Office of Naval Research Contract Nonr-1866 (16) NR-372-012
 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Grant NGR 22-007-068

 ESTIMATION USING SAMPLED-DATA CONTAINING

 ESTIMATION USING SAMPLED-DATA CONTAINING SEQUENTIALLY CORRELATED NOISE

 SEQUENTIALLY CORRELATED NOISE}

by
A. E. Bryson, Jr. \& L. J. Henrikson

June 1967

Technical Report No. 533
"Reproduction in whole or in part is permitted by the U. S.
Govermment. Diatribution of this document is unlimited. "

Division of Engineering and Applied Physics Harvard University - Cambridge ,Massachusetts

Office of Naval Research
Contract Nonr-1866(16)
NR - 372 - 012

National Aeronautics and Space Administration
Grant NGR -22-007-068

ESTIMATION USING SAMPLED-DATA CONTAINING SEQUENTIALLY CORRELATED NOISE

By
A. E. Bryson, Jr. and L. J. Henrikson

Technical Report No. 533

Reproduction in whole or in part is permitted by the U. S. Government. Distribution of this document is unlimited.

June 1967

The research reported in this document was made possible through support extended the Division of Engineering and Applied Physics, Harvard University, by the Office of Naval Research, under Contract Nonr-1866(16) and by the National Aeronautics and Space Administration under Grant NGR-22-007-068.

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

A. E. Bryson, Jr., and L. J. Henrikson

Division of Engineering and Applied Physics HARVARD UNIVERSITY
Cambridge, Massachusetts

ABSTRACT

This paper presents improved filtering, prediction, and smoothing procedures for multi-stage linear dynamic systems when the measured quantities are linear combinations of the state variables with additive sequentially correlated noise.* The "augmented state" procedure suggested by Kalman** may lead to ill-conditioned computations in constructing the data processing filter. The design procedure described here eliminates these ill-conditioned computations and reduces the dimension of the filter required. The results include explicit relations for prediction, filtering, and smoothing procedures and the associated covariance matrices.

[^0]
I. Introduction

The problem considered is that of estimating the state variables of a multi-stage linear dynamic system based on measurements of linear combinations of the state variables containing additive sequentially correlated noise. A design procedure for the data processing estimation filters is developed which eliminates the ill-conditioned computations of the augmented state approach, and which is of a lower dimension than the augmented state filters.

The present design procedure was suggested by the work of Bryson and Johansen [Ref. 1] on the related problem for continuous linear dynamic systems. Considering the measurement vector as a set of constraints among the augmented state variables, a measurement differencing scheme is used to reduce the dimension of the estimation problem. The estimation theory of Kalman [Ref. 2] is then applied to this reduced problem.
II. The Problem

For simplicity of presentation, a constant coefficient system will be studied. Results for more general systems with time-varying coefficients are presented at the end of the paper. With this restriction, a fairly general system of the type we are considering is described by:

$$
\begin{array}{rll}
\text { State: } & x_{i+1}=\Phi x_{i}+w_{i} & w_{i}:(0, Q) \\
\text { Measurement: } & z_{i}=H x_{i}+\varepsilon_{i} & u_{i}:(0, \bar{Q}) \\
& z:(m \times 1) \tag{1}\\
& & \varepsilon:(m \times 1)
\end{array}
$$

```
Measurement Noise: \(\quad \varepsilon_{i+1}=\psi \varepsilon_{i}+u_{i}\)
\(w_{1}\) and \(u_{i}\) independent with
the assumption that
\(\mathrm{HQH}^{T}+\overline{\mathrm{Q}} \Delta \mathrm{E}\) is nonsingular
```

Here w_{i} and u_{1} are gaussian purely random vector sequences ("white noise") with zero means and covariances Q and \bar{Q}, respectively. The more general case where the dimension of ε_{1} is greater than the dimension of z_{1} (i.c., $z_{1}=H x_{1}+G \varepsilon_{1}$) where there is cross-coupling between X_{1} and ε_{1}, and where some measurements contain purely random noise, is treated in Ref. 4.

