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Abstract

Maximum likelihood and Bayes estimators of the parameters, survival function (SF) and hazard rate function
(HRF) are obtained for the three-parameter exponentiated Burr type XII distribution when sample is avail-
able from type II censored scheme. Bayes estimators have been developed using the standard Bayes and
MCMC methods under square error and LINEX loss functions, using informative type of priors for the pa-
rameters. Simulation comparison of various estimation methods is made when n = 20, 40, 60 and censored
data. The Bayes estimates are found to be, generally, better than the maximum likelihood estimates against
the proposed prior, in the sense of having smaller mean square errors. This is found to be true whether the
data are complete or censored. Estimates improve by increasing sample size. Analysis is also carried out for
real life data.
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1. Introduction

Analogous to the Pearson system of distributions, Burr [1]
introduced a system that includes twelve types of cumu-
lative distribution functions (CDF) which yield a variety
of density shapes. This system is obtained by considering
CDF’s satisfying a differential equation which has a so-
lution, given by:

-1

F(x)= [1+ exp{—J.n(x)dx}] ,

where 77(x) . is chosen such that F (x) is a CDF on the
real line. Twelve choices for 7(x), made by Burr, re-
sulted in twelve distributions from which types III, X and
XII have been frequently used. The flexibilities of Burr
XII distribution were investigated by Hatke [2], Burr [3],
Rodrigues [4] and Tadikamalla [5].

In a different direction, it was Takahasi[6] who first
noticed that the 3-parameter Burr XII probability density
function (PDF) can be obtained by compounding a
Weibull PDF with a gamma PDF. That is, if X]6~ Weibull
(0, p) and 6~ gamma (y, J) then the compound PDF, say
g(x|B, v, 9), is given by
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g(x| 5,7, 5) = Idw[gﬂxﬁ'*le—ﬁxﬁ ]{;gwem}de

F(y) o
=opa (1+6x)

which is the 3-parameter Burr XII (5, y, ) PDF.
If 6 = 1, this PDF reduces to the 2-parameter Burr XII
(B, v), whose PDF, CDF, SF, and HRF are given, for x >0,

(B, v>0), by:
g(x|B.y)= Byx"" (1+xﬁ )iH , (1.1)
G(xB.y)=1-(1+x")", (1.2)
R, (xB.7)=1-G (x| p.y)=(1+x")", (1.3

g(dB.7) _ pra"
RG(x|ﬁ,)/)_ 1+x7

The Burr XII and its reciprocal Burr III distributions
have been used in many applications such as actuarial
science, as in Embrechts et al. [7] and Klugman[8],
quantal bioassay as in Drane et al. [9], economics, as in
McDonald and Richards [10], Morrison and Schmittlein

Ao (2] B.7) = (1.4)
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[11], Schmittlein [12], McDonald [13], forestry,as in
Lindsay et al. [14], exotoxicology, as in Shao [15], life
testing and reliability, as in Dubey [16,17], Papadopoulos

[18], Lewis [19], Evans and Ragab [20], Lingappaiah [21],

Jaheen [22], AL-Hussaini et al. [23], Shah and Gokhale
[24], AL-Hussaini and Jaheen, [25,26] and Moore and
Papadopoulos [27], among others. Khan and Khan [28]
and AL-Hussaini [29] characterized the Burr XII distri-
bution. Lewis [19] proposed the use of the Burr XII dis-
tribution as a model in accelerated life test data repre-
senting times to break down of an insulating fluid. Con-
stant partially accelerated life tests for Burr XII distribu-
tion with progressive type Il censoring was investigated
by Abdel-Hamid [30]. Prediction of future observables
from Burr XII distribution was studied by Nigm [31],
AL-Hussaini and Jaheen [32,33], AL-Hussaini [34] and
AL-Hussaini and Ahmad [35], among others. The ex-
tended 3-parameter Burr XII was applied in flood fre-
quency analysis by Shao et al. [36].

