kavraki

et al., 1996), performing searches in the belief space of the vehicle efficiently by

using the symplectic form of the Kalman Filter (KF) (Abou-Kandil, 2003) to find

the minimum expected cost path for the vehicle.

In this paper, we provide two primary contributions. Firstly, we provide a sys-

tematic experimental analysis of how the best practices in visual odometry using

an RGB-D camera enable the control of a micro air vehicle. Secondly, we give an

extension of the BRM planning algorithm for a quadrotor helicopter (Figure 1). We

describe our overall system, justify the design decisions made, provide a ground-

truth evaluation, and discuss its capabilities and limitations. We conclude the paper

with a demonstration of the quadrotor helicopter using the BRM algorithm to navi-

gate autonomously in indoor environments.

This paper extends preliminary results given by Huang et al. (2011) and by He

et al. (2008a), demonstrating the RGB-D mapping algorithm and the BRM algo-

rithm. We give additional algorithmic details regarding estimation and mapping,

provide the extension of the BRM to other sensor modalities such as the RGB-D

camera, and give a more thorough experimental analysis in real-world environments.

2 Vehicle Position Estimation

The problem we address is that of quadrotor helicopter navigation. The quadrotor

must use the onboard RGB-D sensor to estimate its own position (local estimation),

4 Bachrach et. al.

build a dense 3D model of the environment (global simultaneous localization and

mapping) and use this model to plan trajectories through the environment.

Our algorithms are implemented on the vehicle shown in Figure 1. The vehicle is

a Pelican quadrotor manufactured by Ascending Technologies GmbH. The vehicle

has a maximal dimension of 70cm, and a payload of up to 1000g. We have mounted

a stripped down Microsoft Kinect sensor and connected it to the onboard flight com-

puter. The flight computer, developed by the Pixhawk project at ETH Zurich (Meier

et al., 2011), is a 1.86 GHz Core2Duo processor with 4 GB of RAM. The computer

is powerful enough to allow all of the real-time estimation and control algorithms to

run onboard the vehicle.

Following our previous work, we developed a system that decouples the real-

time local state estimation from the global simultaneous localization and mapping

(SLAM). The local state estimates are computed from visual odometry (section 2.1),

and to correct for drift in these local estimates the estimator periodically incorpo-

rates position corrections provided by the SLAM algorithm (section 2.2). This archi-

tecture allows the SLAM algorithm to use much more processing time than would

be possible if the state estimates from the SLAM algorithm were directly used to

control the vehicle.

If the UAV does not have access to perfect state knowledge, such as from external

sources (e.g., motion capture, GPS, etc.), it can localize itself by first using sensors

to measure environmental features and then by registering the measurements against

a pre-existing map. To control the quadrotor, we integrated the new visual odome-

try and RGB-D Mapping algorithms into our system previously developed around

2D laser scan-matching and SLAM (Bachrach et al., 2009a). The motion estimates

computed by the visual odometry are fused with measurements from the onboard

IMU in an Extended Kalman Filter, described in Appendix A. The filter computes

estimates of both the position and velocity which are used by the PID position con-

troller to stabilize the position of the vehicle.

We keep the SLAM process separate from the real-time control loop, instead

having it provide corrections for the real-time position estimates. Since these posi-

tion corrections are delayed significantly from when the measurement upon which

they were based was taken, we must account for this delay when we incorporate

the correction by retroactively modifying the appropriate position estimate in the

state history. All future state estimates are then recomputed from this corrected po-

sition, resulting in globally consistent real-time state estimates. By incorporating

the SLAM corrections after the fact, we allow the real-time state estimates to be

processed with low enough delay to control the MAV, while still incorporating the

information from SLAM to ensure drift free position estimation.

2.1 Visual Odometry

The visual odometry algorithm that we have developed is based around a standard

stereo visual odometry pipeline, with components adapted from existing algorithms.

Autonomous Flight Using an RGB-D Camera 5

Fig. 2 The input RGB-D data to the visual odometry algorithm alongside the detected feature

matches. The top row images are from time t, the bottom row images are from time t + 1. The

left column is the depth image, and the middle column is the corresponding RGB image. The right

hand column shows the pixels that are matched between frames, where inlier feature matches are

drawn in blue and outliers are drawn in red.

While most visual odometry algorithms follow a common architecture, a large num-

ber of variations and specific approaches exist, each with its own attributes. A con-

tribution of this paper is to specify the steps of our visual odometry algorithm and

compare the alternatives for each step. In this section we specify these steps and we

provide the experimental comparison of each step in the visual odometry pipeline.

Our overall algorithm is most closely related to the approaches taken by Mei et al.

(2009) and Howard (2008), and consists of the following sequence of operations:

1. Image Preprocessing: An RGB-D image is first acquired from the RGB-D cam-

era (Fig. 2). The RGB component of the image is converted to grayscale and

smoothed with a Gaussian kernel of σ = 0.85, and a Gaussian pyramid is con-

structed to enable more robust feature detection at different scales. Each level

of the pyramid corresponds to one octave in scale space. Features at the higher

scales generally correspond to larger image structures in the scene, which gener-

ally makes them more repeatable and robust to motion blur.

2. Feature Extraction: Features are extracted at each level of the Gaussian pyramid

using the FAST feature detector (Rosten and Drummond, 2006). The threshold

for the FAST detector is adaptively chosen using a simple proportional controller

to ensure a sufficient number of features are detected in each frame. The depth

corresponding to each feature is also extracted from the depth image. Features

that do not have an associated depth are discarded. To maintain a more uniform

distribution of features, each pyramid level is discretized into 80×80 pixel buck-

ets, and the 25 features in each bucket with the strongest FAST corner score are

retained.

6 Bachrach et. al.

3. Initial Rotation Estimation: For small motions such as those encountered in

successive image frames, the majority of a feature’s apparent motion in the image

plane is caused by 3D rotation. Estimating this rotation allows us to constrain the

search window when matching features between frames. We use the technique

proposed by Mei et al. (2009) to compute an initial rotation by directly minimiz-

ing the sum of squared pixel errors between downsampled versions of the current

and previous frames.

One could also use an IMU or a dynamics model of the vehicle to compute this

initial motion estimate, however the increased generality of the image based es-

timate is preferable, while providing sufficient performance. An alternative ap-

proach would be to use a coarse-to-fine motion estimation that iteratively esti-

mates motion from each level of the Gaussian pyramid, as proposed by Johnson

et al. (2008).

4. Feature Matching: Each feature is assigned an 80-byte descriptor consisting

of the brightness values of the 9 × 9 pixel patch around the feature, normalized

to zero mean and omitting the bottom right pixel. The omission of one pixel

results in a descriptor length more suitable for vectorized instructions. Features

are then matched across frames by comparing their feature descriptor values us-

ing a mutual-consistency check (Nistér et al., 2004). The match score between

two features is the sum-of-absolute differences (SAD) of their feature descrip-

tors (Howard, 2008), which can be quickly computed using SIMD instructions

such as Intel SSE2. A feature match is declared when two features have the low-

est scoring SAD with each other, and they lie within the search window defined

by the initial rotation estimation.

Once an initial match is found, the feature location in the newest frame is refined

to obtain a sub-pixel match. Refinement is computed by minimizing the sum-of-

square errors of the descriptors, using ESM to solve the iterative nonlinear least

squares problem (Benhimane and Malis, 2004). We also use SIMD instructions

to speed up this process.

5. Inlier Detection: Although the constraints imposed by the initial rotation esti-

mation substantially reduce the rate of incorrect feature matches between frames,

an additional step is necessary to further prune away bad matches. We fol-

low Howard’s approach of computing a graph of consistent feature matches,

and then using a greedy algorithm to approximate the maximal clique in the

graph (Howard, 2008; Hirschmuller et al., 2002).

The graph is constructed according to the fact that rigid body motions are

distance-preserving operations – the Euclidean distance between two features at

one time should match their distance at another time. Thus, each pair of matched

features across frames is a vertex in the graph, and an edge is formed between

two such pairs of matched feature if the 3D distance between the features does

not change substantially from the prior frame to the subsequent frame. For a

static scene, the set of inliers make up the maximal clique of consistent matches.

The max-clique search is approximated by starting with an empty set of matched

feature pairs and iteratively adding matched feature pairs with greatest degree

that is consistent with all matched feature pairs in the clique (Fig. 2). Overall,

Autonomous Flight Using an RGB-D Camera 7

Fig. 3 Panorama photograph of the motion capture room used to conduct our ground-truth exper-

iments. Visual feature density varies substantially throughout this room.

this algorithm has a runtime quadratic in the number of matched feature pairs,

but runs very quickly due to the speed of the consistency checking. In our exper-

imental analysis, we compare this approach to RANSAC-based methods (Nistér

et al., 2004; Konolige et al., 2007).

6. Motion estimation: The final motion estimate is computed from the matched

features in three steps. First, Horn’s absolute orientation method provides an ini-

tial estimate by minimizing the Euclidean distances between the inlier feature

matches (Horn, 1987). Second, the motion estimate is refined by minimizing

feature reprojection error using a nonlinear least-squares solver (Benhimane and

Malis, 2004). This refinement step implicitly accounts for the increase in depth

uncertainty with range due to the fact that the depth estimates are computed by

stereo matching in image space. Finally, feature matches exceeding a fixed repro-

jection error threshold are discarded from the inlier set and the motion estimate

is refined once again.

To reduce short-scale drift, we additionally use a keyframe technique. Motion is

estimated by comparing the newest frame against a reference frame. If the camera

motion relative to the reference frame is successfully computed with a sufficient

number of inlier features, then the reference frame is not changed. Otherwise,

the newest frame replaces the reference frame after the estimation is finished. If

motion estimation against the reference frame fails, then the motion estimation

is tried again with the second most recent frame. This simple heuristic serves to

eliminate drift in situations where the camera viewpoint does not vary signifi-

cantly, a technique especially useful when hovering.

