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Abstract

We propose a solution to the measurement error problem that plagues the estima-

tion of the relation between the expected return of the stock market and its conditional

variance due to the latency of these conditional moments. We use intra-period re-

turns to construct a nonparametric proxy for the latent conditional variance in the

first step which is subsequently used as an input in the second step to estimate the

parameters characterizing the risk-return tradeoff via a GMM approach. We propose

a bias-correction to the standard GMM estimator derived under a double asymptotic

framework, wherein the number of intra-period returns, N , as well as the number of

low frequency time periods, T , simultaneously go to infinity. Simulation exercises show

that the bias-correction is particularly relevant for small values of N which is the case in

empirically realistic scenarios. The methodology lends itself to additional applications,

such as the empirical evaluation of factor models, wherein the factor betas may be es-

timated using intra-period returns and the unexplained returns or alphas subsequently

recovered at lower frequencies.
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I Introduction

For a number of central questions in financial economics, the use of mixed data frequencies

enables more effective utilization of all available data, thereby offering the promise of sharper

inference. A prominent example is the estimation of the relation between the expected

excess return on the stock market and its conditional variance (hereafter referred to as the

risk-return tradeoff). This risk-return relation is typically estimated at monthly, quarterly,

annual, or even lower frequencies. However, a critical input to this estimation problem,

namely the (latent) conditional variance, can be estimated more efficiently using higher

frequency intra-period (e.g., daily) data. Therefore, using mixed data frequencies, wherein

the market variance at lower frequencies is estimated using higher frequency returns and

the risk-return relation at lower frequencies is subsequently recovered using the estimated

market variance, seems attractive. A second example involves the empirical evaluation of

factor models for the cross section of asset returns. Just as with the risk-return tradeoff, the

performance evaluation of the underlying risk factors in factor models are often conducted at

monthly or lower frequencies. Therefore, the factor betas for a chosen set of test assets can

be first computed using intra-period returns, and the alphas generated by the factor model

can then be obtained using these estimated betas as inputs.

The goal of this paper is to develop an asymptotic theory for such inference methods

involving mixed data frequencies. A large literature in financial econometrics has studied the

limiting behavior of variance (and covariance) estimators using high frequency data. These

studies rely on so-called infill asymptotics, whereby the number of intra-period observations

within a finite time horizon is assumed to grow. Our approach, on the other hand, relies

on a double asymptotic framework, where both the number of intra period observations (n)

within a lower frequency time period as well as the number of lower frequency periods (T )

are simultaneously assumed to be large. Moreover, in many empirically realistic scenarios,

N may be small relative to T . Examples include recovering the risk-return relation at

the monthly frequency over the entire post war sample 1947–2018: in this case N = 22

(corresponding to daily data within a month) and T = 864 months; or the evaluation of

factor models over long sample periods. Higher frequency than daily data are not available

for such long sample periods, yet assessing the performance of models over long time periods

is often considered crucial to help shed light on their relative strengths and weaknesses. In

such scenarios, the estimation errors in the estimated market variance or the factor betas

may be non-trivial. Our methodology proposes a bias-correction to improve the performance

of the estimators in such cases.

We illustrate our methodology in the context of recovering the risk-return tradeoff on

the aggregate equity market portfolio. The risk-return relation is an important ingredient
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in optimal portfolio choice, and is central to the development of theoretical asset-pricing

models aimed at explaining a host of observed stock market patterns. Despite its central

importance to both theory and practice, the empirical evidence on the risk-return relation is

mixed and inconclusive. Bollerslev, Engle, and Wooldridge (1988), Harvey (1989), Harrison

and Zhang (1999), Ghysels, Santa-Clara, and Valkanov (2005), Lundblad (2005), Ludvigson

and Ng (2007), and Pastor, Sinha, and Swaminathan (2008) find a positive risk-return re-

lation, while Campbell (1987), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994),

Harvey (2001), and Brandt and Kang (2004) find a negative relation. Still others find mixed

and inconclusive evidence like French, Schwert, and Stambaugh (1987), Nelson (1991), and

Campbell and Hentschel (1992).1

The main difficulty in estimating the risk-return relation is that neither the conditional

expected return nor the conditional variance of the market is directly observable. The con-

flicting findings of the above studies are mostly the result of differences in the approaches

to modeling the conditional mean and variance. Some studies have relied on parametric and

semi-parametric ARCH or stochastic volatility models that impose a high degree of structure

on the return generating process, about which there is little direct empirical evidence. The

results have been found to be very sensitive to the particular model specification. Other stud-

ies have typically measured the conditional expectations underlying the conditional mean

and conditional variance as projections onto predetermined conditioning variables. Practical

constraints, such as choosing among a few conditioning variables, introduce an element of

arbitrariness into the econometric modeling of expectations and can lead to omitted infor-

mation estimation bias.