Adding one or more parameters to a distribution makes
it richer and more flexible for modeling data. There are
different ways for adding parameter(s) to a distribution.
Marshall and Olkin [37] added one positive parameter to a
given (general) SF. AL-Hussaini and Ghitany [38] added
two parameters (7, p) to a SF by considering a countable
mixture of positive integer powers of general SFs in
which the mixing proportions are Pascal (r, p). A new
family of distributions as a countable mixture with Pois-
son added parameters was obtained by AL-Hussaini and
Gharib [39].

Adding a parameter by exponentiation goes back to
Verhulst [40], who raised his 1838 logistic CDF (see [41])
to a positive power. Ahuja and Nash [42] seemed to have
been the first to raise Verhulst [43] exponential CDF to a
positive power.

AL-Hussaini [44] made some preliminary studies for
properties of exponentiated class of distributions of the
form

:[G(X)T,x>0,(a>0), (1.5)

where G(x) may depend on a vector of parameters £ .

Inference (estimation and prediction) based on cen-
sored samples from exponentiated populations with CDF
of the form (1.5) was made by AL-Hussaini [45] who also
reviewed the applications of exponentiated Weibull and
exponentiated exponential families. (See pages 2 and 3 in
the introduction of AL-Hussaini [45] and the references
therein).

Exponentiated distributions are also known as propor-
tional reversed hazard rate models (PRHRM) with con-
stant of proportionality a. Reversed hazard rate function
(RHREF) is defined by
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A (x) = H(x)
If A;(x)= ig;,where H(x)=[G(x)]", then
PP CIC)) (O By

(G ()

That is, A; (x) is proportional to A;(x) with con-
stant of proportionality « . This is why the exponentiated
distribution H (x)=[G(x)]" is called PRHRM. See
Gupta and Gupta [46]. Exponentiated distributions are
also known as Lehmann alternatives, due to Lehmann
[47], who defined the model, when « is a positive in-
teger, as a non-parametric class of alternatives.

In general, the PDF, SF and HRF of the exponentiated
CDF (1.5) are given by:

)=a[G(x)] " g(x (1.6)
RH(x)=1—[G(x)]“, (1.7)

_(x) _a[G(x)] g(x)
Ay (x)— R, (x) = 1—[G(x)]a

Relation between the HRF 4, of H and the HRF /;
of G

If0 <o <1, then A, (x)>4;(x) forallxandif a>1
then 0< A4, (x)<4;(x), for all x. This follows by ob-
serving that

; (1.8)

Ay (x)=a[1-¢,(x)] 2 (x), (1.9)

where

(1.10)

If 0<a<1,then
a 1
—oo<ga(x)<;:l—ga(x)Z;:ﬂH(x)Z/IG(x).
If a¢>1, then

—o<g, (x)<1=0<a[l-¢,(x)]<1

=0< 2, (x)< 45 (x).

Notice that, fora >0, ¢,(0)=1, limg, (x)= a_—l,
by using L’Hopital’s rule. It is clear, from (1.9), that
Ay (x) is not proportional to A (x)

It can be shown that the CDF H (x) is related to the
HRF 4, (x) and RHRF A (x) by the relation
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A (%)

) 0 A

(1.11)

2. Estimation of Parameters, SF and HRF

Suppose that n items, whose life times follow a CDF
H(x)= [G(x)]a , where the CDF G(x) may depend on a
vector of parameters [, are put on test and that the test is
terminated at the rth failure (type II censoring). Suppose
that the life times of the first r failed items x,,---,x, have
been observed. The likelihood function (LF) is then given
by

L(&:x) < mh(x,-;é)}[& (x:0)]", @D

where A(-)and R, () are the PDF and SF corresponding
to H(), x=(x,,x ) and Q:(a,é). In the EBurr
XII (a, B, y), the CDF G(-) is Burr XII (B, y), given by
(1.2), where S =(p.7).

2.1. All Parameters of H Are Unknown

In this section, we consider the case in which the CDF G(*)
is Burr XII (,7), where f=(f,7) and all parame-
ters of H are unknown. In this case we have a vector of

unknown parameters 6 = (a, B ) of H.