The problem is to obtain the maximum likelihood estimate of X_{i} from the measurements up to and including z_{k}. If $k<1$, the estimate is called a prediction; if $k=1$, the estimate is called filtering; and if $k>1$, the estimate is called smoothing. (See the Appendix for a basic estimation problem and solution.)
III. The Augmented State Approach

The method of optimal filtering developed by Kalman [Ref. 2] would be applied to the problem as follows. The state is first augmented to include ε_{1} :

$$
\begin{array}{ll}
\mathrm{x}_{1}^{a} \triangleq\left[\begin{array}{c}
\mathrm{x}_{1} \\
\hdashline \varepsilon_{i}
\end{array}\right] \quad \text { and } \quad H^{a} \triangleq[H: I] \tag{2}\\
\phi^{a}=\left[\begin{array}{c:c}
\Phi & 0 \\
\hdashline 0 & \psi
\end{array}\right] \quad Q^{a}=\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 0 & \bar{Q}
\end{array}\right]
\end{array}
$$

The system description is then:

$$
\text { State: } \quad x_{i+1}^{a}=\left[\begin{array}{c|c}
\Phi & 0 \tag{3}\\
\hdashline 0 & \Psi
\end{array}\right] x_{i}^{a}+\left[\begin{array}{c}
w_{i} \\
\hdashline u_{i}
\end{array}\right]
$$

Measurement: $z_{i}=H^{a} x_{1}^{a}$

For this augmented system the measurements are "perfect," 1.e., contain no noise. Calling P_{i}^{a} the covariance of the best estimate of x_{i}^{a} after
measurement z_{i}, and M_{i}^{a} the covariance of the best estimate of x_{i}^{a} before measurement z_{i} (see Appendix), the relation between P_{i}^{a} and M_{i}^{a} for this case can be written as (c.f. Ref. 3)

$$
\begin{gather*}
P_{i}^{a}=M_{i}^{a}-M_{i}^{a} H^{a T}\left(h_{i}^{a} M_{i}^{a} H^{a T}\right)-1_{H} M_{i}^{a} \tag{4}\\
M_{i+1}^{a}=\Phi_{i}^{a} P_{i}^{a_{\Phi} a T}+Q^{a}
\end{gather*}
$$

Now P_{i}^{a} must be singular, since linear combinations of the components of x_{i}^{a} are known perfectly. In fact, it follows easily from (4) that

$$
\begin{equation*}
H^{a_{P}}{ }_{i}^{a_{H}}{ }^{2 T}=0 \tag{5}
\end{equation*}
$$

Thus, if Φ^{a} is near unity ${ }^{*}$ and Q^{a} is small, the covariance updating may become ill-conditioned (i.e., $M_{i+1}^{2} \rightarrow P_{i}^{a}$).

Another way to look at the estimation problem is to observe that the measurements represent n_{i} linear constraints among the augmented state variables. Thus, although the augmented state vector is of dimension $n+m$, there are only n linearly independent variables in the estimation problem. This implies that the $(n+m)$ by $(n+m)$ matrix P_{i}^{a} is singular (of rank $\leq n$), and also points to the fact that the estimation filter need only be of dimension n, rather than of dimension $n+m$ as it is for this augmented state filter.
IV. The Measurement Differencing Approach

In this section we develop estimation filters of dimension n for

[^1]the system (1). In particular, since ε_{i} is often not of interest, we design estimation filters dealing only with the original state vector X_{i}.

Using the state transition relations for $\mathbf{x}_{\mathbf{i}}$ and $\varepsilon_{i}, \quad z_{i+1}$ can be expressed in terms of $\mathbf{x}_{1}, \varepsilon_{i}$ and the purely random vectors w_{i} and u_{i}. Having done this, it is possible to use the constraint relations (i.e., the measurements) to eliminate ε_{i}. In effect, we determine a linear combination of z_{i+1} and z_{i} (two measurement vectors in sequence) which does not contain ε_{i}. From (1) the proper linear combination is easily seen to be:

$$
\begin{equation*}
\zeta_{i} \triangleq z_{i+1}-\Psi z_{i}=(H \Phi-\Psi H) x_{i}+H w_{i}+u_{i} \tag{6}
\end{equation*}
$$