2.1.1 Visual Odometry Performance

There are a variety of visual odometry methods, and the existing literature is often

unclear about the advantages and limitations of each. We present results comparing

a number of these approaches and analyze their performance. As is true in many

domains, the tradeoffs can often be characterized as increased accuracy at the ex-

pense of additional computational requirements. In some cases, the additional cost

is greatly offset by the improved accuracy.

We conducted a number of experiments using a motion capture system that pro-

vides 120 Hz ground truth measurements of the MAV’s position and attitude. The

8 Bachrach et. al.

motion capture environment can be characterized as a single room approximately

11m× 7m× 4m in size, lit by overhead fluorescent lights and with a wide variation

of visual clutter – one wall is blank and featureless, and the others have a varying

number of objects and visual features (see Fig. 3). While this is not a large volume,

it is representative of many confined, indoor spaces, and provides the opportunity to

directly compare against ground truth.

We recorded a dataset of the MAV flying various patterns through the motion

capture environment, designed to challenge vision-based approaches to the point of

failure, and includes motion blur and feature-poor images, as would commonly be

encountered indoors and under moderate lighting conditions. Substantial movement

in X, Y, Z, and yaw were all recorded, with small deviations in roll and pitch. We

numerically differentiated the motion capture measurements to obtain the vehicle’s

ground truth 3D velocities, and compared them to the velocities and trajectories es-

timated by the visual odometry and mapping algorithms. Table 1 shows the perfor-

mance of our integrated approach, and its behavior when adjusting different aspects

of the algorithm. Each experiment varied a single aspect from our approach. We

present the mean velocity error magnitude, the overall computation time per RGB-

D frame, and the gross failure rate. We define a gross failure to be any instance

where the visual odometry algorithm was either unable to produce a motion esti-

mate (e.g., due to insufficient feature matches) or where the error in the estimated

3D velocities exceeded a fixed threshold of 1 m/s. Timing results were computed on

a 2.67 GHz laptop computer.

Visual Odometry Variations

In developing our overall approach to visual odometry, we assessed different vari-

ants of the following steps of the process:

Inlier detection RANSAC based methods (Nistér et al., 2004) are more com-

monly used than the greedy max-clique approach. We tested against two RANSAC

schemes, traditional RANSAC and Preemptive RANSAC (Nistér, 2005). The latter

attempts to speed up RANSAC by avoiding excessive scoring of wrong motion hy-

potheses. In our experiments, when allocated a comparable amount of computation

time (by using 500 hypotheses), greedy max-clique outperformed both.

Initial rotation estimation A good initial rotation estimate can help constrain

the feature matching process and reduce the number of incorrect feature matches.

Disabling the rotation estimate results in slightly faster runtime, but more frequent

estimation failures.

Gaussian pyramid levels Detecting and matching features on different levels of

a Gaussian pyramid provides provides resilience against motion blur and helps track

larger features.

Reprojection error We compared unidirectional motion refinement, which min-

imizes the reprojection error of newly detected features onto the reference frame,

Autonomous Flight Using an RGB-D Camera 9

Velocity error % gross total time

in m/s failures in ms

Our approach 0.387 ± 0.004 3.39 14.7

Inlier detection

RANSAC 0.412 ± 0.005 6.05 15.3

Preemptive RANSAC 0.414 ± 0.005 5.91 14.9

Greedy max-clique – our approach 0.387 ± 0.004 3.39 14.7

Initial rotation estimate

None 0.388 ± 0.004 4.22 13.6

Gaussian pyramid levels

1 0.387 ± 0.004 5.17 17.0

2 0.385 ± 0.004 3.52 15.1

3 – our approach 0.387 ± 0.004 3.39 14.7

4 0.387 ± 0.004 3.50 14.5

Reprojection error minimization

Bidir. Gauss-Newton 0.387 ± 0.004 3.24 14.7

Bidir. ESM – our approach 0.387 ± 0.004 3.39 14.7

Unidir. Gauss-Newton 0.391 ± 0.004 3.45 14.6

Unidir. ESM 0.391 ± 0.004 3.47 14.6

Absolute orientation only 0.467 ± 0.005 10.97 14.4

Feature window size

3 0.391 ± 0.004 5.96 12.8

5 0.388 ± 0.004 4.24 13.7

7 0.388 ± 0.004 3.72 14.2

9 – our approach 0.387 ± 0.004 3.39 14.7

11 0.388 ± 0.004 3.42 15.7

Subpixel feature refinement

No refinement 0.404 ± 0.004 5.13 13.1

Adaptive FAST threshold

Fixed threshold (10) 0.385 ± 0.004 3.12 15.3

Feature grid/bucketing

No grid 0.398 ± 0.004 4.02 24.6

Table 1 Comparison of various approaches on a challenging dataset. Error computed using a high

resolution motion capture system for ground truth.

with bidirectional refinement, which additionally minimizes the reprojection error

of reference features projected onto the new frame. We additionally compared a

standard Gauss-Newton optimization technique with ESM. Bidirectional refinement

does provide slightly more accuracy without substantially greater cost, and we found

no significant difference between Gauss-Newton and ESM.

Feature window size As expected, larger feature windows result in more suc-

cessful motion estimation at the cost of additional computation time. Interestingly,

10 Bachrach et. al.

a very small window size of 3×3 yielded reasonable performance, a behavior we

attribute to the constraints provided by the initial rotation estimate.

Subpixel refinement, adaptive thresholding, and feature bucketing We found

the accuracy improvements afforded by subpixel feature refinement outweighed its

additional computational cost. While the lighting in the motion capture experiments

did not substantially change, adaptive thresholding still yielded a lower failure rate.

We would expect the accuracy difference to be greater when flying through more

varied lighting conditions. Finally, without feature bucketing, the feature detector

often detected clusters of closely spaced features, which in turn confused the match-

ing process and resulted in both slower speeds and decreased accuracy.

Taking the best performing version of each of the above variations, our algorithm

had a mean velocity error of 0.387 m/s and a 3.39% gross failure rate, and is unlikely

to have been capable of autonomously flying the MAV through the entire recorded

trajectory. In contrast, in environments with richer visual features, we have observed

mean velocity errors of 0.08 m/s, with no gross failures, significantly lower than the

values reported in table 1. Many of the gross failures are due to the blank wall

on one side of the room — no state estimation process based on visual features can

overcome this problem. To specifically address this problem and to ensure the safety

of the vehicle, we will turn to planning algorithms presented in section 3.

2.2 Mapping

Visual odometry provides locally accurate pose estimates; however global consis-

tency is needed for metric map generation and navigation over long time-scales. We

therefore integrate our visual odometry system with our previous work in RGBD-

Mapping (Henry et al., 2010). This section focuses on the key decisions required for

real-time operation; we refer readers to our previous publication for details on the

original algorithm that emphasizes mapping accuracy (Henry et al., 2010).

Unlike the local pose estimates needed for maintaining stable flight, map updates

and global pose updates are not required at a high frequency and can therefore be

processed on an offboard computer. The MAV transmits RGB-D data to an offboard

laptop, which detects loop closures, computes global pose corrections, and con-

structs a 3D log-likelihood occupancy grid map. For coarse navigation, we found

that a grid map with 10cm resolution provided a useful balance between map size

and precision. Depth data is downsampled to 128×96 prior to a voxel map update

to increase the update speed, resulting in spacing between depth pixels of approx-

imately 5cm at a range of 6m. Incorporating a single frame into the voxel map

currently takes approximately 1.5ms.

As before, we adopt a keyframe approach to loop closure – new RGB-D frames

are matched against a small set of keyframes to detect loop closures, using a fast

image matching procedure (Henry et al., 2010). New keyframes are added when

the accumulated motion since the previous keyframe exceeds either 10 degrees in

rotation or 25 centimeters in translation. When a new keyframe is constructed, a

Autonomous Flight Using an RGB-D Camera 11

RANSAC procedure over FAST keypoints (Rosten and Drummond, 2006) compares

the new keyframe to keyframes occurring more than 4 seconds prior. As loop closure

requires matching non-sequential frames, we obtain putative keypoint matches using

Calonder randomized tree descriptors (Calonder et al., 2008). A new keypoint is

considered as a possible match to an earlier frame if the L2 distance to the most

similar descriptor in the earlier frame has a ratio less than 0.6 with the next most

similar descriptor. RANSAC inlier matches establish a relative pose between the

frames, which is accepted if there are at least 10 inliers. Matches with a reprojection

error below a fixed threshold are considered inliers. The final refined relative pose

between keyframes is obtained by solving a two-frame sparse bundle adjustment

(SBA) system, which minimizes overall reprojection error.

To keep the loop closure detection near constant time as the map grows, we

limit the keyframes against which the new keyframe is checked. First, we only use

keyframes whose pose differs from the new frame (according to the existing esti-

mates) by at most 90 degrees in rotation and 5 meters in translation. We also use

Nistér’s vocabulary tree approach (Nistér and Stewenius, 2006), which uses a quan-

tized “bag of visual words” model to rapidly determine the 15 most likely loop

closure candidates. Keyframes that pass these tests are matched against new frames,

and matching is terminated after the first successful loop closure. On each success-

ful loop closure, a new constraint is added to a pose graph, which is then optimized

using TORO (Grisetti et al., 2007a). Pose graph optimization is typically fast, con-

verging in roughly 30 ms. Corrected pose estimates are then transmitted back to the

vehicle, along with any updated voxel maps.

Greater global map consistency can be achieved using a sparse bundle adjust-

ment technique that optimizes over all matched features across all frames (Konolige,

2010). However, this is a much slower approach and not yet suitable for real-time

operation.