2.1.1. Maximum Likelihood Estimation
The LF is given, in terms of G(x) and g(x), as:

L(6:x) mh(x,. )}[I—H(xr )" e
wAfloto)] {f1stu{-oto) |

2.2)

n-r

The log-LF is then given by

K(Q;g)oorlna+(a—1)ilnG(xi;é)
- (2.3)

+§lng(xl.;£)+(n—r)ln[l—{G(x,;é)}a}

Differentiate (2.3) partially with respect to o and
B =(B.7) and then equate to zero, to get

(n—r){G(xr;é)}a lnG(xr;ﬂ)

L+ilnG<x,;ﬂ)— - — =0,
a O - 1_{G(xf;£)}

(2.4)

2.5)

(=12 4,0 (8)+ 2B, (6) K. ()=0.

i=l1
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r

(a2 4, (8)+ 25, (8)-K.(8)=0. €6)
where

1 9G(xsB) [0G(x:p)
=5t ov / B

1 0G(x;p) [0G(x:p)
A"’(E)ZG(x,.;g) o / o

1 0%(x:p) [0G(x:p)
B”](é):g(x,.;/_f) op / B

1 %(x:5) [oG(x;B)
B”y(é):g(xi'ﬁ) oy / o

(i’l—r)(l{G(;Cr;é)}a—l |
1-{G(x:8)]"

The ML estimator of o can be written, using (2.4) and
(2.5), in terms of é , as

A i[Bi,ﬂ (é)_BW@]
aML(E):l_l;l ’
Z[Af,ﬂ (ﬁ) —4, (é)]

i=1

and K, (0)-

.7)

The MLEs of 4 and y, say f3,, and 7,, can be
obtained by maximizing the log-likelihood function with
respectto £ and y.Once ﬁML and y,, are obtained,
the ML estimator of « , say ¢,, , can be obtained from
2.7.

The MLEs are used in determining the vector of hy-
per-parameters in the Bayes case (see Section 4).

2.1.2. Standard Bayes Method

We assume that a is independent of (5, y) and that
a ~ Gamma (b;,b,), y|S ~ Gamma (b, ) and

B ~ Gamma(b,,b, ) so that the prior PDF of 0 =(a,f3,7)
is given by

R(Q) =T (a)n2 (é) 5
T (a)ooablfle*bza, a > 0,(b1,b2 > 0)’
7y (B) =1, (B), (7] B) o =yt ),
B,y >0, (b,b,,b;>0) .

LF (2.2) can be rewritten in the form

n—r

L(@x)a’ 3, C, exp| ~aT, (B.7) =T, (B.7)]. 28)

7=0
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where,

Cn :(_1)1.1 (nfrj,
A (2.9)
1 (8.0)=| £06(s/8.7)+ i)

TO(ﬂ,;/)=Zi:lnG(xi|ﬂ,y)—ilng(xi|ﬁ,7) (2.10)

The posterior PDF is then given, from LF (2.8) and the
prior m(8) by

7(6]x)=[T(r+b)s]"

ZC o ! h5+b3 17/hS e —aTy; (B7)-T (B7)
(2.11)
where S, —Z Iy,
l
ﬂ175+173 1, bs— *(ﬁJ)
= p dpdy,
j J TollbI (ﬂ 7/)

T (B,7)=B(b, +¥)+T,(B,7),

(B.r)= By +7)+ T, (B.7) 212

TOjl (ﬂo?’) =b, +T,‘1 (ﬁJ/)
T, (B.r) and T,(B.y) aregivenby (2.9) and (2.10).

