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Abstract 
 
Maximum likelihood and Bayes estimators of the parameters, survival function (SF) and hazard rate function 
(HRF) are obtained for the three-parameter exponentiated Burr type XII distribution when sample is avail-
able from type II censored scheme. Bayes estimators have been developed using the standard Bayes and 
MCMC methods under square error and LINEX loss functions, using informative type of priors for the pa-
rameters. Simulation comparison of various estimation methods is made when n = 20, 40, 60 and censored 
data. The Bayes estimates are found to be, generally, better than the maximum likelihood estimates against 
the proposed prior, in the sense of having smaller mean square errors. This is found to be true whether the 
data are complete or censored. Estimates improve by increasing sample size. Analysis is also carried out for 
real life data. 
 
Keywords: Exponentiated Distribution, Proportional Reversed Hazard Rate Model, Lehmann Alternatives, 

Maximum Likelihood and Bayes Estimation, Burr Type XII Distribution, Subjective Prior, SE 
and LINEX Loss Functions, MCMC 

1. Introduction 
 
Analogous to the Pearson system of distributions, Burr [1] 
introduced a system that includes twelve types of cumu-
lative distribution functions (CDF) which yield a variety 
of density shapes. This system is obtained by considering 
CDF’s satisfying a differential equation which has a so-
lution, given by: 

     1

1 exp d ,F x x x


      

where  x  is chosen such that  F x
 

 is a CDF on the 
real line. Twelve choices for x , made by Burr, re-
sulted in twelve distributions from which types III, X and 
XII have been frequently used. The flexibilities of Burr 
XII distribution were investigated by Hatke [2], Burr [3], 
Rodrigues [4] and Tadikamalla [5].  

In a different direction, it was Takahasi[6] who first 
noticed that the 3-parameter Burr XII probability density 
function (PDF) can be obtained by compounding a 
Weibull PDF with a gamma PDF. That is, if X|θ~ Weibull 
(θ, β) and θ~ gamma (γ, δ) then the compound PDF, say 
g(x|β, γ, δ), is given by 
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which is the 3-parameter Burr XII (β, γ, δ) PDF. 
If δ = 1, this PDF reduces to the 2-parameter Burr XII 

(β, ), whose PDF, CDF, SF, and HRF are given, for x > 0, 
(β,  > 0), by: 

    11, 1g x x x
   

   ,        (1.1) 

   , 1 1G x x ,
 


             (1.2) 

     , 1 , 1GR x G x x ,
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.       (1.4) 

The Burr XII and its reciprocal Burr III distributions 
have been used in many applications such as actuarial 
science, as in Embrechts et al. [7] and Klugman[8], 
quantal bioassay as in Drane et al. [9], economics, as in 
McDonald and Richards [10], Morrison and Schmittlein 
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,

[11], Schmittlein [12], McDonald [13], forestry,as in 
Lindsay et al. [14], exotoxicology, as in Shao [15], life 
testing and reliability, as in Dubey [16,17], Papadopoulos 
[18], Lewis [19], Evans and Ragab [20], Lingappaiah [21], 
Jaheen [22], AL-Hussaini et al. [23], Shah and Gokhale 
[24], AL-Hussaini and Jaheen, [25,26] and Moore and 
Papadopoulos [27], among others. Khan and Khan [28] 
and AL-Hussaini [29] characterized the Burr XII distri-
bution. Lewis [19] proposed the use of the Burr XII dis-
tribution as a model in accelerated life test data repre-
senting times to break down of an insulating fluid. Con-
stant partially accelerated life tests for Burr XII distribu-
tion with progressive type II censoring was investigated 
by Abdel-Hamid [30]. Prediction of future observables 
from Burr XII distribution was studied by Nigm [31], 
AL-Hussaini and Jaheen [32,33], AL-Hussaini [34] and 
AL-Hussaini and Ahmad [35], among others. The ex-
tended 3-parameter Burr XII was applied in flood fre-
quency analysis by Shao et al. [36]. 

Adding one or more parameters to a distribution makes 
it richer and more flexible for modeling data. There are 
different ways for adding parameter(s) to a distribution. 
Marshall and Olkin [37] added one positive parameter to a 
given (general) SF. AL-Hussaini and Ghitany [38] added 
two parameters (r, p) to a SF by considering a countable 
mixture of positive integer powers of general SFs in 
which the mixing proportions are Pascal (r, p). A new 
family of distributions as a countable mixture with Pois-
son added parameters was obtained by AL-Hussaini and 
Gharib [39]. 