3 Trajectory Planning

The visual odometry and SLAM processes in the previous sections described how

to estimate the position of the vehicle and the environment around it, but did not

describe how the vehicle should move to explore the environment around it. We

assume that the vehicle is holonomic and that we have full control authority, al-

lowing us treat the trajectory planning problem as a kinematic motion planning

problem. Our UAV uses an onboard IMU and processor to auto-stabilize the he-

licopter’s pitch and roll axes (Gurdan et al., 2007). As a result, the configuration

space is C = R3 ×S1: 3 dimensions for the UAV’s position, and one for the UAV’s

yaw angle1. Exploring an unknown environment is often modelled as a problem of

1 C denotes the configuration space (Lozano-Perez., 1983), the space of all vehicle poses. Cfree ∈
C is the set of all collision-free poses (based on a known mapM of obstacles and the dimensions

of the UAV) and Cobst ∈ C is the set of poses resulting in collision with obstacles, so that C ≡
Cfree ∪ Cobst.

12 Bachrach et. al.

coverage, where the objective is to visit all reachable states or “frontiers” that lie on

the boundary of known free space (Yamauchi et al., 1998; Kollar and Roy, 2008).

Therefore, given the current vehicle state x0 ∈ Cfree and the partial map of the en-

vironment, the planning problem is therefore to find a sequence of actions to move

the vehicle from state x0 to a frontier state xg ∈ Cfree without collisions.

The Probabilistic Roadmap (PRM) is a well-known algorithm (Kavraki et al.,

1996) for planning in problems of more than two or three dimensions, in which a

discrete graph is used to approximate the connectivity of Cfree. The PRM builds the

graph by sampling a set of states randomly from C (adding the start state x0 and goal

state xg), and then evaluating each sampled state for membership in Cfree. Samples

that lie within Cfree constitute the nodes of the PRM graph and edges are placed

between nodes where a straight line path between nodes also lies entirely within

Cfree. Given the PRM graph, a feasible, collision-free path can be found using a

standard graph search algorithm from the start node to the goal node.

However, the PRM and its variants are not yet well-suited to the problem of a

GPS-denied UAV, in that executing a plan requires a controller that can follow each

straight-line edge joining two successive graph nodes in the planned path. If the

UAV executing the plan does not have a good estimate of its state, it may not be

able to determine when it has arrived at a graph node and is to start following a new

edge. Even more seriously, UAV stability typically depends on accurate estimates

of higher order variables such as velocity. Without environmental feedback, velocity

estimates from an inertial measurement unit (IMU) can quickly drift, causing catas-

trophic control failures. We therefore need the motion planner to generate plans that

ensure accurate state estimation along the planned path. By planning in the belief

space (or space of distributions), the planner can distinguish between future state

estimates where the covariance will be small (i.e., the vehicle has high confidence

in its mean state estimate) and future state estimates where the covariance will be

large (i.e., the mean state estimate is uncertain). To address the problem of planning

in belief space, we use the Belief Roadmap (BRM) algorithm, first presented by

Prentice and Roy (2007), and summarize the algorithm in the following section.

3.1 Belief Space Planning

When planning in belief space, a naive approach would be to treat the belief space as

a high-dimensional configuration space with some dimensions given by the covari-

ance of the belief, and then directly apply the probabilistic roadmap. Assuming the

beliefs are provided by a variant of the Kalman filter, this approach would require

sampling beliefs directly from the space of Gaussian distributions (µ,Σ) over the

state, adding the initial belief b0 to the set of graph nodes, placing edges between

pairs of beliefs (bi, bj) for which a controller exists that can take the vehicle from

belief bi to bj , and then carrying out graph search as before to find a path that leads

to a belief with maximum probability at the goal. However, the direct application

Autonomous Flight Using an RGB-D Camera 13

of the unmodified PRM to belief space has some obvious failures, which can be

addressed by the following modifications to the PRM algorithm.

Firstly, in a Gaussian belief space, every belief has some (small) probability that

the robot is at the goal state, hence a different objective function is required. In order

to incorporate the full Gaussian distribution in our planning process, we continue

to search for a shortest path trajectory, but add the additional constraint that the

uncertainty of the belief must be small throughout the path, that is, the trace of

the covariance of the helicopter’s belief tr(Σ) < ǫ where ǫ is some defined safety

parameter and Σ is the covariance of the UAV’s state estimate2.

To plan efficiently, the BRM uses the fact that each Gaussian belief bt is a com-

bination of some µ and some Σ, where the reachability of µ and Σ can be calcu-

lated separately. Under mild assumptions of unbiased motion and sensor models,

the reachability of any µ is a function of the vehicle kinematics and the environ-

mental structure, just as in the PRM. For any µ that is reachable from the µ0 of

the initial distribution, the corresponding reachable covariance can be predicted by

propagating the initial covariance Σ0 along the path using an iterative application

of the motion and sensing models (see equations equations (7) and (8) in Appendix

A). Therefore, to construct a graph of the reachable belief space, the planner first

samples a set of mean poses {µi} from Cfree using the standard pose sampling of

the PRM algorithm, and places an edge eij between pairs (µi, µj) if the straight line

between poses is collision-free. Forward search can then be used to search for a path

through the graph, but each step of the search computes the posterior covariance at

each node in addition to the cost-to-go.

Covariance propagation requires multiple EKF updates along each edge eij , and

while this operation is a constant multiplier of the asymptotic search complexity, it

can still dominate the overall search time. These EKF updates are not a one-time

cost; the search process will find multiple paths to node i, each with a covariance

must then be propagated outwards from i along edge eij to reach node j, incurring

the computational cost of propagating along the edge (a series of EKF updates) for

each covariance.

To reduce this computational cost, the BRM uses the property that the covariance

of a Kalman filter-based state estimator can be factored as Σ = BC−1, which

allows the combined process and measurement update for an EKF gives Bt and

Ct as a linear function of Bt−1 and Ct−1. The linear forms of the process and

measurement update do not depend on the specific factorization, so we can use a

trivial initial factorization as B0 = Σ0, C0 = I , such that

Ψt ,

[

B

C

]

t

=

[

0 I

I M

]

t

[

0 G−T

G RG−T

]

t

[

B

C

]

t−1

, (1)

where Ψt is defined to be the stacked block matrix
[

B
C

]

t
consisting of the covariance

factors and ζt ,
[

W X
Y Z

]

t
is defined to be the one-step linear operator on the covari-

2 Note that, depending on the problem statement, covariance terms such as velocity and orientation

may or may not be included in the overall objective. A variety of alternatives to this objective

function are discussed in the original BRM paper (Prentice and Roy, 2009)

14 Bachrach et. al.

Algorithm 1 The Belief Roadmap (BRM) algorithm.

Require: Start belief (µ0, Σ0), goal µgoal and map C
1: Sample poses {xi} from Cfree to build belief graph node set {ni} such that ni = {µ =

xi, Σ = ∅}
2: Create edge set {eij} between nodes (ni, nj) if the straight-line path between (ni[µ], nj [µ])

is collision-free

3: Build one-step transfer functions {ζij} ∀ eij ∈ {eij}
4: Augment each node ni with best path p=∅ to ni, such that ni={µ,Σ, p}
5: Create search queue with initial position and covariance Q← n0={µ0, Σ0, ∅}
6: while Q is not empty do

7: Pop n← Q

8: if n = ngoal then

9: Continue

10: end if

11: for all n′ such that ∃en,n′ and not n′ ∋ n[p] do

12: Compute one-step update Ψ ′ = ζn,n′ · Ψ , where Ψ =
[

n[Σ]
I

]

13: Σ′ ← Ψ ′

11 · Ψ
′

21
−1

14: if tr(Σ′) < tr(n′[Σ]) then

15: n′ ← {n′[µ], Σ′, n[p] ∪ {n′}}
16: Push n′ → Q

17: end if

18: end for

19: end while

20: return ngoal[p]

ance factors, equivalent to the process model and the measurement model, and we

recover the posterior covariance from the posterior factors as Σt = BtC
−1

t .

The EKF approximation assumes that the measurement function is locally linear,

which is exactly the approximation that the Jacobian is locally constant. As a result,

whenever the EKF assumptions hold, then we can assume that Mt is constant and

known a priori. By multiplying Ψt−1 by a series of matrices ζt:T , we can compute

the posterior covariance ΣT from T − t matrix multiplications and a single matrix

inversion on CT . This allows us to determine ζt for any point along a trajectory and

the linearity of the update allows us to combine multiple ζt matrices into a single,

one-step update for the covariance along the entire length of a trajectory.

Table 1 describes the complete Belief Roadmap algorithm, and Step 2 of the al-

gorithm contains a pre-processing phase where each edge is labeled with the trans-

fer function ζij that allows each covariance to be propagated in a single step. By

pre-computing the transfer function for each edge, the search complexity for belief

space planning becomes comparable to configuration space planning.

3.1.1 Belief Space Planning using the Unscented Kalman Filter

The critical step of the BRM algorithm is the construction of the transfer function,

which depends on terms Rt and Mt, the projections of the process and measurement

noise terms into the state space. Rt and Mt represent the information lost due to

Autonomous Flight Using an RGB-D Camera 15

(a) Comparison of covariance

predictions

(b) Distribution of errors using

constant prior approximation

Fig. 4 (a) Comparison of trace of covariance from full UKF filtering and trace of covariance from

one-step transfer function using UKF Mt matrix. (b) Distribution of ratio of error induced by

computing the Mt matrix for the one-step transfer function using a constant prior.

motion, and the information gained due to measurements, respectively (again, see

equations equations (7) and (8) in Appendix A). When using the Extended Kalman

filter to perform state estimation, these terms are trivial to compute. However, the

EKF is not always a feasible form of Bayesian filtering, especially when linearizing

the control or measurement functions results in a poor approximation. One recent

alternate to the EKF is the Unscented Kalman filter (UKF) (Julier et al., 1995),

which uses a set of 2n + 1 deterministic samples, known as “sigma points” from

an assumed Gaussian density both to represent the probability density of a space

of dimensionality n and to directly measure the relevant motion and measurement

covariances. Appendix B provides a formal description of the UKF, and how to

recover the information gain matrix Mt.