2.1.2.1. Bayes Estimators under SEL Function
AL-Hussaini [45] showed that, under squared error loss,
the Bayes estimators of a,f,7, R, (x,) and A, (x))
are given, for any G (which has parameters £ and y),
by

(r+b)S; ~ S, . S,
= , 2.13
aS S; > S S; 75 SO ( )
. A b)S:
RS(xO):l—S*,ﬂS(xO):(r+ )85 (2.14)
0 SO
where

S::Z,
s-Y¥yeu,, (1>[j

71=0 j,=0 Ji

C.1,,.v=01234,

bs +b3 -1 bs ~T"(B.7)

(== 484
s To’;‘*“(m) rer
B ﬂbs“fb} bs - )d q
.[ J. Tr+h ('3’7,) pdy

0/1
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ﬂb5+b3 -1 b5 B.y)
= " dpdy .,
J .[ Tz)r/lbl (ﬁ 7)
ﬂhs‘r’h -1, bs—1 ~T"(B.7)
= - dgdy .
=L U (ﬂ 7)
La(x |y b5+b3-17b5—1e—T*(ﬂ.y)
5.1/ _I J. 0| ) bl dpdy,
x0|ﬁ ) Jisi2 (ﬂ’}/)
Til'l (ﬁ’y):];)jl (ﬂ,y)—lnG(x0|/3,}/),
le,jz (ﬁ’y):%jl (ﬁ’y)_(j2+1)lnG(x0|ﬁ’7/) :

2.1.2.2. Bayes Estimators under LINEX Loss Function
The SEL function has probably been the most popular loss
function used in literature. The symmetric nature of SEL
function gives equal weight to over- and under- estima-
tion of the parameters under consideration. However, in
life testing, over estimation may be more serious than
under estimation or vice versa. Research has been directed
towards asymmetric loss functions. Varian [48] suggested
the use of linear-exponential (LINEX) loss function to be
of the form

£(A)=b[e* —cA-1], (2.15)
where ¢#0, b>0 and A=4d(6)-u(6).

Thompson and Basu [49] generalized the LINEX loss
function to the squared-exponential (SQUAREX) loss

function to be of the form
£ (A)=b[e®

where d #0, b,c and A are as before.

The SQUAREX loss function reduces to the LINEX
loss function if d =0. If ¢=0, the SQUAREX loss
function reduces to the SEL function.

In this paper, we shall use the LINEX loss function, as
the SQUAREX loss function could be similarly treated.
Using the LINEX loss function, the Bayes estimator of
u(0), a function of the (vector) of parameter(s) 6, is
given by

i, (0) :—élnE[ (6 )‘1}

:—lln_[ Ie‘” n

Cc

—dAZ—cA—lj,

., (2.16)
x)dg,---de,

)_c) is the posterior PDF of the vector of pa-
rameters €, given the set of data x. In general, the in-
tegrals are taken over the n-dimensional space R,.

2.2. Theorem

The Bayes estimators of a, d, 7, R, (x,) and 4, (x,)
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under LINEX loss are

185 1. [s; 1. ]S
G, =——Inq=Lt, B =——Ini 2kt 7 =——Ind 2,
L B {So}ﬂL B {So}n B {So}
. 1. (s . 1. s
R (x,)=1-=Inq=2£0L A4 (x,)=——In{ =L}
==t )=~

where

-3¢,

(2.17)

n-r

Ly, Sy, =2 C., ., v=123 (218)
71=0

n-r

—r ® o0
- z Z iz Jl J2? L - Z Z Z Kjl.jz.jsljl,jz.jz ?
J1=0j=0 J

71=0j2=0j3=0
(2.19)
C, isgivenin(2.9),
o’ C ;
2
Jisi2 = ] | and K/1 J2:J3 = (_1) d./z a.iz/zK/p/z ’
5!
_T(r+b+)5) _ () (i -1)
J2 F(V + bl) J2J3 j3 ! ’
(2.20)
bs +by—1 b5 ﬁ’,y)
=0 E g

dpdy,

dpdy,

[ 0, (ﬂ 7) ]
ﬂb5+b3 -1 bs-1 wﬂ " (8.7)
=1L T T
bs+by—1 bs “lgmer= " (B.7)
_I .[ IB |:TO‘/1 (ﬂ 7):Ir+bl
o oo bs-+by=1, bs—1 =T (B.7)
[jp/'z :Io jo []le (ﬂ?}/)—jz/ln ;(x0|ﬁ’7/):|r+bl dpgdy,
Akt ﬂ

xo|ﬁ 7/)
bs+by-1_ bs—1_~T"(B.7)
. ﬂ . 7/ . r+b+jp dﬂd%
[7;)/‘1 (B.7)-( +J3)lnG(x0|ﬂ,7/):|
(2.21)