Adding a parameter by exponentiation goes back to 
Verhulst [40], who raised his 1838 logistic CDF (see [41]) 
to a positive power. Ahuja and Nash [42] seemed to have 
been the first to raise Verhulst [43] exponential CDF to a 
positive power. 

AL-Hussaini [44] made some preliminary studies for 
properties of exponentiated class of distributions of the 
form 

     , 0, 0H x G x x


         (1.5) 

where G(x) may depend on a vector of parameters  . 
Inference (estimation and prediction) based on cen-

sored samples from exponentiated populations with CDF 
of the form (1.5) was made by AL-Hussaini [45] who also 
reviewed the applications of exponentiated Weibull and 
exponentiated exponential families. (See pages 2 and 3 in 
the introduction of AL-Hussaini [45] and the references 
therein). 

Exponentiated distributions are also known as propor-
tional reversed hazard rate models (PRHRM) with con-
stant of proportionality α. Reversed hazard rate function 
(RHRF) is defined by 

   
 H

h x
x

H x
  . 

If    
 G

g x
x

G x
  , where    H x G x


    , then  
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    H G

G x g x
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    . 

That is,  H x  is proportional to  G x  with con-
stant of proportionality  . This is why the exponentiated 
distribution    H x G x


     is called PRHRM. See 

Gupta and Gupta [46]. Exponentiated distributions are 
also known as Lehmann alternatives, due to Lehmann 
[47], who defined the model, when   is a positive in-
teger, as a non-parametric class of alternatives.  

In general, the PDF, SF and HRF of the exponentiated 
CDF (1.5) are given by: 

     1
,h x G x g x





                (1.6) 

   1HR x G x ,


                  (1.7) 
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      (1.8) 

 
Relation between the HRF Hλ  of H and the HRF  
of G 

Gλ

If 0 < α < 1, then   H G x x   for all x and if 1   
then    G0 H x x  , for all x. This follows by ob-
serving that 

   1 ,H G  x x x              (1.9) 

where 
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.        (1.10) 

If 0 1  , then  

       1
1 .

1 H Gx x x 
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If 1  , then  
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Notice that, for 0  , ,  0 1    1
lim
x

x




 ,  

by using L’Hopital’s rule. It is clear, from (1.9), that 
 H x  is not proportional to  G x


 

It can be shown that the CDF H x  is related to the 
HRF  H x  and RHRF *

H x  by the relation 
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.           (1.11) 

 
2. Estimation of Parameters, SF and HRF 
 
Suppose that n items, whose life times follow a CDF 

   H x G x


    , where the CDF G(x) may depend on a 
vector of parameters  , are put on test and that the test is 
terminated at the rth failure (type II censoring). Suppose 
that the life times of the first r failed items 1, , rx x  have 
been observed. The likelihood function (LF) is then given 
by 

     
1

; ; ;
r n r

i H r
i

L x h x R x 




      
 ,    (2.1) 

where h(·)and  are the PDF and SF corresponding 
to H(·), 

 HR 
 1, , rx x  x  and  ,    . In the EBurr 

XII (α, β, γ), the CDF G(·) is Burr XII (β, γ), given by 
(1.2), where  ,   . 
 
2.1. All Parameters of H Are Unknown 
 
In this section, we consider the case in which the CDF G(·) 
is Burr XII  ,   , where  ,     and all parame-
ters of H are unknown. In this case we have a vector of 
unknown parameters  ,     of H.  
 
2.1.1. Maximum Likelihood Estimation 
The LF is given, in terms of G(x) and g(x), as: 
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(2.2) 

The log-LF is then given by 
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   (2.3) 

Differentiate (2.3) partially with respect to α and 
 ,     and then equate to zero, to get  
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where 
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The ML estimator of  can be written, using (2.4) and 
(2.5), in terms of  , as 
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.     (2.7) 

The MLEs of   and  , say ˆ
ML  and ˆML  can be 

obtained by maximizing the log-likelihood function with 
respect to   and  . Once ˆ

ML  and ˆML  are obtained, 
the ML estimator of  , say ˆML , can be obtained from 
(2.7). 