The "measurement" ζ_{1} now contains only the purely random sequence $u_{i}+H w_{i}$ instead of the sequentially correlated sequence ε_{i}. Since ζ_{i} is based on z_{i+1}, it will prove convenient to state the problem as:

$$
\begin{array}{cl}
\text { State: } & x_{i}=\Phi x_{i-1}+w_{i-1} \\
\text { Measurement: } & \zeta_{i-1}=H^{r} x_{i-1}+u_{i-1}+H_{i-1} \tag{7}\\
\text { with } H^{r}=H \Phi-\Psi H & u_{i-1}:(0, \bar{Q}) \\
\left(\zeta_{i-1}=z_{i}-\Psi z_{i-1}\right) & u_{i-1} \text { and } w_{i-1} \\
\text { independent }
\end{array}
$$

Note that the process noise w_{1-1} and the measurement noise $u_{i-1}+$ H_{i-1} are correlated. The formal problem (7) can be solved with the basic solutions given in the Appendix. However, the fact that ζ_{1-1} is calculated from z_{i} requires further consideration.

IV-1. The Filtering Solution

At first glance it would appear that the problem in the form (7) is immediately solved by application of the basic estimation results in
the Appendix. Thus, based on ζ_{i-1} one would obtain an "estimate" \hat{x}_{i-1} of x_{i-1} and a "prediction" x_{1} of x_{1}. However, ζ_{i-1} is based on z_{i}; this means that the "prediction" of x_{i} based on ζ_{i-1} is, in fact, the best estimate of X_{i} based on z_{i}. Another way of stating this is that the mean of x_{i} conditioned on ζ_{i-1} is the mean of x_{i} conditioned on z_{i}, which is the desired optimal estimate of X_{i}.

By stating the problem in the form (7), the dimension of the problem has been reduced from $n+m$ in form (3) to n, and the basic estimation solution of the Appendix formally applies. However, the formal "filtering" and "prediction" solutions are actually "single stage smoothing" and "filtering" solutions, respectively. In order to distinguish between the formal and the actual estimates, the following notation will be adopted for the actual estimates:

$$
\begin{align*}
\hat{x}_{i / k}= & \text { optimal estimate of } x_{i} \text { given measurements up to and } \\
& \text { including } z_{k} . \tag{8}\\
P_{i / k}= & \text { covariance of } \hat{x}_{i / k}=E\left\{\left(x_{i}-\hat{x}_{i / k}\right)\left(x_{i}-\hat{x}_{i / k}\right)^{T}\right\}
\end{align*}
$$

The $\overline{\mathbf{x}}_{i}, \hat{\mathbf{x}}_{\mathbf{i}}$ notation will be reserved for the formal application of the basic solutions in the Appendix to the problem in the form (7), and results in the following equivalences:

Actual Formal

$$
\begin{align*}
\hat{\mathbf{x}}_{i / i} & =\overline{\mathbf{x}}_{i} \tag{9}\\
\hat{\mathbf{x}}_{i-1 / i} & =\hat{x}_{i-1}
\end{align*}
$$

where \bar{x}_{i} and $\hat{\mathbf{x}}_{1-1}$ are the formal "prediction" and "estimate" based on 5_{i-1}. Note that a single stage smoothing estimate is obtained automatically if it is desired.

Using the equivalences in (9), the filtering solution can be written by the formal application of Eq. (A-2) to the problem in the form (7) as:

$$
\begin{gathered}
\hat{x}_{1-1 / i}=\hat{x}_{1-1 / i-1}+K_{i-1}\left(\zeta_{i-1}-H^{r} \hat{x}_{1-1 / i-1}\right) \\
\hat{x}_{i / 1}=\Phi \hat{x}_{1-1 / i}+D\left(\zeta_{i-1}-H^{r} \hat{x}_{i-1 / 1}\right)
\end{gathered}
$$