The proofis given in the Appendix 1.
3. Numerical Results and Comparisons

The estimates of @, d, 7, R, (x,) and A, (x,) and their
mean square errors (MSE) are computed by using the
MLE, standard Bayes method (SB) and MCMC algorithm
(SEL and LINEX loss). Such an algorithm is given in
Appendix 2.
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To see the effect of sample size on the performance of
ML and Bayes estimates, a comparison of different esti-
mation methods is made when 1000 samples of size n =
20, 40, 60 each, are drawn from the population distribu-
tion, in the complete sample case and when data are
censored at the 10% and 25% levels, for each sample size.

Under the LINEX loss, different values of ¢ (—0.5, 0.01,
0.1) are used, for different sample sizes and censoring
values. The computational values are reported in Tables
1(a)-(c).

The actual population values are a = 2.5, f= 1.5,y =2.
The hyper-parameters are b; = 0.6, b, = 0.6, b3 =2, b, =3,
bs = 2. It may be noticed that with the values of a = 2.5,
= 1.5, y =2 the values given for & are the averages over
the 1000 samples. For x, =0.7, the actual values for
R, (x,) and 4, (x,) arerespectively 0.719 and 1.024.

3.1. Remark

It can be numerically shown that the vector of parameters

=(a,pB,y) satisfying the log-likelihood Equations
(2.4)-(2.6) actually maximizes the likelihood function
(2.3). This is done by applying Theorem (7-9) on p. 152 of
Apostol [50].

3.2. Simulation Comparisons

Simulation comparisons of various estimation methods is
made when n = 20, 40, 60 and censored data. From Ta-
bles 1(a-c), below, it may be observed that the Bayes
estimates are, generally, better than the MLEs against the
proposed prior in the sense of having smaller MSEs. Even
for sample size as small as n = 20, good Bayes estimates
(with smaller MSEs), are obtained under the LINEX loss
function as well as SEL with the same censoring level. All
estimates improve by increasing sample size. Analysis is
also carried out for real life data, in Section 4.

4. Real Life Data

In this section we analyze real life data set to demon-
strate how the proposed methods can be used in practice.
To check the validity of the fitted model, we use Kol-
mogorov-Smirnov goodness of fit test (KS) to test “the
fitted distribution function is H(x)”. We plot the fitted
distribution function H(x) using the three methods (ML,
SBM, MCMC) and the empirical distribution function in
each case.

The breaking strengths of 64 (= n) single carbon fibers
of length 10 (Lawless [51],p. 573) are :

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396,
2.397, 2.445, 2.454, 2.454, 2.474, 2.518, 2.522, 2.525,
2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675,