One concern is that change in information modelled by Mt is constant in the

Kalman and extended Kalman filter models (assuming locally constant Jacobians),

but for the UKF depends on the specific prior Σt. Different choices of Σt for equa-

tion (26) may result in different one-step transfer functions. Nevertheless, the ap-

proximation error can be seen experimentally to be small. Figure 4(a) compares the

covariances computed using the full UKF update with the covariances computed us-

ing the one-step transfer function for a range of motions and randomized initial con-

ditions. The induced error is low; the traces of the posterior covariances computed

with the one-step transfer function using the Mt matrix calculated in equation (26)

closely match the posterior covariances from the full UKF model. Figure 4(b) shows

a distribution of the ratio of the approximation errors to the magnitudes of the in-

formation gain, where 7000 trials were performed using 100 different priors and a

range of initial conditions and trajectories were used to calculate the Mt matrix. The

error induced in the one-step transfer function for using a constant Mt is less than

2% with a significance of p = 0.955, indicating low sensitivity to the choice of prior

over a range of operating conditions.

16 Bachrach et. al.

3.2 Sampling in Belief Space

The original Belief Roadmap formulation presented by Prentice and Roy (2007,

2009) assumed some base sampling strategy for generating the graph through be-

lief space. As the number of samples and the density of the graph grows, the BRM

planning process will find increasingly low-covariance paths and is probabilisti-

cally complete. However, as the density of the graph grows, the cost of searching

the graph will also grow; searching the graph will have time complexity O(bd) for

b edges per node and path of length d edges. We can reduce this complexity by

minimizing the size of the graph using a sampling strategy that generates nodes that

reflect the useful part of the belief space.

The optimal sampling strategy would generate samples that lie only on the op-

timal path to the goal; this would of course require knowing the optimal path be-

forehand. However, some samples are more likely to be useful than others: vehicle

poses that generate measurements with high information value are much more likely

to lie on the optimal path than vehicle poses that generate measurements with little

information.

3.2.1 Sensor Uncertainty Sampling

If poses are initially sampled from C uniformly, but are accepted or rejected with

probability proportional to the expected information gain from sensing at each point,

the graph will still converge to one that maintains the connectivity of the free space.

But, the distribution of the graph nodes will be biased towards locations that gener-

ate sensor measurements which maximize the localization accuracy of the vehicle.

We call this sampling strategy Sensor Uncertainty (SU) sampling, after the “Sensor

Uncertainty Field” defined by Takeda and Latombe (1992). The SU field is a map-

ping from location x to expected information gain, x → I(x), where information

gain is measured as the difference in entropy of the prior and posterior distributions,

which in the Gaussian case is proportional to the lengths of the eigenvectors of the

covariance. However, examining the information filter form of the measurement up-

date in equation (11), we can see that the posterior covariance results from adding

a fixed amount of information Mt; the covariance therefore increases in size by an

amount proportional to Mt. We can efficiently approximate the SU field using the

size of Mt such as tr(Mt) (that is, the average of each eigenvector of Mt, Fedorov,

1972), rather than explicitly computing the posterior covariance and the resulting

information gain. Finally, building the complete SU field is computationally expen-

sive in practice; by sampling from this field in building the BRM graph, we gain

the benefits of focusing the search on the states that lead to high information gain

without the cost of explicitly building the SU field.

Figure 5(a) shows the ground floor of the MIT Stata Center with a 3D-view of

this environment in figure 5(b). The environment has dimensions of 13m × 23m.

The helicopter is equipped with a simulated RGB-D camera that is able to sense

features, represented by the green crosses on the walls. We initially assume an unre-

Autonomous Flight Using an RGB-D Camera 17

(a) Photo of environment (b) 3D-environment (c) SU Field

Fig. 5 (a) MIT Stata Center, ground floor. (b) 3D-model of the unstructured, GPS-denied environ-

ment. The green dots are the known position of visual features to be used for localization. Each

wall has a different density of visual features, though the features are assumed to be uniformly

distributed on each wall. (c) Sensor Uncertainty Field for a fixed height and RGB-D camera orien-

tation. The darker cells indicate locations expected to produce greater information gain.

alistically poor sensor model to highlight the variations of the different algorithms,

specifically that the camera has a 2m range and a 30◦ field-of-view in the pitch and

the yaw directions. A feature that falls within the helicopter’s field-of-view will then

generate a noisy measurement of the feature’s distance and bearing relative to the

helicopter’s pose. The measurement noise is assumed to be Gaussian with 1m vari-

ance for the range measurement and 1rad in angular variance, and is independent

of the distance between the feature and the helicopter3. By rotating the helicopter’s

yaw orientation, the planner can direct the camera in different directions, thereby

enabling the helicopter to localize itself in the environment using the features in its

field-of-view and a given map. This sensor model is unrealistic in terms of the max-

imum range and the constant noise model, but serves to illustrate how our planning

approach achieves varying accuracy at the goal. In the subsequent sections, we show

results for a more accurate sensor model in terms of reaching the goal.

To create the corresponding Sensor Uncertainty Field shown in figure 5(c), the

trace of the information gain matrix, tr(M), is evaluated at each location (x, y) in

Cfree for a fixed height, yaw, pitch and roll angle. Here, the camera is assumed

to be pointing eastwards at a fixed height. Note that the full SU field is the same

dimensionality as C and would require computing the information gain for every

coordinate in Cfree. (The 2D slice of the sensor uncertainty field shown in figure 5(c)

is given only to illustrate the concept.) We can, however, evaluate the information

gain of a specific position efficiently, allowing us to draw samples randomly from

Cfree and accept them based on their information gains tr(M). The intensities of

the cells in the map in figure 5(c) correspond to the information gain, where darker

map cells indicate locations that are expected to produce greater information gain.

3 We also assume perfect data association, which for the purposes of experimental assessment

allows us to control the noise of the sensor by varying terms in the measurement matrix. This is

clearly an unrealistic assumption but experimentally did not affect the results.

18 Bachrach et. al.

For instance, the region in the center of the map has high information gain because

of the high concentration of features along the walls in that region. The information

gain increases with distance to each wall because the number of features in the field

of view increases more than the growing covariance, until the distance to the wall

is greater than the maximum range of the sensor. Locations where the associated

sensor measurement is expected to detect more than one obstacle in the map also

tend to have higher information gain compared to those that just encounter one

obstacle. Remember that we do not need to simulate actual measurements; in order

to compute tr(M) we only need the measurement Jacobians.

Note that values of tr(M) do not form a proper distribution, so we cannot accept

or reject samples trivially according to tr(M). Additionally, the range of values of

tr(M) will vary across environments, depending on how easy the given world is to

localize in. Therefore, for a specific environment, and for k samples x1, . . . ,xk with

corresponding information gains tr(M1), . . . , tr(Mk), we estimate a normal distri-

bution over the information such that tr(Mk) ∼ N(µk, σk), where (µk, σk) are

the sample mean and covariances of tr(M1:k). We then perform rejection sampling

according to this distribution. For a new sample xk, we draw a rejection threshold

Pk according to the latest sampled normal distribution, and we retain the sample

if tr(Mk) > Pk, otherwise reject it. This provides us with an online method for

estimating the distribution of information in the environment, and allows us to bias

our accepted samples towards areas with greater expected information gain relative

to the rest of the environment.

3.2.2 Unscented Kalman Filter Sampling

When using an state estimator that does not directly compute Mt, recall that we can

recover Mt from the prior distribution p(x) and the posterior distribution p(x|z), for

example from the Unscented Kalman filter as in section 3.1. However, to recover Mt

from the UKF prior and posterior requires us to invert the St matrix with complex-

ity O(|Z|3), where |Z| is the number of measurements. In EKF-SU sampling, we

were able to avoid this complexity because the Mt matrix could be computed di-

rectly from the measurement Jacobians. Given the number of measurements and the

large number of samples that must be evaluated for information gain, inverting St

may be computationally expensive. We therefore sample according to the traditional

information gain I,

I(x) = H(p(x))−H(p(x|z)), (2)

where entropy is H(p(x)) = −
∫

p(x) log p(x). Given that we have assumed that

the belief of the helicopter’s position is representable as a Gaussian distribution,

H(p(x)) is computationally cheaper to compute than Mt. In addition, since our

analysis (Figure 4b) suggested that the measure of information gain was statistically

insensitive to the choice of prior, we use a constant prior p(x) = Σ0 to evaluate

sensor uncertainty, such that H(p(x)) = P0. Furthermore, applying Bayes’ rule,

where p(x|z) = p(z|x) · p(x), we get

Autonomous Flight Using an RGB-D Camera 19

Algorithm 2 UKF Sensor Uncertainty Sampling Algorithm

Require: Map C, Number of samples N , Constant prior P0

1: while size of graph < N do

2: Sample a pose, xk, from C, with equal probability

3: if xk ∈ Cfree then

4: Simulate expected sensor measurement, z, at xk

5: Generate sigma points, χi, about xk according to constant prior P0, creat-

ing prior distribution p(xk)
6: Calculate information gain I(xk) = P0 −H(p(z|xk))
7: Normalize I(xl) such that I(xk) ∈ [0, 1]

8: Update mean of I, µk = 1

k

∑k

m=1
I(xm)

9: Update cov of I, σk = 1

k−1

∑k

m=1
(I(xm)− µk)

2

10: Sample threshold Pk from normal distribution N (µk, σk)
11: if I(xk) > Pk then

12: Add xk to graph with probability I(xk)
13: end if

14: end if

15: end while

16: return graph

I(x) = P0 −H(p(z|x)), (3)

where z = argmaxz p(z|x). p(z|x) is calculated according to the UKF algorithm

by simulating the sensor measurement at the sample’s location and finding the prob-

ability of the observing the sensor measurement at each of the sigma points. In gen-

eral, the lower the probability of observation at the neighboring sigma points, the

smaller the entropy of the posterior distribution, and therefore the greater the in-

formation gain. We normalize the information gain I(x) so that it lies in the range

[0,1] by dividing by P0. Similar to our approach for EKF-SU sampling, we then es-

timate a normal distribution over the information gain such that I(x) ∼ N(µk, σk),
where (µk, σk) are the sample mean and covariances of I(x). Finally, we choose a

rejection threshold Pk according to this normal distribution, and accept the sample

if I(x) > Pk. Algorithm 2 summarizes the UKF-SU sampling strategy.