where

$$
\begin{align*}
& \mathrm{D}=\mathrm{SR}^{-1} \quad \mathrm{R}=\overline{\mathrm{Q}}+\mathrm{HQH}^{\mathrm{T}} \\
& \mathrm{~S}=\mathrm{Q} \mathrm{H}^{\mathrm{T}} \quad \mathrm{H}^{\mathbf{r}}=\mathrm{H} \Phi-\Psi \mathrm{H} \\
& \zeta_{i-1}=z_{i}-\Psi z_{i-1} \tag{10}\\
& K_{i-1}=M_{i-1} H^{r T}\left(H^{r_{i-1}} H^{r T}+R\right)^{-1} \\
& P_{i-1}=\left(I-K_{i-1} H^{r}\right) M_{i-1}\left(I-K_{i-1} H^{r}\right)^{T}+K_{i-1} R K_{i-1}^{T} \\
& M_{i}=\left(\Phi-D H^{r}\right) P_{i-1}\left(\Phi-D H^{r}\right)^{T}+Q-D R D^{T} \\
& P_{i / i}=M_{i} \\
& P_{1-1 / i}=P_{1-1}
\end{align*}
$$

If the single stage smoothing estimate $\hat{x}_{1-1 / i}$ is not explicitly desired, the filter can be written as:

$$
\begin{equation*}
\hat{x}_{1 / i}=\phi \hat{x}_{1-1 / 1-1}+\left[D+\left(\Phi-D H^{r}\right) x_{i-1}\right]\left(\zeta_{i-1}-H^{r} \hat{x}_{1-1 / i-1}\right) \tag{11}
\end{equation*}
$$

IV-1.1. Starting Procedure
After the first measurement there is not yet sufficient information to calculate ζ_{1}, so the augmented state $x_{1}^{a}=\left[\begin{array}{l}x_{1} \\ - \\ \varepsilon_{1}\end{array}\right]$ approach must be used to obtain the best estimate of x_{1}^{a} and the associated covariance based on the "perfect measurement" $z_{1}=H^{a} x_{i}^{a}$ and single stage estimation theory.* After the second measurement ζ_{1} can be calculated, and the filter (10) can be used with the estimate of x_{1} from $\hat{\mathbf{x}}_{1}^{a}$ and its covariance as the "a priori" starting statistics.

IV-1.2. Estimate of ε_{i}
Since $z_{i}=H x_{i}+\varepsilon_{i}$, an estimate of ε_{i} can be obtained any time after the first measurement by:

$$
\begin{align*}
& \hat{\varepsilon}_{i / i}=z_{i}-H \hat{x}_{i / i} \\
& \operatorname{cov}\left\{\hat{\varepsilon}_{i / i}\right\}=H P_{i / i} H^{T} \tag{12}
\end{align*}
$$

The reduced filter (10) requires the storage of one measurement vector (z_{i-1} is needed in addition to z_{i} to calculate \boldsymbol{r}_{i-1}), but it has two distinct advantages over the augmented state filter. First, the dimension is n instead of $n+m$. Second, the potentially ill-conditioned inversion $\left(H^{a} M_{i}^{a} H^{a T}\right)^{-1}$ is eliminated.

[^2]
IV-2. The Prediction Solution

The prediction of x_{i+1} given the estimate $\hat{x}_{i / i}$ follows immediately from the state equation

$$
\begin{equation*}
x_{i+1}=\Phi x_{i}+w_{i} \tag{13}
\end{equation*}
$$

and from single stage estimation theory as

$$
\begin{gather*}
\hat{\mathbf{x}}_{i+1 / i}=\phi \hat{\mathbf{x}}_{i / i} \tag{14}\\
P_{i+1 / i}=\Phi P_{i / i} \Phi^{T}+Q
\end{gather*}
$$

Similarly, if prediction of ${ }^{\varepsilon}{ }_{i+1}$ given $\hat{\varepsilon}_{i / i}$ is desired, use of

$$
\begin{equation*}
\varepsilon_{i+1}=\psi \varepsilon_{i}+u_{i} \tag{15}
\end{equation*}
$$

and (12) yields

$$
\begin{align*}
\hat{\varepsilon}_{i+1} & =\Psi \hat{\varepsilon}_{i} \tag{16}\\
\operatorname{cov}\left\{\hat{\varepsilon}_{i+1 / 1}\right\} & =\Psi H P_{i / 1} H^{T} \Psi^{T}+\overline{0}
\end{align*}
$$