oJS



Table 1. (a) Complete sample (r = 20); (b) Censored sample (r = 18); (c) Censored sample (r = 15).
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(a)
LINEX
. SEL
Estimate _ _ _
(MSE) MLE c=-0.5 c=0.01 c=0.1
SB MCMC SB MCMC SB MCMC SB MCMC
N 2.9072 2.5833 2.5860 3.0260 3.2393 2.5738 2.5737 2.4968 2.4723
@ (0.4738) (0.0619) (0.0763) (0.3901) (0.4160) (0.0595) (0.0733) (0.0485) (0.0601)
A 1.5050 1.4428 1.4632 1.5055 1.5268 1.4418 1.4620 1.4313 1.4519
B (0.0329) (0.0200) (0.0163) (0.0191) (0.0181) (0.0201) (0.0164) (0.0210) (0.0169)
- 2.1921 1.9392 1.9229 2.0572 2.0615 1.9366 1.9202 1.9163 1.8968
7 (0.1281) (0.0119) (0.0202) (0.0103) (0.0250) (0.0122) (0.0206) (0.0153) (0.0244)
A (x) 0.7250 0.6795 0.6793 0.6816 0.6810 0.6795 0.6791 0.6792 0.6789
Ao (0.0067) (0.0035) (0.0036) (0.0033) (0.0034) (0.0035) (0.0035) (0.0036) (0.0036)
i (x) 1.0643 0.9626 0.9732 0.9720 0.9862 0.9624 0.9731 0.9608 0.9707
HATo (0.0841) (0.0082) (0.0081) (0.0073) (0.0072) (0.0083) (0.0081) (0.0085) (0.0083)
(b)
LINEX
. SEL
Estimate _ _ _
(MSE) MLE c=-0.5 c=0.01 c=0.1
SB MCMC SB MCMC SB MCMC SB MCMC
N 3.2976 2.5507 2.5658 3.0674 3.2586 2.5416 2.5536 2.4659 2.4528
@ (1.1163) (0.0674) (0.0828) (0.4306) (0.4412) (0.0657) (0.0803) (0.0593) (0.0708)
5 1.4280 1.4632 1.4780 1.5277 1.5438 1.4620 1.4768 1.4514 1.4663
B (0.0307) (0.0246) (0.0213) (0.0262) (0.0252) (0.02406) (0.0214) (0.0252) (0.0216)
N 2.3623 1.9266 1.9141 2.0468 2.0550 1.9240 1.9114 1.9033 1.8875
y (0.2651) (0.0171) (0.0273) (0.0119) (0.0296) (0.0175) (0.0277) (0.0213) (0.0320)
R (x) 0.7237 0.6802 0.6799 0.6823 0.6816 0.6802 0.6801 0.6799 0.67953
Ao (0.0070) (0.0035) (0.0035) (0.0033) (0.0035) (0.0035) (0.0036) (0.0035) (0.0036)
i (x) 1.0808 0.9685 0.9767 0.9795 0.9909 0.9683 0.9764 0.9664 0.9739
HATo (0.0993) (0.0113) (0.0117) (0.0105) (0.0111) (0.0113) (0.0118) (0.0115) (0.0119)
(©
LINEX
. SEL
Estimate _ _ _
(MSE) MLE c=-0.5 c=0.01 c=0.1
SB MCMC SB MCMC SB MCMC SB MCMC
N 3.7674 2.5148 2.5536 3.1082 3.2168 2.5059 2.5415 2.4319 2.4411
@ (2.5013) (0.0684) (0.0848) (0.4689) (0.6130) (0.0674) (0.0826) (0.0661) (0.0754)
5 1.3723 1.4797 1.4880 1.5470 1.5570 1.4785 1.4867 1.4674 1.4757
B (0.04106) (0.0268) (0.0241) (0.0307) (0.0263) (0.0268) (0.0241) (0.0270) (0.0240)
N 2.5580 1.9171 1.9167 2.0386 2.0613 1.9147 1.9141 1.8937 1.8894
7 (0.5274) (0.0263) (0.0410) (0.0177) (0.0421) (0.0267) (0.0414) (0.0311) (0.0455)
A (x) 0.7214 0.6802 0.6794 0.6823 0.6810 0.6801 0.6794 0.6798 0.6790
Ao (0.0074) (0.0035) (0.0036) (0.0033) (0.0035) (0.0035) (0.0037) (0.0035) (0.0037)
i (x) 1.1170 0.9783 0.9874 0.9923 1.0047 0.9780 0.9870 0.9757 0.9840
HATo (0.1336) (0.0178) (0.0201) (0.0175) (0.02006) (0.0178) (0.0202) (0.0179) (0.0201)
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2.738, 2.740, 2.856,
2.996, 3.030, 3.125, 3.139,
3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408,
3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852,
3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

In the complete sample case (» = n), the estimates of
the parameters, SF, HRF at x, =3 and the correspond-
ing p-value of KS goodness of fit test are given in Table
2(a). The Bayes estimates (SB and MCMC) are calcu-
lated for the hyper-parameters b, = 180, b, = 0.6, b; = 2,
by = 3, bs = 2. We have used the same values of
b,,b,,b,,bs as in the simulation study. To give a value
for b, we noticed that MLE of a is quite large. In the
Bayes case, the mean of the gamma (b,,b,) prior de-
pends on b,,b,. For fixed b, at 0.6, this mean is large
if b is large. After some fitting trials we found that
b =180 gives a good fit. See Figure 1.