Table 2 shows the computational benefit of rejection sampling according to the

information gain I(x), rather than a measure on Mt. We evaluated the time taken

to generate samples for a range of measurements using the two different rejection

sampling functions. Regardless of the number of measurements, we saw an order of

magnitude in time savings when calculating information gain, which can be signifi-

cant for large graphs.

Figure 6(a) shows the samples drawn according to the sensor uncertainty. Ob-

serve that the sampling density is highest in the same region as the dark region in

Figure 5(c) (center of map), and is lowest when far from any environmental struc-

20 Bachrach et. al.

Number of measurements

90 300 500

tr(Mt) 0.731 2.84 7.23

I(x) 0.0743 0.187 0.289

Table 2 Average time (in ms) to compute tr(Mt) and I(x)

ture, which consequently provides little or no localization information. For compar-

ison, 6(b) shows the samples drawn according to a uniform sampling strategy.

In practice, the differences in sampling strategies can result in different paths

and correspondingly different uncertainties. Figure 6(a) shows that the paths cre-

ated by Sensor Uncertainty sampling tend to stay in regions with high information

gain, since the samples were probabilistically chosen based on the amount of in-

formation gain each was expected to provide. The uniform sampling strategy also

attempts to find a low-uncertainty path but the lack of samples in the regions with

high information gain results in a path with higher uncertainty. It is worth noting

that in the figures, the SU sampler appears to put samples close to obstacles, and a

sampler that simply samples close to obstacle boundaries may do well. We will see

in the next section that in fact the SU sampling strategy leads to better performance

than sampling strategies that use the obstacle boundaries. In fact, sampling only

near obstacles both leads to poor performance for camera models — being too close

to obstacles can lead to reduced information content due to the reduced number of

features in the field of view.

3.2.3 Alternate Sampling Strategies

In order to evaluate the effectiveness of the SU sampling strategy, we compared it

with other sampling strategies that have gained popularity in the literature. Although

these algorithms have been proposed to improve the performance of the PRM algo-

rithm, they can also be used to test the performance of the SU strategy in the BRM

context. In this section, we first describe three alternative sampling strategies (Uni-

form, Gaussian, Bridge), before reporting the results of the BRM path-planning

when using each of these strategies.

Uniform Sampling: Uniform sampling is the most basic sampling strategy used

by the majority of the sampling-based techniques. This algorithm does not use any

known information about the world, but merely samples C uniformly, and adds sam-

ples to the graph that are in Cfree. By employing a simple collision-check function,

the uniform sampling strategy is a very efficient means of obtaining the general con-

nectivity of a given map. Figure 6(b) shows an example of the samples generated

using this sampling method.

Gaussian Sampling: A significant limitation of the uniform sampling strategy is

that it often fails to represent important regions in the Cfree, for instance, difficult

regions such as narrow corridors and areas around obstacles may not be sampled

Autonomous Flight Using an RGB-D Camera 21

(a) SU Sampling (b) Uniform Sampling

Fig. 6 (a) Distribution of 100 samples (shown in red) drawn using Sensor Uncertainty sampling.

(b) Distribution of 100 uniformly drawn samples. In both figures, the dark circles are the 1−σ
ellipses of the covariance. Smaller circles are higher-certainty positions. Note that this is a bird’s-

eye view and the helicopter can fly over some obstacles. Also note that each sample is a point in

R3 × S1 × S1; the SU samples have a high bias towards sensor orientations towards the envi-

ronmental features. In both figures, the paths are found using the BRM, but because the uniform

sampling strategy has many more samples with orientations that do not point towards the environ-

mental features, the overall uncertainty is much higher.

unless a large number of samples are used, incurring a large computation cost. Boor

et al. (1999) present the Gaussian sampling strategy that attempts to give better

coverage of the difficult parts of the free configuration space, especially those areas

that are close to obstacles. Gaussian sampling biases samples towards obstacles in

the environment, which, in the context of the BRM, would seem to be a reasonable

approximation for areas with higher information gain. The algorithm first uniformly

samples the C space to obtain a sample, x1

k, regardless of whether it is in Cfree
or Cobs. A distance value, d, and direction θ are then chosen according to normal

distributions, and a second sample, x2

k, is generated at a location d away from x
1

k in

the direction of θ. The two samples are then tested to determine if they belong to the

subspaces Cfree or Cobs; if the samples are in different subspaces of C, the sample

that is in Cfree is then added to the graph. For the purposes of our evaluation, using

the general intuition that the samples should be within viewing range of the obstacles

and features in the environments, we set σ, the standard deviation of the distribution

on d, to be the maximum range of the sensor used for localization. Figure 7(a) shows

an example set of samples generated by the Gaussian sampling strategy.

Bridge Sampling: A third algorithm addresses a specific problem encountered by

many sampling strategies of not being able to identify narrow passages through

a given environment. Being able to find narrow passages through Cfree is often

critical to finding good paths in many motion planning problems. However, narrow

22 Bachrach et. al.

(a) 100 Samples generated

from Gaussian Sampling

(b) 100 Samples generated

from Bridge Sampling

Fig. 7 (a) Distribution of 100 samples drawn using Gaussian sampling. (b) Distribution of 100

samples drawn using bridge sampling.

passages are also the hardest for a randomized sampler to find and add to the graph,

requiring strategies that are biased towards finding paths in narrow passages.

To address this problem, the bridge test for sampling narrow passages was devel-

oped by Hsu et al. (2003). The key idea is to only add a sample to the graph when

it is found to be between two obstacles. Two samples, x1

k and x
2

k, are first sam-

pled from the map environment, with x
2

k being drawn from a normal distribution

with mean x
1

k and a given variance σ. If both samples are found to be in Cobs, the

midpoint between the two samples is then generated and tested for collisions. This

midpoint is added to the graph if it is in Cfree. For reasons similar to the Gaussian

sampling strategy, σ was set at twice the maximum sensor range. Figure 7(b) shows

an example set of samples generated using the bridge strategy.

Autonomous Flight Using an RGB-D Camera 23

3.3 Comparison of Sampling Strategies: Simulated
Camera-Equipped Helicopter

We tested the effectiveness of the SU sampling strategy against the alternative sam-

pling algorithms above by running experiments on the system described in section

3.2.1, a helicopter navigating in a simulated environment of the MIT Stata Center

ground floor, as shown in 5(b).

We first observe that the SU strategy is particularly useful when there is variabil-

ity in terms of the information available to the sensors throughout the environment.

As discussed previously, our initial simulated experiments are performed with an

unrealistically poor RGB-D camera model where the sensor’s capability is particu-

larly limited, such that finding paths that maximize information gain throughout the

path then becomes even more critical. Figure 8 compares the performance of the SU

and uniform sampling strategies under different noise and sensor limitation condi-

tions. When the control and measurement noise is doubled and the maximum sensor

range is reduced (Figure 8(b)), the resultant uncertainty for both sampling strategies

increases. However, the emphasis on finding samples with high information gain un-

der the SU sampling strategy reduces the effect of the noisier conditions, resulting

in a greater absolute difference in uncertainty between both sampling strategies.

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Number of Samples

tr
(Σ

g
o
a
l)

Goal Uncertainty for Sampling Strategies with Standard Noise Parameters

BRM − Uniform Sampling

BRM − SU Sampling

(a) Low Noise

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Number of Samples

tr
(Σ

g
o
a
l)

Goal Uncertainty for Sampling Strategies with High Noise Parameters

BRM − Uniform Sampling

BRM − SU Sampling

(b) High Noise

Fig. 8 Performance of SU and uniform sampling strategies under different noise conditions. High

noise scenario has double the control and measurement noise relative to the low noise model,

as well as a 25% reduction in maximum sensor range. The bar plots under each graph show the

percentage of feasible paths that each algorithm was able to find.

Next, to compare amongst the different sampling strategies and illustrate the per-

formance of the BRM strategy, we randomly selected 5 start and goal positions

in the map where the straight-line distance between both points was at least of a

minimum length of 8.53m and an average length of 13.66m. For each start-goal

combination, we sampled the environment using each of the 4 sampling strategies

and a range of sample set sizes. After creating a graph of nodes from these samples,

24 Bachrach et. al.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Number of Samples

tr
(Σ

g
o
a
l)

Goal Uncertainty for Different Sampling Strategies and Planners

PRM − Uniform Sampling

BRM − Gaussian Sampling

BRM − Bridge Sampling

BRM − Uniform Sampling

BRM − SU Sampling

Fig. 9 Comparison amongst the different sampling strategies and planning methods. All trials pre-

sented in this graph used the same start and goal to perform the search. Each data point represents

30 trials, and the error bars represent the standard error of the computed matrix trace. The bar

graphs along the bottom of the figure show, for each sampling-planning strategy and number of

samples, the percentage of the 30 trials that failed to find a path that satisfied the constraints on the

covariance (our true objective function). The line graph also plots the trace of the helicopter’s ex-

pected covariance at the goal when we use different sampling strategies, sample sizes, and planning

methods. Lower covariances at the goal also typically correspond to more accurate performance,

and is often used as an alternate objective function for motion planning in belief space.

the BRM and PRM planning strategies were executed and the performance of the

resulting plans compared. For a given start-goal combination, sampling strategy and

sample set size, the experiment was repeated 30 times.