IV-3. The Smoothing Solution
The smoothing solution also follows from the formulation (7) and the basic solution, Eq. (A-2), again noting that one must be careful of the nomenclature. When smoothing backwards from the $N^{\text {th }}$ stage, the formal solution smooths backwards from $\zeta_{\mathrm{N}-1}$. In other words, the smoothing estimate at the $(N-1)^{s t}$ stage has already been obtained from the "filtering" estimate (10). In terms of the formal smoothed estimate, $\hat{x}\left(1 / \zeta_{N-1}\right)$, obtained from applying Eq. (A-2) to the formulation (7), the actual estimate is

$$
\begin{equation*}
\hat{x}_{i / N}=\hat{x}\left(i / \zeta_{N-1}\right) \tag{17}
\end{equation*}
$$

With these observations, the smoothing solution for x_{i} is

$$
\begin{gather*}
\hat{x}_{i / N}=\hat{x}_{1 / i+1}-C_{i}\left(\hat{x}_{i+1 / i+1}-\hat{x}_{i+1 / N}\right) ; \hat{x}_{N-1 / N} \text { given } \\
P_{i / N}=P_{i / i+1}-C_{i}\left(P_{i+1 / i+1}-P_{i+1 / N}\right) C_{i}^{T} ; P_{N-1 / N} \text { given } \tag{18}
\end{gather*}
$$

where

If a smoothed estimate of ε_{i} is desired, it is given directly from the constraint relations by

$$
\begin{align*}
& \hat{\varepsilon}_{i / N}=z_{i}-H \hat{x}_{i / N} \\
& \operatorname{cov}\left\{\hat{\varepsilon}_{i / N}\right\}=H_{i / N} H^{T} \tag{19}
\end{align*}
$$

IV-3. Generalization to Systems with Time Varying Coefficients

A fairly general system of this kind can be described by

$$
\begin{array}{rll}
\text { State: } & x_{i+1}=\Phi_{i} x_{i}+w_{i} & w_{i}:\left(0, Q_{i}\right) \\
& x:(n \times 1) \\
& z:(m \times 1) \tag{20}\\
\text { Measurement: } & z_{i}=H_{i} x_{i}+\varepsilon_{i} & u_{i}:\left(0, \bar{Q}_{i}\right) \\
& \varepsilon:(m \times 1)
\end{array}
$$

Measurement Noise: $\varepsilon_{i+1}=\Psi_{i} \varepsilon_{i}+u_{i} \quad w_{i}$ and u_{i} independent

As mentioned in Section II, further generalizations can be found in Ref. 4. The technique of determining filtering, prediction, and smoothing solutions for (20) is the same as that used above.

In (1) it was assumed that R was nonsingular. In (20) the corresponding quantity R_{i} is the covariance of $u_{i}+H_{i+1} W_{i}$. If R_{i} is nonsingular, the elimination of the ill-conditioning in constructing the filters is guaranteed. However, even if R_{1} is singular, there will be
cases where there is no ill-conditioning and the reduction in dimension of the data processing filters is desirable. For this reason the basic solution, Eq. (A-3) is used to obtain the solution to (20) as it is valid independent of the rank of R_{i}. (If R_{i} is singular, a further reduction in the dimension of the filters is possible; see Ref. 4.) In fact, given the reduced problem (7), any set of filtering equations may be used, but the results, which are based on ζ_{i-1}, must be "interpreted" in terms of z_{i}. Using Eq. (A-3), the estimation filters for (20) are:

Filtering $\quad \hat{x}_{1-1 / 1}=\hat{x}_{i-1 / 1-1}+K_{i-1}\left(\zeta_{1-1}-H_{i-1}^{r} \hat{x}_{i-1 / i-1}\right)$

$$
\hat{x}_{i / 1}=\Phi_{i-1} \hat{x}_{i-1 / i}+S_{i-1}\left(H_{i-1}^{r} M_{i-1} H_{i-1}^{r T}+R_{i-1}\right)^{-1}\left(\zeta_{i-1}-H_{i-1}^{r} \hat{x}_{i-1 / i-1}\right)
$$

Prediction $\quad \hat{x}_{i+1 / i}=\Phi_{i} \hat{x}_{i / i}$
Smoothing $\quad \hat{\mathbf{x}}_{i / N}=\hat{x}_{i / i+1}-C_{i}\left(\hat{x}_{i+1 / i+1}^{-\hat{x}_{i+1 / N}}\right) ; \quad \hat{x}_{N-1 / N}$ given where $\quad S_{1-1}=Q_{1-1} H_{1}^{T}$

$$
\begin{equation*}
R_{i-1}=\bar{Q}_{i-1}+H_{i} Q_{i-1} H_{i}^{T} \tag{21}
\end{equation*}
$$

$$
H_{i-1}^{r}=H_{i} \Phi_{i-1}-\Psi_{i-1} H_{i-1}
$$

$$
\zeta_{i-1}=z_{i}-\Psi_{i-1} z_{i-1}
$$

$$
K_{i-1}=M_{i-1} H_{i-1}^{r T}\left(H_{i-1}^{r} M_{i-1} H_{i-1}^{r T}+R_{i-1}\right)^{-1}
$$

$$
C_{i}=\left(P_{i / i+1} \Phi_{i}^{T}-K_{i} S_{i}^{T}\right) P_{i+1 / i+1}^{-1}
$$

$$
P_{i-1 / i}=P_{i-1}=\left(I-K_{i-1} H_{i-1}^{r}\right) M_{i-1}\left(I-K_{i-i} H_{i-1}^{r}\right)^{T}+K_{i-1} R_{i-1} K_{i-1}^{T}
$$

$$
P_{i / i}=M_{i}=\Phi_{i-1} P_{i-1} \Phi_{i-1}^{T}+Q_{i-1}-S_{i-1}\left(H_{i-1}^{r} M_{i-1} H_{i-1}^{r T}+R_{i-1}\right)^{-1} S_{i-1}^{T}-
$$

$$
-\Phi_{i-1} K_{i-1} S_{i-1}^{T}-S_{1-1} K_{i-1}^{T} \Phi_{i-1}^{T}
$$

$$
P_{i+1 / i}=\Phi_{i} P_{i / i} \Phi_{i}^{T}+Q_{i}
$$

$$
P_{1 / N}=P_{i / i+1}-C_{i}\left(P_{i+1 / i+1}-P_{i+1 / N}\right) C_{i}^{T} \quad ; \quad P_{N-1 / N} \text { given }
$$

Note that the starting procedure using the augmented state must be used as described in Section IV-1.1.

V. Summary and Conclusions

This paper has considered the estimation problem for multi-stage linear dynamic systems based on measurements of linear combinations of the state variables with additive sequentially correlated noise. By using a weighted first difference of the present and previous measurements, a filter, predictor, and smoother have been developed of lower dimension than those obtained from the augmented state approach. Further, the potential ill-conditioning of the augmented state approach is eliminated (R_{i} nonsingular) or reduced (R_{i} singular).

The results include explicit relations for prediction, filtering, and smoothing procedures and the associated covariances. These are summarized in Eq. (21). These improved methods should be useful in orbit determination, guidance, control, navigation, and flight testing.

APPENDIX

Basic Estimation Solution

The results of basic estimation theory are summarized here for use in this paper (see Refs. 2, 3, and 4).

The general problem may be stated as:

$$
\text { State: } x_{i+1}=\Phi_{i} x_{i}+w_{i} \quad w_{i}:\left(\bar{w}_{i}, Q_{i}\right) \quad x:(n \times 1)
$$

Measurement: $\quad z_{i}=H_{i} x_{i}+v_{i} \quad v_{i}:\left(0, R_{i}\right) \quad z:(m \times 1)$

$$
E\left\{w_{i} v_{j}^{T}\right\}=S_{i} \delta_{i j}
$$

where w_{i} and v_{i} are gaussian purely random vector sequences. $\delta_{i j}$ is the Kronecker delta function.