Suppose that, this test is terminated after the first 55 (=
r) failures, the estimates of the parameters, SF, HRF at
x, =3 and the corresponding p value of Kolmogorov-

2917, 2.928, 2.937, 2.937, 2.977,

3.145, 3.220, 3.223, 3.235,
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Smirnov goodness of fit test (KS) are given in Table
2(b).

5. Concluding Remarks

Estimation of the parameters, survival and hazard rate
functions are obtained when data are drawn from the
three-parameter exponentiated Burr type XII distribution.
Type II censoring is imposed on data. The maximum
likelihood and Bayes methods are used in estimation. In
the Bayes case, the estimators are obtained under
squared-error and LINEX loss functions. The methods
are compared by computing the mean squared errors
(overall Bayes risks, in the Bayes case).

Kolmogorov-Smirnov goodness of fit test shows that
the exponentiated Burr type XII distribution fits the data
of the breaking strengths of 64 (=n) single carbon fibers
of length 10, given in Lawless, in all cases.

From Tables 1(a)-(c), it may be noticed that the Bayes
estimates are, generally, better than the MLEs against the

Table 2. (a) Complete Sample (» = 64); (b) Censored Sample (r = 55).

LINEX
SEL
Estimate MLE c=-0.1 c=0.01 c=0.1
SB MCMC SB MCMC SB MCMC SB MCMC
a 414.57 302.12 302.20 324.82 331.37 299.99 300.28 281.91 280.34
Vij 2.5019 2.1284 2.1000 2.1321 2.1833 2.1280 2.1734 2.1247 2.1654
7 2.3322 2.5581 2.5610 2.5617 2.5619 2.5577 2.5523 2.5543 2.5425
R, (x,) 0.4458 0.4751 04719 0.4752 0.4689 0.4751 0.4711 0.4751 0.4720
A (%)) 1.3422 1.1342 1.1640 1.1315 1.1689 1.1345 1.1668 1.1368 1.1665
p-value 0.6190 0.7906 0.6545 0.7208 0.5318 0.7706 0.3605 0.5812 0.2792
(©)
LINEX
SEL
Estimate MLE c=-0.1 c=0.01 c=0.1

SB MCMC SB MCMC SB MCMC SB MCMC
a 403.08 300.90 302.65 325.25 330.99 300.52 299.11 282.50 279.45

B 2.3935 2.0980 2.1170 2.1205 2.18 2.1167 2.16 2.1136 2.16

7 2.4090 2.5590 2.5694 2.5728 2.56 2.5691 2.55 2.5659 2.55

R, (x,) 0.4539 0.4781 0.4747 0.47474 0.48 0.4747 0.48 0.4747 0.48

Ay (%) 1.3057 1.1520 1.1336 1.1309 1.15 1.1339 1.16 1.1363 115
p-value 0.7359 0.6398 0.7881 0.7086 0.5813 0.7849 0.4970 0.5908 0.2565

Copyright © 2011 SciRes. 0oJS
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Figure 1. Empirical and fitted CDF using different methods of estimation, (a) MLE; (b) SEL (SB); (c) SEL (MCMC); (d)
LINEX (SB), ¢ =—0.1; (e¢) LINEX (SB), ¢ = 0.01; (f) LINEX (SB), ¢ =0.1.

Copyright © 2011 SciRes.

oJS



E. K. AL-HUSSAINI

proposed prior in the sense of having smaller MSEs.
Even for sample size as small as n = 20, good Bayes es-
timates (with smaller MSEs), are obtained under LINEX
loss function as well as SEL with the same censoring
level. All estimates improve by increasing sample size.
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Appendix 1

Proof of Theorem
From (2.16) we have,

a, = —éln E(e"’“ g) = —%ln{fow -[Ow.[: e"‘“n(gu) dadﬂd;f} .