The MLEs are used in determining the vector of hy-
per-parameters in the Bayes case (see Section 4). 
 
2.1.2. Standard Bayes Method  
We assume that α is independent of (β, γ) and that 

 1 2Gamma ,b b  ,  5Gamma ,b     and  
 3 4,Gamma b b  so that the prior PDF of  , ,     

is given by 

     1 2π π π   , 

  1 21
1 1π e ,  0, , 0b b b b     2 ,  
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LF (2.2) can be rewritten in the form 

     
1 1

1

0
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; exp ,
n r

r
j j
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     , (2.8)  ,   (2.5) 

Copyright © 2011 SciRes.                                                                                  OJS 



E. K. AL-HUSSAINI  M. HUSSEIN 36
 

 

where, 
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The posterior PDF is then given, from LF (2.8) and the 
prior  π  by 
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 ,T 
1j
   and T 0 ,    a

.1.2.1. Bayes Estimators under SEL Function 
rror loss, 

re given by (2.9) and (2.10). 
 
2
AL-Hussaini [45] showed that, under squared e
the Bayes estimators of , , ,     0HR x  and  0H x  
are given, for any G (which s has parameter   and  ), 
by 
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2.1.2.2. Bayes Estimators under LINEX Loss Function  
The SEL function has probably been the most popular loss 

nction used in literature. The symmetric nature of SEL fu
function gives equal weight to over- and under- estima-
tion of the parameters under consideration. However, in 
life testing, over estimation may be more serious than 
under estimation or vice versa. Research has been directed 
towards asymmetric loss functions. Varian [48] suggested 
the use of linear-exponential (LINEX) loss function to be 
of the form 

  e 1cb c        ,        (2.15) 

where 0,  0c b   and    û u    . 
Thompson and Basu [

function to the squared-exponential (S
 be of th  

49] generalized the LINEX loss 
QUAREX) loss 

function to e form

  2e 1cb d c           , 

where 0,  ,d b c  and   are as before. 
The SQUAREX loss function reduces to the LINEX 

loss function if 0d  . If , the SQUAREX loss 
duces t

ss fu  cou

0c 
function re o the SEL function.  

In this paper, we shall use the LINEX loss function, as 
the SQUAREX lo nction ld be similarly treated. 
Using the LINEX loss function, the Bayes estimator of 
 u  , a function of the (vector) of parameter(s)  , is 

given by 
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,  ( 16) 

 π x  is the posterior PDF of the vec
rameters 

tor of pa-
 , given the set of data x . In general, the in-

tegrals ar n over the n-dimensional space e take nR . 
 
2.2. Theorem 
 
The Bayes estimators of α, â, ,  0HR x  and  0H x  
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The proof is given in the Appendix 1. 
 
3. Numerical Results and Comparisons 
 
The estimates of α, â, ,  0HR x  and  0H x  and their 

he 
rithm 

EL and LINEX loss). Such an algorithm is given in 

h, are drawn from the population distribu-
tio

 

 the values given for 

mean square errors (MSE) are computed by using t
MLE, standard Bayes method (SB) and MCMC algo
(S
Appendix 2.  

To see the effect of sample size on the performance of 
ML and Bayes estimates, a comparison of different esti-
mation methods is made when 1000 samples of size n = 
20, 40, 60 eac

n, in the complete sample case and when data are 
censored at the 10% and 25% levels, for each sample size. 

Under the LINEX loss, different values of c (−0.5, 0.01, 
0.1) are used, for different sample sizes and censoring 
values. The computational values are reported in Tables 
1(a)-(c).  

The actual population values are α = 2.5, β = 1.5, γ = 2. 
The hyper-parameters are b1 = 0.6, b2 = 0.6, b3 = 2, b4 = 3, 
b5 = 2. It may be noticed that with the values of α = 2.5, β 
= 1.5, γ = 2 ̂  are the averages over 
the 1000 samples. For 0 0.7x  , the actual values for 

 0HR x  and  0H x  are respectively 0.719 and 1.024.  
 