For the estimation solution the following definitions are used:

$$
\begin{aligned}
& \bar{x}_{i}=\text { estimate of } x_{i} \text { using measurements up to } z_{i-1} \begin{array}{c}
\text { (single-stage } \\
\text { prediction) }
\end{array} \\
& \hat{x}_{i}=\text { estimate of } x_{i} \text { using measurements up to } z_{i} \text { (filtering) } \\
& \hat{x}_{i}\left(i / z_{N}\right)=\text { estimate of } x_{i} \text { using measurements up to (smoothing) } \\
& \left.z_{N} \text { (N }>i\right) \\
& M_{i}=\text { covariance of } \bar{x}_{i}=E\left\{\left(x_{i}-\bar{x}_{i}\right)\left(x_{i}-\bar{x}_{i}\right)^{T}\right\} \\
& P_{i}=\text { covariance of } \hat{x}_{i}=E\left\{\left(x_{i}-\hat{x}_{i}\right)\left(x_{i}-\hat{x}_{i}\right)^{T}\right\} \\
& P(i / N)=\text { covariance of } \hat{x}\left(i / z_{N}\right)=E\left\{\left[x_{i}-\hat{x}\left(i / z_{N}\right)\right]\left[x_{i}-\hat{x}\left(i / z_{N}\right)\right]^{T}\right\} \\
& \text { With these definitions the estimation solution for the problem }
\end{aligned}
$$

Form _1 (R_{i} non-singular)

$$
\begin{align*}
& \hat{x}_{i}=\bar{x}_{i}+K_{i}\left(z_{i}-H_{i} \bar{x}_{i}\right) \\
& \bar{x}_{i+1}=\Phi_{i} \hat{x}_{i}+D_{i}\left(z_{i}-H_{i} \hat{x}_{i}\right)+\bar{w}_{i} \\
& \hat{x}\left(i / z_{N}\right)=\hat{x}_{i}-C_{i}\left(\bar{x}_{i+1}-\hat{x}_{i+1 / N}\right) \quad ; \quad \hat{x}_{\left(N / z_{N}\right)}=\hat{x}_{N} \\
& K_{i}=M_{i} H_{i}^{T}\left(H_{i} M_{i} H_{i}^{T}+R_{i}\right)^{-1} \\
& C_{i}=P_{i}\left(\Phi_{i}-D_{i} H_{i}\right)^{T} M_{i+1}^{-1} \tag{A-2}\\
& D_{i}=S_{i} R_{i}^{-1} \\
& D_{i} R_{i} D_{i}^{T}=S_{i} R_{i}^{-1} S_{i}^{T} \\
& P_{i}=\left(I-K_{i} H_{i}\right) M_{i}\left(I-K_{i} H_{i}\right)^{T}+K_{i} R_{i} K_{i}^{T} \\
& M_{i+1}=\left(\Phi_{i}-D_{i} H_{i}\right) P_{i}\left(\Phi_{i}-D_{i} H_{i}\right)^{T}+Q_{i}-D_{i} R_{i} D_{i}^{T} \\
& P(i / N)=P_{i}-C_{i}\left(M_{i+1}-P_{i+1 / N}\right) C_{i}^{T} \quad ; \quad P_{N / N}=P_{N}
\end{align*}
$$