Figure 9 shows the advantage of planning with the BRM, and sampling using the

Sensor Uncertainty sampling strategy. This figure reports the performance of each

of the sampling strategies and planning methods, using a fixed start and goal for

all trials, over a range of sample set sizes, where performance is measured by the

percentage of trials that failed to find a feasible path (bar graphs), as well as the

average trace of the helicopter’s expected covariance at the goal after executing the

planned path (line graphs).

Table 3 shows a comparison of the sampling strategies across various initial start

and goal positions using 100 samples. An infeasible path was defined as one where

the covariance of the state estimate was greater than a threshold. The results not

only suggest that the BRM substantially outperforms the PRM in producing paths

with lower uncertainty, but also that the SU sampling strategy allows us to achieve

better paths with fewer samples. Regardless of the initial conditions, the SU sam-

Autonomous Flight Using an RGB-D Camera 25

pling strategy consistently outperformed the other sampling strategies, in terms of

both the percentage of paths found and the expected uncertainty at the goal. These

results emphasize that SU sampling is also not equivalent to simply sampling close

to obstacle boundaries.

Path 1 Path 2 Path 3 Path 4 Path 5

Uniform % success 100 96.6 100 100 100

Final cov 17.87 22.60 2.22 19.11 1.48

SU % success 100 96.6 100 100 100

Final cov 12.38 11.36 1.99 12.39 1.39

Gaussian % success 96.6 96.6 100 93.1 89.7

Final cov 23.89 17.89 17.2 22.16 1.41

Bridge % success 100 3.5 17.2 100 13.8

Final cov 21.58 13.48 2.33 21.32 1.36

Table 3 Performance of different sampling strategies across different paths, using 100 samples.

Table 4 shows a comparison of the performance and time costs of different com-

binations of sampling and planning strategies. The conventional PRM method is un-

surprisingly the fastest algorithm, but suffers from poor localization performance.

The BRM suffers from additional time complexity when building the graph; in par-

ticular, the BRM with SU sampling incurs the largest time penalty in building the

graph because of the need to calculate the information gain matrix of every poten-

tial sample. However, the graph construction is a one-time operation and can be

amortized across multiple queries.

Trace Cov. Graph Build Path Search

at Goal Time (s) Time (s)

PRM, Uniform Sampling 56.38 0.79 0.15

BRM, Uniform Sampling 19.11 110.75 0.38

BRM, SU Sampling 12.31 323.12 0.55

BRM, Gaussian Sampling 22.82 88.14 0.21

BRM, Bridge Sampling 21.92 178.58 0.30

Table 4 Performance and time costs of different planners.

Lastly, we replaced the sensor model with a more realistic RGB-D model, and a

more accurate map of a real environment (shown in figure 14(a)). We modeled the

RGB-D sensor model as a Microsoft Kinect with a 4m max range and 57◦ field of

view in the yaw and 43◦ in pitch directions and a Gaussian noise model that is a

function of depth, such that σ = 1.5× 10−5 × d (Khoshelham, 2011). Note that for

position estimation, we saw experimentally that the noise model of the individual

features had little effect — the dominant effect was the number of available features.

Figure 10 shows the performance of the different algorithms using the RGB-D cam-

26 Bachrach et. al.

era model. Figure 10(a) is the relevant measure for our application, the ability to find

paths that satisfy the constraint on the covariance and we see that even with very

few samples, the BRM is able to find a feasible path. For comparison to figure 9,

we also provide the covariance at the the goal. We see that the BRM algorithms are

consistently able to find lower covariance trajectories (the absolute values of the co-

variances between figures 9 and 10(b) are not comparable because the sensor model

and state space are different, and so different overall uncertainties are feasible.)

(a) Paths Found (b) Goal Uncertainty

Fig. 10 Performance of the Kinect camera model in the environment shown in figure 14. (a) The

number of 60 trials that found a feasible path, as a function of the number of samples. The BRM

using the SU sampler found a feasible path 100% of the time except when constrained to using

10 samples. (b) For comparison to figure 9, we also provide a comparison of the trace of the

helicopter’s expected covariance at the goal (line graph) and the percentage of feasible paths that

each algorithm was able to find (bar graph along the bottom).

4 Indoor Navigation Results

In addition to evaluating the visual odometry algorithms reported in section 2.1, we

conducted a number of autonomous flight experiments in the motion capture system

and in larger environments. In these experiments, the vehicle flew autonomously

with state estimates provided by the algorithms presented in this paper.

Figure 11 shows an example where the MAV was commanded to hover at a target

point using the RGB-D camera, along with statistics about how well it achieved this

goal. The ground truth trajectory and performance measures were recorded with the

motion capture system.

Metric

Duration 90 s

Mean speed 0.10 m/s

Mean pos. deviation 6.2 cm

Max pos. deviation 19 cm

Fig. 11 A plot showing the ground truth trajectory of the vehicle during position hold. The red dot

near the center is the origin around which the vehicle was hovering. The vehicle was controlled

using visual odometry, and its position measured with a motion capture system.

Autonomous Flight Using an RGB-D Camera 27

4.1 Laser-based Validation of Belief Space Navigation

We performed a number of experiments onboard an actual quadrotor helicopter

to demonstrate the properties of our navigation in belief space. The vehicle was

commanded through the environment by a human operator selecting destination

waypoints using a graphical interface. The purpose of these experiments were to

characterize the ability of the MAV to maintain a desired position and to follow a

planned trajectory. We initially validated our results by building on our previous

work (Bachrach et al., 2009b) that used a Hokuyo UTM-30LX laser rangefinder for

navigation and localization. The UTM-30LX is a planar laser rangefinder that pro-

vides a 240◦ field-of-view at 40 Hz, up to an effective range of 30m. The laser is

mounted in the X-Y plane of the helicopter and we modified the laser to optically

redirect 20◦ of its field-of-view to provide a small set of range measurements in the

(downward) z direction. In a single scan, the vehicle is therefore able to estimate

its position, yaw orientation and altitude with respect to environmental features. We

have shown previously that the measurement of the ground plane is relatively noisy,

although sufficient for altitude control.

We performed navigation experiments on two world environments, on the first

floor of MIT’s Stata center, which is a wide indoor walkway environment (Fig-

ure 12(a)), and on the first floor of MIT’s Walker Memorial building, an old gym-

nasium open space that is often used for banquets and functions (Figure 13(a)).

For these two environments, we focused on demonstrating the BRM algorithm’s

ability to generate paths that will allow the helicopter to remain well-localized. We

did not compare the BRM’s performance to the PRM algorithm to avoid potential

loss of control and crashes resulting from inaccurate state estimation. Instead, we

artificially limited the range of the laser rangefinder for both planning and state es-

timation; we demonstrate the effect of different sensor range limits on the planned

paths and the need for incorporating sensor characteristics when planning, before

moving to mapping using the RGB-D camera.

For each of these environments, we first generated a 2D map of the environment

using SLAM technology that has been reported previously (Bachrach et al., 2009b).

While it may appear that localization using a 2D map is difficult when the helicopter

pitches and rolls, we also reported previously that 2D localization is relatively robust

to changes in pitch and roll (Bachrach et al., 2009b). Figures 12(b) and 13(b) show

the 2D map of both environments, as well as the SU field indicating areas of sensor

uncertainty, computed according to equation (3). However, note that the SU field is

never actually constructed but SU samples are generated via rejection sampling.

For each environment, two different paths were generated, each corresponding

to a different maximum range for the laser rangefinder. Different maximum ranges

affect the helicopter’s ability to localize itself, thus affecting the paths generated by

the BRM algorithm. Figures 12(c) and 13(c) show the helicopter’s trajectories based

on the paths generated by the BRM algorithm for the different sensor configurations.

For the experiments along the office walkway, the cyan path denotes the trajectory

when the sensor range was set to 5m, while the pink path denotes the trajectory for

the 10m configuration. For the open indoor environment, the cyan path represents

28 Bachrach et. al.

(a) Wide office walkway (b) SU field

(c) Executed paths for sensor with 5m (cyan) and 10m (pink) max range

Fig. 12 Helicopter experiments in an office environment (a) View of environment (b) SU field

of the environment. The lighter regions indicate areas of higher sensor uncertainty. Grey regions

indicate obstacles in the environment (c) BRM paths executed when the laser range was set to

5m (cyan) and 10m (pink). The helicopter was able to successfully navigate both planned paths,

traveling 44.05m and 36.28m respectively. The red cross denotes where the state estimation would

have failed if the 10m path were attempted using the 5m sensor.

the 8m configuration, while the pink path represents the trajectory when the sensor

range was 30m. Due to the absence of a motion capture system, all paths were

recorded based on the helicopter’s state estimate from its localization module, and

the helicopter’s ability to reach the goal location was verified using the human eye.

In all of these scenarios, the helicopter successfully executed the paths generated

by the BRM algorithm, and the actual and desired paths matched closely regard-

less of the range limits. In addition, the path generated for the laser with a shorter

maximum range was always longer than that of the laser with the longer maximum

range. In general, when the sensor is of higher quality, more of the environment is

well-localizable, and hence the planned path more closely approximates the shortest

path trajectory. In contrast, a low-quality sensor requires more careful planning to

ensure that the vehicle remains well-localized, often resulting in a longer path.

We examined how the helicopter would perform if the BRM had assumed a bet-

ter sensor than actually available, which allowed us to assess the effect of the sensor

model on the planning process. To avoid potential crashes, we did not perform this

Autonomous Flight Using an RGB-D Camera 29

(a) Open, indoor environment

(b) SU field (c) Executed paths for sensor with 8m

(cyan) and 30m (pink) max range

Fig. 13 Helicopter experiments in a large open indoor environment (a) View of environment (b)

SU field of the environment. The lighter regions indicate areas of higher sensor uncertainty. Grey

regions indicate obstacles in the environment (c) BRM paths executed when the laser range was

set to 8m (cyan) and 30m (pink). The helicopter was able to successfully navigate both planned

paths, traveling 36.58m and 32.21m respectively. The red cross denotes where the state estimation

would have failed if the 10m path were attempted using the 5m sensor.

analysis on actual hardware, but instead modified the raw laser data from the earlier

experiments. Specifically, we post-processed the raw laser data from the experi-

ments shown in figures 12 and 13, truncating the laser data to have a shorter maxi-

mum range than was actually available or was known to the BRM during planning.