3.1. Remark 
 

 nume hown that the vector of parameters It can be rically s
 , ,     satisfying the log-likelihood Equations 

ally maximizes the likelihood function 
.3). This is done by applying Theorem (7-9) on p. 152 of 

 

parisons of various estimation methods is 
ade when n = 20, 40, 60 and censored data. From Ta-

ed that the Bayes 
timates are, generally, better than the MLEs against the 

to demon-
rate how the proposed methods can be used in practice. 

of the fitted model, we use Kol-
ogorov-Smirnov goodness of fit test (KS) to test “the 

5, 2.454, 2.454, 2.474, 2.518, 2.522, 2.525, 
2.  

  

(2.4)-(2.6) actu
(2
Apostol [50]. 

3.2. Simulation Comparisons 
 
Simulation com
m
bles 1(a-c), below, it may be observ
es
proposed prior in the sense of having smaller MSEs. Even 
for sample size as small as n = 20, good Bayes estimates 
(with smaller MSEs), are obtained under the LINEX loss 
function as well as SEL with the same censoring level. All 
estimates improve by increasing sample size. Analysis is 
also carried out for real life data, in Section 4. 
 
4. Real Life Data 
 
In this section we analyze real life data set 
st
To check the validity 
m
fitted distribution function is H(x)”. We plot the fitted 
distribution function H(x) using the three methods (ML, 
SBM, MCMC) and the empirical distribution function in 
each case. 

The breaking strengths of 64 (= n) single carbon fibers 
of length 10 (Lawless [51],p. 573) are : 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 
2.397, 2.44

532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675,       
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e (r = 20); (b) Censored

(a) 

 sample (r = 18); (c) Censored sample (r = 15). Table 1. (a) Complete sampl

LINEX 
SEL 

c 5 c = 0.01 c = 0.1 = −0.
Estimate 
(MSE) 

MLE 

SB MCMC SB MCMC SB MCMC SB MCMC 

̂  
2.9072 

(0.4738) 
2.5833 

(0.0619) 
2.5860 3.0260 

(0.3901) 
2393 2.5738

(0.0595) 
5737 2.4968 

(0.0485) (0.0763) 
3.

(0.4160) 
 2.

(0.0733) 
2.4723 

(0.0601) 

̂  
1.5050 

(0.0329) 
1.4428 

(0.0200) 
1.4632 

(0.0163) 
1.5055 

(0.0191) 
1.5268 

(0.0181) 
1.4418 

(0.0201) 
1.4620 

(0.0164) 
1.4313 

(0.0210) 
1.4519 

(0.0169) 

̂  
2.1921 

(0.1281) 
1.9392 

(0.0119) 
1.9229 

(0.0202) 
2.0572 

(0.0103) 
2.0615 

(0.0250) 
1.9366 

(0.0122) 
1.9202 

(0.0206) 
1.9163 

(0.0153) 
1.8968 

(0.0244) 

 ˆ
H 0R x  

0.7250 
(0.0067) 

0.6795 
(0.0035) 

0.6793 
(0.0036) 

0.6816 
(0.0033) 

0.6810 
(0.0034) 

0.6795 
(0.0035) 

0.6791 
(0.0035) 

0.6792 
(0.0036) 

0.6789 
(0.0036) 

 0
ˆ

H x  
1.0643 

(0.0841) 
0.9626 

(0.0082) 
0.9732 

(0.0081) 
0.9720 

(0.0073) 
0.9862 

(0.0072) 
0.9624 

(0.0083) 
0.9731 

(0.0081) 
0.9608 

(0.0085) 
0.9707 

(0.0083) 

 
(b) 

LINEX 
SEL 

c .5 c = 0.01 c = 0.1 = −0
Estimate 
(MSE) 

MLE 

SB MCMC SB MCMC SB MCMC SB MCMC 

̂  
3.2976 

(1.1163) 
2.5507 

(0 ) 
2.5658 3.0674 

(0 ) 
2586 2.5416 

(0 ) 
5536 2.4659 

(0 ) .0674 (0.0828) .4306
3.

(0.4412) .0657
2.