More recently, researchers have proposed a nonparametric proxy for the latent expost

variance, namely the integrated variance, that is void of any specific functional form assump-

tions about the stochastic process generating returns.2 The integrated variance is unbiased

for the latent conditional variance and, although latent, it may be consistently estimated

using the realized variance that is computed as the sum of squares of high-frequency intra-

period returns. Proxying the latent integrated variance with the realized variance has been

used in French, Schwert, and Stambaugh (1987) and Bandi and Perron (2008) in estimating

the risk-return relation. But these studies have ignored the measurement error that arises

because of the use of realized variance as a proxy for the integrated variance. The goal of the

current paper is to offer an explicit solution to the measurement error problem, that is likely

1Bandi and Perron (2008) find that the relation is difficult to detect at short horizons, but becomes strong
at longer horizons of six to ten years.

2For an excellent survey of this extensive literature, see Andersen, Bollerslev, and Diebold (2002). See also
Barndorff-Nielsen and Shepherd (2002), Andersen, Bollerslev, Diebold, and Labys (2003), and Ait-Sahalia
and Jacod (2014).
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to be particularly relevant when the number of intra period observations used to compute

the realized variance is modest.

Our asymptotic framework requires n → ∞ and T → ∞, where n denotes the number of

high-frequency intra-period returns used to compute the realized variance in every period,

and T denotes the number of low-frequency time-periods used to estimate the risk-return

parameters in a general GMM setting. We derive the limiting distribution of the estimated

parameters under this double asymptotic framework. We find that under fairly strong con-

ditions on n and T , the estimates are
√
T -consistent and have the standard distribution as

when there is no measurement-error. However, if the above condition is not satisfied, there

is an asymptotic bias that would invalidate this approximation. In that case, we find that

under weaker conditions on n and T , a bias-corrected estimator has the standard limiting

distribution. This improvement is particularly relevant in the empirical case we examine

where n is quite modest (e.g., daily returns within a month or quarter).

The above is an important methodological contribution to the extant literature on high-

frequency volatility estimation. Most work has currently been about just estimating that

quantity itself and using it to compare discrete time models in settings where the noise

is small. Our approach is concerned with small sample issues when using estimated real-

ized volatility as regressors in the estimation of parameters associated with the unobserved

quadratic variation. This involves a useful extension of the existing asymptotic results for

realized volatility3 concerned with the uniformity of the estimation error. We establish the

properties of the parameter estimates and propose a bias correction in the case where the

estimation error is large.

Our paper is related to Bollerslev and Zhou (2002) who propose estimating the parameters

of stochastic volatility models by matching the sample moments of realized volatility to the

corresponding population moments of integrated volatility using a GMM approach. Corradi

and Distaso (2006) extend Bollerslev and Zhou (2002) by providing sufficient conditions

under which the measurement error in the realized variance can be ignored asymptotically,

in a double asymptotic framework, that simultaneously allows n and T to approach infinity.

Todorov (2009) further extends the framework to allow for infinite activity price jumps that

can exhibit arbitrary time-variation. The analyses in these papers differs from ours in two

notable respects. First, they consider precise functional-form specifications for the stochastic

volatility process that depend on a vector of unknown parameters to be estimated, while our

approach does not take a stance on the specification of the volatility process. Second, their

GMM estimation strategy is formally justified under the assumption that the number of

high frequency intra period observations, n, used to estimate the latent integrated variance

3See Barndorff-Nielsen and Shepherd (2002).
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converges to infinity faster than the number of lower frequency observations, T , used to

calculate the sample moments of the variance. Such an assumption is unrealistic in our

setting, where the number of (daily) returns used to compute the (e.g., monthly, quarterly)

realized variance is, in fact, substantially smaller than the number of data points used to

compute the sample moments underlying the risk-return relation.

Bollerslev, Patton, and Quaedvlieg (2016) also recognize the role of measurement error in

the realized variance and point out that is biases the estimated autoregressive coefficient in

forecasting regressions for the variance. They recommend allowing for a time-varying autore-

gressive coefficient that takes into account the temporal variation in the measurement error

based on the asymptotic distribution theory for realized variance. Our analysis differs from

this study in that it focuses on the risk-return relation and provides an explicit expression

for the bias in the estimated coefficient of the risk-return relation that arises because of the

time-varying measurement error in the realized variance under fairly general assumptions,

along with a feasible estimator for the bias.