Form 2 (R_{i} singular)

$$
\begin{gather*}
\hat{x}_{i}=\bar{x}_{i}+K_{i}\left(z_{i}-H_{i} \bar{x}_{i}\right) \\
\bar{x}_{i+1}=\Phi \hat{x}_{i}+S_{i}\left(H_{i} M_{i} H_{i}^{T}+R_{i}\right)^{-1}\left(z_{i}-H_{i} \bar{x}_{i}\right)+\bar{w}_{i} \\
\hat{x}\left(i / z_{N}\right)=\hat{x}_{i}-C_{i}\left(\bar{x}_{i+1}-\hat{x}_{i+1 / N}\right) ; \hat{x}_{\left(N / z_{N}\right)}=\hat{x}_{N} \\
K_{i}=M_{i} H_{i}^{T}\left(H_{i} M_{i} H_{i}^{T}+R_{i}\right)^{-1} \tag{A-3}\\
C=\left(P_{i} \Phi_{i}^{T}-K_{i} S_{i}^{T}\right) M_{i+1}^{-1} \\
M_{i+1}=\Phi_{i} P_{i} \Phi_{i}^{T}+Q_{i}-S_{i}\left(H_{i} M_{i} H_{i}^{T}+R_{i}\right)^{-1} S_{i}^{T}-\Phi_{i} K_{i} S_{i}^{T}-S_{i} K_{i}^{T} \Phi_{i}^{T} \\
P(i / N)=P_{i}-C_{i}\left(M_{i+1}-P_{i+1 / N}\right) C_{i}^{T} ; \quad ; \quad P_{N / N}=P_{N}
\end{gather*}
$$

It is assumed that the a prior statistics M_{1} and \bar{x}_{1} are given.

REFERENCES

[1] Bryson, A. E., Jr., and Johansen, D. E., "Linear Filtering for Time-Varying Systems Using Measurements Containing Colored Noise," IEEE Transactions, Vol. AC-10, pp. 4-10, January 1965.
[2] Kalman, R. E., "New Methods in Wiener Filtering Theory," Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability, John Wiley and Sons, J. L. Bogdanoff and F. Kozin, Ed., pp. 270-388, 1963
[3] Bryson, A. E., Jr., and Y. C. Ho, Optimization, Estimation, and Control, Blaisdell, to be published.
[4] Henrikson, L. J., Ph.D. Thesis, Division of Engineering and Applied Physics, Harvard University, 1967.
为

Security Classification
DOCUMENT CONTROL DATA - R \& D
Security classification of title, body of abstract and indexing annotation must be entered when the overall report is (lassified)

1. ORIGINATINGACTIVITY (Corporate author)
Division of Engineering and Applied Physics Harvard University Cambridge, Massachusetts

4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)

Interim technical report
5. AUTHOR(S) (First name, middle initial, last name)
A. E. Bryson, Jr. and L. J. Henrikson

6. REPORT DATE	7a. TOTAL NO. OFPAGES 19	$\mathrm{Tb.} \mathrm{NO.} \mathrm{OF} \mathrm{REFS}_{4}$
Ba. CONTRACTOR GRANT NO Nonr-1866(16) \& NASA Grant NGR-22- b. project no. 007-068	9a. ORIGINATOR'S REPORT NUMEER(S) Technical Report No. 533	
d.	9b. OTHER REPORT NOIS) (his report)	her numbers that may be assigned

Reproduction in whole or in part is permitted by the U. S.
Government. Distribution of this document is unlimited.
11. SUPPLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

This paper presents improved filtering, prediction, and smoothing procedures for multi-stage linear dynamic systems when the measured quantities are linear combinations of the state variables with additive sequentially correlated noise. The "augmented state" procedure suggested by Kalman may lead to ill-conditioned computations in constructing the data processing filter. The design procedure described here eliminates these ill-conditioned computations and reduces the dimension of the filter required. The results include explicit relations for prediction, filtering, and smoothing procedures and the associated covariance matrices.

14
estimation
filtering
sampled-data
sequentially correlated noise in measurements
smoothing

[^0]: * Other names for sequentially correlated noise are "colored noise," "correlated noise" and "noise with serial correlation."
 ** Kalman, R. E., "New Methods in Wiener Filtering Theory," Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability, John Wiley and Sons, J. L. Bogdanoff and F. Kozin, Ed., pp. 270-388, 1963.

[^1]: * For example, this could be the case of sampling a continuous system at instants of time close together relative to the time constants of the system.

[^2]: Note the analogy with the continuous linear dynamic system problem [Ref. 1] where a "starting procedure" is also required. In fact, the present problem helps to understand that requirement.