We then re-estimated the vehicle’s state along the trajectory using the modified laser

data, and evaluated whether the helicopter was able to remain well-localized. In both

cases, the vehicle followed a trajectory that did not contain enough information for

the vehicle to stay well localized, since the truncation to a shorter maximum range

removed a considerable amount of information from the sensor signal. Additionally,

in both cases, the state estimate became sufficiently uncertain that the vehicle con-

trol would likely have become unstable. The crosses on both Figures 12(c) and 13(c)

30 Bachrach et. al.

indicate the point at which the helicopter was no longer able to localize itself, deter-

mined when tr(Σ) was greater than 1. Given the helicopter’s strict requirements for

localizability, where it is essential to be well-localized at every step, the crosses ef-

fectively mark the points where the helicopter would have crashed given the planned

path and the modified sensor characteristics. It is therefore critical that sensor limi-

tations are accurately incorporated when planning under uncertainty.

4.2 Belief Space Navigation using the RGB-D Camera

We also demonstrated the use of the BRM algorithm for navigation on the helicopter.

Figure 14(a) shows an example environment of an open space, where the center of

the environment is out of range of the RGB-D camera. Additionally, the left side

of the environment (in the picture) is essentially featureless. In figure 14(b), we see

that the sensor uncertainty field reflects the absence of information along this wall.

(a) Open, indoor environment

(b) SU field (c) Paths for RGB-D sensor with 4m
(pink) and 30m (green) max range

Fig. 14 Helicopter experiments in a large open indoor environment (a) View of environment (b)

SU field of the environment (slice at 0◦ yaw). The lighter regions indicate areas of higher sensor

uncertainty. Grey regions indicate obstacles in the environment (c) BRM paths using the RGB-D

model (max range 4m, pink) and laser (max range 30m, green).

Figure 14(c) shows the paths generated by the shortest path planner (green) and

the BRM planner using the RGB-D sensor model (pink), with the corresponding

covariances of the state estimator drawn on top of each trajectory. As expected, we

see that the covariances of the state estimate grow along the shortest path, but stay

tightly bounded along the BRM trajectory.

Autonomous Flight Using an RGB-D Camera 31

4.3 Mapping using the RGB-D Camera

Finally, we experimentally validated our mapping and motion planning algorithms

using the RGB-D camera. We have flown in a number of locations around the MIT

campus, and at the Intel Research office in Seattle. Two such experiments are shown

in figure 15. As the MAV covered greater distances, the RGB-D mapping algorithm

limited the global drift on its position estimates by detecting loop closures and cor-

recting the trajectory estimates. The trajectory history was then be combined with

the RGB-D sensor data to automatically generate maps that are useful both for a

human operator’s situational awareness, and for autonomous path planning and de-

cision making. While ground truth position estimates are not available, the quality

of the state estimates computed by our system is evident in the rendered point cloud.

(a) (b)

Fig. 15 Trajectories flown by the MAV in two navigation experiments.

(a) (b)

Fig. 16 Voxel maps for the environments in Fig. 15. (a) Dense maximum-likelihood occupancy

voxel map of the environment depicted in Fig. 15a, false-colored by height. Unknown/unobserved

cells are also tracked, but not depicted here. (b) A voxel map of the environment in Fig. 15b allows

the vehicle to plan a collision-free 3D trajectory (green).

Figure 16a shows an occupancy voxel map populated using the dense depth

data provided by the RGB-D sensor. These occupancy maps can be used for au-

tonomous path planning and navigation in highly cluttered environments, enabling

32 Bachrach et. al.

flight through tight passageways and in close proximity to obstacles. Figure 16b

shows a rendering of the MAV’s internal state estimate as it flew through the envi-

ronment depicted in Figure 15b. While these renderings are not necessary for obsta-

cle avoidance, they would serve to provide a human operator with greater situational

awareness of the MAV’s surrounding environment.

5 Related Work

Visual odometry Visual odometry refers to the process of estimating a vehicle’s

3D motion from visual imagery alone, and dates back to Moravec’s work on the

Stanford cart (Moravec, 1980). The basic algorithm used by Moravec and oth-

ers since then is to identify features of interest in each camera frame, estimate

depth to each feature (typically using stereo), match features across time frames,

and then estimate the rigid body transformation that best aligns the features over

time. Since then, a great deal of progress has been made in all aspects of visual

odometry. Common feature detectors in modern real-time algorithms include Harris

corners (Harris and Stephens, 1988) and FAST features (Rosten and Drummond,

2006), which are relatively quick to compute and resilient against small viewpoint

changes. Methods for robustly matching features across frames include RANSAC-

based methods (Nistér et al., 2004; Johnson et al., 2008; Konolige et al., 2007) and

graph-based consistency algorithms (Howard, 2008). In the motion estimation pro-

cess, techniques have ranged from directly minimizing Euclidean distance between

matched features (Horn, 1987), to minimizing pixel reprojection error instead of 3D

distance (Nistér et al., 2004). When computation constraints permit, bundle adjust-

ment has been shown to help reduce integrated drift (Konolige et al., 2007).

Visual odometry estimates local motion and generally has unbounded global

drift. To bound estimation error, it can be integrated with simultaneous localiza-

tion and mapping (SLAM) algorithms, which employ loop closing techniques to

detect when a vehicle revisits a previous location. Most recent visual SLAM meth-

ods rely on fast image matching techniques (Snavely et al., 2006; Newman et al.,

2009) for loop closure. As loops are detected, a common approach is to construct

a pose graph representing the spatial relationships between positions of the robot

during its trajectory and environmental features, creating constraints that link pre-

vious poses. Optimization of this pose graph results in a globally aligned set of

frames (Grisetti et al., 2007b; Olson et al., 2006; Kaess et al., 2008). For increased

visual consistency, Sparse Bundle Adjustment (SBA, Triggs et al., 2000) can be

used to simultaneously optimize the poses and the locations of observed features.

MAVs and Visual Navigation The primary focus in the visual odometry commu-

nities has been on ground vehicles, however, there has been significant amount of

research on using visual state estimation for the control of MAVs. For larger outdoor

helicopters, several researchers have demonstrated various levels of autonomy using

vision based state estimates (Kelly and Sukhatme, 2007; Buskey et al., 2004). While

many of the challenges for such vehicles are similar to smaller indoor MAVs, the

Autonomous Flight Using an RGB-D Camera 33

payload and flight environments are quite different. For smaller MAVs operating in

indoor environments, a number of researchers have used monocular camera sensors

to control MAVs (Steder et al., 2008; Ahrens et al., 2009; Blösch et al., 2010; Ce-

lik et al., 2008). Ko et al. (2007) use the iMote2 technology and the UKF for state

estimation in aerial vehicles, and Valenti et al. (2006) were the first to demonstrate

reliable navigation and position estimation on quadrotor helicopters. However, these

algorithms require specific assumptions about the environment (such as known pat-

terns) to obtain the unknown scale factor inherent in using a monocular camera.

Previous work in our group used a stereo camera to stabilize a MAV in unknown in-

door environments (Achtelik et al., 2009), but the computation had to be performed

offboard, and no higher level mapping or SLAM was performed.

Finally, there has been considerable work in using laser range finders for MAV

navigation and control (He et al., 2008b; Bachrach et al., 2009a; Grzonka et al.,

2009; Shen et al., 2011) with the limitations discussed earlier in this paper. Laser

range finding on-board helicopters is also not a novel technology (Thrun et al., 2003;

Mejias et al., 2006), and more recently, a number of quadrotor configurations have

been developed (Angeletti et al., 2008; Grzonka et al., 2009) that are similar to the

design we first proposed by He et al. (2008a).

Visual Mapping Our objective is not only alignment and registration, but also build-

ing 3D models with both shape and appearance information. In the vision and graph-

ics communities, a large body of work exists on alignment and registration of images

for 3D modeling and dense scene reconstruction (e.g., Pollefeys et al., 2008). How-

ever, our focus is on primarily on scene modeling for robot perception and planning,

and secondarily for human situational awareness (e.g., for a human supervisor com-

manding the MAV). Strobl et al. (2009) combine a ToF camera with a stereo camera

to build 3D object models in real-time. Kim et al. (2009) used a set of time-of-

flight cameras in a fixed calibrated configuration and with no temporal alignment

of sensor streams. Se and Jasiobedzki (2008) use a stereo camera combined with

SIFT features to create 3D models of environments, but make no provision for loop

closure or global consistency. Newcombe and Davison (2010) develop an impres-

sive system that does real-time dense 3D reconstruction with a monocular camera,

although their system is still limited to small feature-rich scenes.

There has also been a large amount of work on dense reconstruction from videos

(e.g., Pollefeys et al., 2008) and photos (e.g., Debevec et al., 1996; Furukawa and

Ponce, 2009), mostly on objects or outdoor scenes. One interesting line of work (Fu-

rukawa et al., 2009) attacks the arguably harder problem of indoor reconstruction,

using a Manhattan-world assumption to fit simple geometric models for visualiza-

tion purposes. Such approaches are computationally demanding and not very robust

in feature-sparse environments.