Using the joint posterior n( Q| g) , given by (2.8),

&L _ —éln{z le J-an .[Oway+b| 716—01[%/‘1 (ﬂ’y))“]ﬂtg+b5—17/b5‘le’T*(ﬂ’y)dadﬂd]//F(r+b1 )Sg}
7=0

1 n-r o po by +bs—1, bs—1 7T*(ﬂ’7) " 1 N "
:‘;IH{ZOCAL [/ By e — dﬂd;//So}:—zln{Su/So}.
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(7, (B.y)+c]
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J2=1j3=0

ﬂl@ +bs -1)/175—1e-r‘(ﬂ,y)

zzz ]

G(x,)

S, and S ,v=0,1,---,5 are given by (2.18) and
(2.19).

Appendix 2

Implementation of MCMC method

To use the MCMC method in computing Bayes esti-
mates of a,,7,R(x,),4(x,), at specific value of x,,
we first notice that the general problem is in evaluating
the integral E_ [¢ ] J¢ 6 |x)d6 assuming that

.”¢ | 6’|x)d6 < 0. If we can draw samples

6", 6" from n(t9|x) , then Monte Carlo integra-
tion allows us to estimate this expectation by the average:

~ N .
oy = %Z¢(€(')) . If we generate samples using a Mar-
i=1

kov chain (aperiodic, irreducible and has a stationary
distribution with PDF n(6’|x)) then by the ergodic
theorem ¢N - E, [¢ ] , a8 N —>o. The estimate
¢N is called an ergodzc average. Also for such chains, if
the variance of ¢(6) is finite, the central limit theorem
holds and convergence occurs geometrically. Early itera-
tions 0" o , reflect starting value 0", These
1terat10ns are called burn-in. After the burn-in, we say
that the chain has ‘converged’. The burn-in are omitted
from the ergodic averages to end up with

~ 53 2 9(0")

Methods for determining M are called convergence
diagnostics. For details on the MCMC, see Cowles and
Carlin [52], Gelman and Rubin [53], Roberts et al. [54],
Tierney [55] and Gamerman and Lopes [56].

Associated Bayesian methods based on MCMC tools
and novel model diagnostic tools to perform inference
based on fully specified models are discussed by Sinha et
al [57].

The data set is analyzed by applying the provided
Gibbs sampler and Metropolis-Hasting algorithm, using
WinBugs 1.4 (http://www.mrcbsu.cam.ac.uk/bugs/win-
bugs/contents.shtml), which can be downloaded and
used.

To implement the MCMC method, based on SEL

Copyright © 2011 SciRes.

function, we have

o d4B8dy [T(r+b)S;
[TOA (ﬂsV)_(jz"‘]S)lnG(xo)J " 8 )

Step 0: Take some initial guess of «, 5, y say o ,

ﬁ(o) and }/(0

Step 1: Generate a(l), ,8(1), 7/(1) from the respective

posteriors:

n(a|ﬁ, 7’£) = Ao E c, & n(17)

n—r
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7=0
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0 (B,
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:zoclljo ﬂb; 1e 0 Ve 7dﬂ’
J1=

n-r

Z C/l_[ ]/bs—le—aTo_/l (B.y)-T (ﬂ,y)dy.

Step 2: From i =1 to N — 1, generate:

™ from n(a| Y, 1Y, x),

B from

n(Ala?"x). A from x(rle.p.x).

Step 3: Calculate the Bayes estimators of a, f, y from:
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For a given time x,, the Bayes estimators of the SF

and HRF are computed from

A
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These are the Bayes estimators based on SEL function.
The Bayes estimators using MCMC method based on
LINEX loss function are given by

A ¥ 1 1 N — 1
é, =——In D> e ) |
c N-M S

- 1 1 Y,
=——In e’ L,
Bi=— { 7 }
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