(0.0803) .0593
2.4528 

(0.0708) 

̂  
1.4280 

(0.0307) 
1.4632 

(0.0246) 
1.4780 

(0.0213) 
1.5277 

(0.0262) 
1.5438 

(0.0252) 
1.4620 

(0.0246) 
1.4768 

(0.0214) 
1.4514 

(0.0252) 
1.4663 

(0.0216) 

̂  
2.3623 

(0.2651) 
1.9266 

(0.0171) 
1.9141 

(0.0273) 
2.0468 

(0.0119) 
2.0550 

(0.0296) 
1.9240 

(0.0175) 
1.9114 

(0.0277) 
1.9033 

(0.0213) 
1.8875 

(0.0320) 

 ˆ
H 0R x  

0.7237 
(0.0070) 

0.6802 
(0.0035) 

0.6799 
(0.0035) 

0.6823 
(0.0033) 

0.6816 
(0.0035) 

0.6802 
(0.0035) 

0.6801 
(0.0036) 

0.6799 
(0.0035) 

0.67953 
(0.0036) 

 0
ˆ

H x  
1.0808 

(0.0993) 
0.9685 

(0.0113) 
0.9767 

(0.0117) 
0.9795 

(0.0105) 
0.9909 

(0.0111) 
0.9683 

(0.0113) 
0.9764 

(0.0118) 
0.9664 

(0.0115) 
0.9739 

(0.0119) 

 
(c) 

LINEX 
SEL 

c .5 c = 0.01 c = 0.1 = −0
Estimate 
(MSE) 

MLE 

SB MCMC SB MCMC SB MCMC SB MCMC 

̂  
3.7674 

(2.5013) 
2.5148 

(0 ) 
2.5536 3.1082

(0 ) 
2168 2.5059

(0 ) 
.5415 2.4319 

(0  .0684 (0.0848) 
 3.

.4689 (0.6130) 
 2

.0674 (0.0826) .0661)
2.4411 

(0.0754) 

̂  
1.3723 

(0.0416) 
1.4797 

(0.0268) 
1.4880 

(0.0241) 
1.5470 

(0.0307) 
1.5570 

(0.0263) 
1.4785 

(0.0268) 
1.4867 

(0.0241) 
1.4674 

(0.0270) 
1.4757 

(0.0240) 

̂  
2.5580 

(0.5274) 
1.9171 

(0.0263) 
1.9167 

(0.0410) 
2.0386 

(0.0177) 
2.0613 

(0.0421) 
1.9147 

(0.0267) 
1.9141 

(0.0414) 
1.8937 

(0.0311) 
1.8894 

(0.0455) 

 ˆ
H 0R x  

0.7214 
(0.0074) 

0.6802 
(0.0035) 

0.6794 
(0.0036) 

0.6823 
(0.0033) 

0.6810 
(0.0035) 

0.6801 
(0.0035) 

0.6794 
(0.0037) 

0.6798 
(0.0035) 

0.6790 
(0.0037) 

 0
ˆ

H x  
1.1170 

(0.1336) 
0.9783 

(0.0178) 
0.9874 

(0.0201) 
0.9923 

(0.0175) 
1.0047 

(0.0206) 
0.9780 

(0.0178) 
0.9870 

(0.0202) 
0.9757 

(0.0179) 
0.9840 

(0.0201) 
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2.738, 2. 40, 91 8, 2. 937, 
2.996, 3. 0, 1 5, 3. 3,
3.243, 3. 4, 29 2, 3. 377, 

.435, 3. 3, 5 4, 3. 8,

v go of f (KS) ven le 

clu em

ns are obtained when data are drawn from the 
urr type XII distribution. 

 on data. The maximum 

= 64

(a) 

7
03

2.856, 2. 7, 2.92 937, 2. 2.977, 
 3.125, 3. 39, 3.14 220, 3.22  3.235, 

26
49

3.272, 3. 4, 3.33 346, 3. 3.408, 
3  3.501, 3. 37, 3.55 562, 3.62  3.852, 
3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

In the complete sample case (r = n), the estimates of 
the parameters, SF, HRF at 0 3x   and the correspond-
ing p-value of KS goodness of fit test are given in Table 
2(a). The Bayes estimates (SB and MCMC) are calcu-
lated for the hyper-parameters b  = 180, b  = 0.6, b  = 1 2 3 2, 
b4 = 3, b5 = 2. We have used the same values of 

2 3 4 5, , ,b b b b  as in the simulation study. To give a value 
for 1b , we noticed that MLE of α is quite large. In the 
Bayes case, the mean of the gamma ( 1 2,b b ) prior de-
pends on 1 2,b b . For fixed 2b  at 0.6, this mean is large 
if b  is large. After some fitting trials we found that 

1 ives a good fit. See Figure 1. 
Suppose that, this test is terminated after the first 55 (= 

r) failures, the estimates of the parameters, SF, HRF at 

0 3x   and the corresponding p value of Kolmogorov- 
 

Table 2. (a) Complete Sample 

1

180b   g

Smirno odness it test  are gi in Tab
2(b). 
 