Motion Planning under Uncertainty Modern approaches to planning with incom-

plete state information are typically based on the partially observable Markov deci-

sion process (POMDP) model or as a graph search through belief space (Bonet and

Geffner, 2000). While the POMDP provides a general framework for belief space

planning, the complexity of the solution grows exponentially in the length of the

policy and the number of potential observations. Approximation algorithms exist

34 Bachrach et. al.

to mitigate the problem of scalability (Pineau et al., 2003; Smith and Simmons,

2004), but these techniques still face computational issues in addressing large prob-

lems. Other papers have incorporated sensor characteristics for planning (Taı̈x et al.,

2008), though the algorithm assumes that a non-collision path already exists, and fo-

cuses on determining the best landmarks to associate to each part of the path. den

Berg et al. (2010) propose using a distribution over state estimates with a conven-

tional RRT to generate motion plans, although this approach is not complete and can

fail to find feasible plans. Bry and Roy (2011) proposed the Rapidly-exploring Ran-

dom Belief Tree to track a distribution over state estimates along with the conven-

tional Kalman filter covariance using an incremental sampling technique to refine

trajectories, and is strongly related to the BRM algorithm.

The extended Kalman filter and unscented Kalman filter have been used exten-

sively, especially for state estimation. The symplectic form (and related Hamiltonian

form) of the covariance update has been reported before, most recently by Mourikis

and Roumeliotis (2006). Planning algorithms have also incorporated these filters

to generate paths that are robust to sensor uncertainty (Gonzalez and Stentz, 2007;

Brooks et al., 2006). However, without the efficient covariance update presented

in this paper, the deterministic search performed by these planning algorithms is

computationally expensive.

6 Conclusion

This paper presented an experimental analysis of our approach to enabling au-

tonomous flight using an RGB-D sensor. Our system combines visual odometry

techniques from the existing literature with our previous work on autonomous flight

and mapping, and is able to conduct all sensing and computation required for local

position control onboard the vehicle. Using the RGB-D sensor, our system is able

to plan complex 3D paths in cluttered environments while retaining a high degree

of situational awareness. Additionally, we showed how the Belief Roadmap algo-

rithm Prentice and Roy (2007, 2009) can be used to plan trajectories that incorpo-

rate a predictive model of sensing, allowing the planner to minimize the positional

error of the helicopter at the goal using efficient graph search. The original BRM

algorithm assumed an Extended Kalman filter model for position estimation, and

we showed how this algorithm can be extended to use the Unscented Kalman filter

and provided a new sampling strategy for UKF position estimation. We concluded

with an experimental validation of our overall system for both laser- and RGB-D

based navigation and mapping.

Autonomous Flight Using an RGB-D Camera 35

7 Acknowledgements

This research was supported by the Office of Naval Research under MURI N00014-

07-1-0749, Science of Autonomy program N00014-09-1-0641 and the Army Re-

search Office under the MAST CTA. Peter Henry and Dieter Fox were supported

by ONR MURI grant number N00014-09-1-1052, and by the NSF under contract

number IIS-0812671, as well as collaborative participation in the Robotics Consor-

tium sponsored by the U.S Army Research Laboratory under Agreement W911NF-

10-2-0016. Ruijie He was supported by the Republic of Singapore Armed Forces.

Nicholas Roy was supported by the National Science Foundation Division of Infor-

mation and Intelligent Systems under grant # 0546467.

Appendix

A. The Extended Kalman Filter

For reference, we provide a description of the extended Kalman filter equations.

Bayesian filtering is one of the most robust methods of localization (Leonard and

Durrant-Whyte, 1991), in which a probability distribution p(xt|u1:t, z1:t) is inferred

over the (unknown) vehicle state xt at time t following a series of noisy actions

u1:t and measurements z1:t. With some standard assumptions about the actions and

observations, the posterior distribution (or belief) can be expressed as

p(xt|u1:t, z1:t) =
1

Z
p(zt|xt)

∫

S

p(xt|ut,xt−1)p(xt−1)dxt−1, (4)

where Z is a normalizer. Equation (4), known as the Bayes’ filter, provides an effi-

cient, recursive way to update the state distribution.

The Kalman filter is a form of Bayes filtering that assumes that all probability

distributions are Gaussian such that p(xt) = N(µt, Σt) with mean µt and covari-

ance Σt, and that the transition and observation Gaussians are linearly parameter-

ized by the state and control. The Extended Kalman filter (EKF) allows the same

inference algorithm to operate with non-linear transition and observation functions

by linearizing these functions around the current mean estimate. More formally, the

next state xt and observation zt are given by the following functions,

xt = g(xt−1, ut, wt), wt ∼ N(0,Wt), (5)

and zt = h(xt, qt), qt ∼ N(0, Qt), (6)

where ut is a control action, and wt and qt are random, unobservable noise variables.

The EKF computes the state distribution at time t in two steps: a process update

based only on the control input ut leading to an estimate p(xt) = N(µt, Σt), and

a measurement update to complete the estimate of p(xt) = N(µt, Σt). The process

step follows as:

36 Bachrach et. al.

µt = g(µt−1, ut), Σt = GtΣt−1G
T
t + VtWtV

T
t , (7)

where Gt is the Jacobian of g with respect to x and Vt is the Jacobian of g with re-

spect to w. For convenience, we denote Rt , VtWtV
T
t . Similarly, the measurement

step follows as:

µt = µt +Kt(Htµt − zt), Σt = (I −KtHt)Σt, (8)

where Ht is the Jacobian of h with respect to x and Kt is known as the Kalman

gain, given by

Kt = ΣtH
T
t

(

HtΣtH
T
t +Qt

)

−1

. (9)

An alternate form of the EKF represents the distribution p(xt|u1:t, z1:t) by an infor-

mation vector ξt and information matrix Ωt,Σ−1

t . The information form may be

more efficient to compute in domains where the information matrix is sparse (Thrun

et al., 2004). The information matrix update can be written as

Ωt = Σ
−1

t = (GtΣt−1G
T
t +Rt)

−1

(10)

Ωt = Ωt +HT
t Q

−1

t Ht. (11)

For convenience, we denote Mt , HT
t Q

−1

t Ht such that Ωt = Ωt +Mt.

B. The Unscented Kalman Filter

The critical step of the BRM algorithm is the construction of the transfer function,

which depends on terms Rt and Mt, the projections of the process and measurement

noise terms into the state space. Rt and Mt also represent the information lost due

to motion, and the information gained due to measurements, respectively. When

using the Extended Kalman filter to perform state estimation, these terms are trivial

to compute. However, the EKF is not always a feasible form of Bayesian filtering,

especially when linearizing the control or measurement functions results in a poor

approximation.

One recent alternate to the EKF is the Unscented Kalman filter (UKF) (Julier

et al., 1995), which uses a set of 2n + 1 deterministic samples, known as “sigma

points” from an assumed Gaussian density both to represent the probability density

of a space of dimensionality n and to directly measure the relevant motion and

measurement covariances. These samples are generated according to:

X 0

t =µt−1, (12)

X i
t =µt−1 +

(

√

(n+ λ)Σt

)i

, i=1, . . . , n (13)

X i
t =µt−1 −

(

√

(n+ λ)Σt

)i

, i=n+1, . . . , 2n (14)

Autonomous Flight Using an RGB-D Camera 37

where
(

√

(n+ λ)Σt

)i

is the ith column of the root of the matrix. Each sigma point

X i has an associated weight wi
m used when computing the mean, and wi

c is the

weight used when computing the covariance, such that
∑

2n

i=0
wi

c = 1,
∑

2n

i=0
wi

m =
1. The weights and the λ parameters are chosen to match the mean and variance of

the assumed Gaussian distribution; the mechanism for choosing these parameters

can be found in Julier et al. (1995). The samples are propagated according to the

non-linear process model such that

X
i

t = g(X i
t , u, 0), (15)

generating the process mean and covariance

µt =

2n
∑

i=0

wi
mX

i

t (16)

Σt =

2n
∑

i=0

wi
c(X

i

t − µt)(X
i

t − µt) +Rt. (17)

The measurement function uses the process mean and covariance to create sigma

points in the measurement space, which are then used to generate the posterior mean

and covariance (µt, Σt), such that

Z
i

t = h(X
i

t, 0) µz
t =

2n
∑

i=0

wi
mZ

i

t (18)

St =

(

2n
∑

i=0

wi
m(Z

i

t − µz
t)(Z

i

t − µz
t)

T

)

+Qt (19)

Kt =

(

2n
∑

i=0

wi
c(X

i

t − µt)(Z
i

t − µz
t)

T

)

S−1

t (20)

µt = µt +Kt(zt − µz
t) (21)

Σt = Σt −KtStK
T
t . (22)

Note that Rt , VtWtV
T
t and Qt are the same process and measurement noise

terms from the EKF definition given in equations (5-9). The advantage of the UKF

is that the process and measurement functions are not projected into the state space

by a linearization; instead, the Unscented Transform computes the moments of the

process and measurement distributions in the state space itself. As a result, the UKF

eliminates the need for linearization and captures the distribution accurately up to

the second order, rather than the first order fidelity of the EKF.

Although the UKF provides a mechanism for efficiently tracking the posterior

distribution as a Gaussian while avoiding linearization of the measurement model,

the UKF no longer calculates the Mt matrix, which is a critical piece of the individ-

38 Bachrach et. al.

ual transfer functions ζt. Nevertheless, we can still recover Mt from the UKF update

directly by working in the information form and noticing that Mt is the information

gain due to measurement zt. We can combine equation (11) and equation (22),

Ωt = Ωt +Mt (23)

⇒ Mt = Ωt −Ωt (24)

= Σ−1

t −Σ
−1

t (25)

= (Σt −KtStK
T
t)

−1 −Σ
−1

t . (26)

In order to calculate the Mt matrix for a series of points along a trajectory, we

therefore generate a prior covariance and compute the posterior covariance as in

equation (22). The UKF is still a projection of the measurement noise into the state

space, but is a more accurate projection than an explicit linearization of the mea-

surement model. Additionally, the UKF covariance update does not depend on the

actual measurement received, exactly as in the EKF.