5. Con ding R arks 
 
Estimation of the parameters, survival and hazard rate 
unctio

(r 

f
three-parameter exponentiated B

ype II censoring is imposedT
likelihood and Bayes methods are used in estimation. In 
the Bayes case, the estimators are obtained under 
squared-error and LINEX loss functions. The methods 
are compared by computing the mean squared errors 
(overall Bayes risks, in the Bayes case). 

Kolmogorov-Smirnov goodness of fit test shows that 
the exponentiated Burr type XII distribution fits the data 
of the breaking strengths of 64 (=n) single carbon fibers 
of length 10, given in Lawless, in all cases.  

From Tables 1(a)-(c), it may be noticed that the Bayes 
estimates are, generally, better than the MLEs against the  

); (b) Censored Sample (r = 55). 

LINEX 
SEL 

c = 0.1 c = −0.1 c = 0.01 Estimate MLE 

SB MCMC SB  SB MCMC SB MCMC MCMC

̂  414.57 302.12 302.20 324.82 331.37 299.99 300.28 281.91 280.34 

̂  2.5019 2.1284 2.1000 2.1321 .1833 2.1280 2.1734 2.1247 2.1654  2

̂  2.3322 2.5581 2.5617 2  2.5543 2.5425 2.5610 2.5619 .5577 2.5523 

 ˆ
H 0R x  0.4458 0.4751 0.4719 0.4752 0.4689 0.4751 0.4711 0.4751 0.4720 

 ˆ
H 0x  1.3422 1.1342 1.1640 1.1315 1.1689 1.1345 1.1668 1.1368 1.1665 

p-value 0.6190 0.7906 0.6545 0.7208 0.5318 0.7706 0.3605 0.5812 0.2792 

 
(b) 

LINEX 
SEL 

 = −0.1  = 0.01 c = 0.1 c cEsti  MLE 

SB MCMC SB  SB MCMC SB MCMC 

mate

MCMC

̂  403.08 300.90 302.65 325.25 330.99 300.52 279.45  299.11 282.50 

̂  2.3935 2.0980 2.1170 2.1205 2.18 2.1167 2.16 2.1136 2.16   

̂  2.4090 2.5590 2.5728 2  2  2.5694 2.56 .5691 2.55 .5659 2.55 

 ˆ
H 0R x  0.4539 0.4781 0.4747 0.47474 0.48 0.4747 0.48 0.4747 0.48 

 ˆ
H 0x  1.3057 1.1520 1.1336 1.1309 1.15 1.1339 1.16 1.1363 1.15 

p-value 0.7359 0.5813 0.7849 0.4970 0.5908 0.2565 0.6398 0.7881 0.7086 

Copyright © 2011 SciRes.                                                                                  OJS 
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(e)                                                             (f) 

Figure 1. Empirical and fitted CDF using different methods of estimation, (a) MLE; (b) SEL (SB); (c) SEL (MCMC); (d) 
LINEX (SB), c = −0.1; (e) LINEX (SB), c = 0.01; (f) LINEX (SB), c = 0.1.  

Copyright © 2011 SciRes.                                                                                  OJS 



E. K. AL-HUSSAINI  M. HUSSEIN 

Copyright © 2011 SciRes.                                                                                  OJS 

41
 
proposed prior in the sense of having smaller MSEs. 
Even for sample size as small as n = 20, good Bayes es-
timates (with smaller MSEs), are obtained under LINEX 
loss function as well as SEL with the same censoring 
level. All estimates improve by increasing sample size. 
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Appendix 1 

 
Proof of Theorem  

From (2.16) we have, 
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Appendix 2 
 
Implementation of MCMC method 

To use the MCMC method in computing Bayes esti-
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These are the Bayes estimators based on SEL f nction. 
The Bayes estimators using MCMC method based on 

LINEX loss function are given by 
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