The uniformity of the estimation error in the realized variance necessary in our double

asymptotic framework is also invoked in Kanay and Kristensen (2016) who focus on a two-

step approach to estimating stochastic volatility models, whereby a spot volatility estimated

in step one is plugged into a given existing estimation method for a fully observed diffusion

model in step two. The uniformity of the approximation error is also invoked in Li and

Patton (2015) to evaluate the forecast performance for a board set of latent risk measures,

such as volatility, beta, correlation, or jump variation. Our paper goes further to show how

this result can be used to obtain a bias-corrected estimator for the risk-return relation.

In the empirical analysis, we focus on the risk-return relation at the monthly frequency.

We use n daily returns of the CRSP value-weighted stock market index to obtain monthly

estimates of the realized variance. We then estimate the parameters of the risk-return relation

using the GMM approach with T monthly observations on the realized excess market returns

and realized variance. We find a negative relation between the mean and the variance that is

statistically significant over the entire post war sample 1947− 2018. Moreover, we find that

the bias-correction that we propose is instrumental in delivering the strongly statistically

significant results. This finding is robust to the choice of instruments. Upon inclusion of the

lagged variance and the lagged market return as additional regressors, we obtain a positive

relation between the conditional mean and variance of the market return. This is consistent

with the findings in Lettau and Ludvigson ( 2010) who highlight the difference between

the unconditional correlation between the expected market return and its variance and the

conditional (on the lagged return and variance) correlation.

The remainder of the paper is organized as follows. The econometric framework and
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estimation methodology are described in Section II. Section III derives the asymptotic prop-

erties of the GMM estimator in the presence of measurement error. In Section IV, we perform

Monte-Carlo simulations to examine the finite-sample performance of the estimator. Section

V presents the empirical results and Section VI concludes with possible directions for future

research. The Appendix contains the proofs of our main results.

II Estimation Methodology

II.1 Model and Hypothesis

Our econometric framework focuses on the empirical risk-return relation given by the fol-

lowing reduced-form equation:

E (rm,t − rf,t|Ft−1) = b0 + b1 (xt−1) var (rm,t|Ft−1) + b
⊺

2Zt−1, (1)

where rm,t and rf,t are the continuously compounded returns on the stock market and the risk

free rate, respectively, over [t−1, t], and Ft−1 denotes all information observed at time t−1.

Our empirical specification is very general and nests most of the specifications considered

in the literature. For example, the risk-return tradeoff exhibits substantial time-variation

with the business cycle as well as with several macroeconomic indicators (see, e.g., Harvey

(2001), Lettau and Ludvigson (2010)). In order to accommodate this feature of the data, the

coefficient b1 of the conditional variance is allowed to vary over time. For example, the time

variation in b1 could be modeled as a linear function of a chosen set of variables, in which

case b1 (xt−1) = b
⊺

1xt−1. Also, Scruggs (1998) and Guo and Whitelaw (2006) advocate the

inclusion of a set of predetermined conditioning variables on the right hand side of the above

equation in order to accurately uncover the risk-return relation. In particular, Whitelaw

(1994), Brandt and Kang (2004), and Ludvigson and Ng (2007) show that it is important

to include lags of the conditional mean and conditional variance as additional right hand

side variables. Our empirical specification accommodates these findings by including a set

of Ft−1-measurable variables Zt−1 on the right hand side of the above equation.

The risk-return relation in Equation (1) implies the following conditional moment restric-

tion:

E
[
rm,t − rf,t − b0 − b1 (xt−1) var (rm,t|Ft−1)− b

⊺

2Zt−1|Ft−1

]
= 0. (2)

The parameters in the above moment restriction can be estimated using a standard GMM

approach with a long time series of observations on rm,t, rf,t, Zt−1, xt−1, and var (rm,t|Ft−1).

Note that Zt−1 and xt−1 may include lagged values of the conditional variance, and the
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function b1 (xt−1) may be potentially nonlinear. The main difficulty in the estimation process

arises because of the unobservability of the conditional variance, var (rm,t|Ft−1), and its lags.

Our strategy is to replace this quantity by a feasible approximately unbiased nonparametric

estimator computed from higher frequency data. We next describe the framework in which

this procedure makes sense.

We describe here our general approach to estimating volatility from higher frequency

data and how it fits in with the low frequency testing strategy. We suppose that we observe

high frequency returns rtj , j = 1, . . . , nt for each t (where t = 1, . . . , T ). We suppose that

they are generated by the following (sequence of) discrete-time model(s)

rtj = n−1
t µtj + n

−1/2
t σtjηtj , (3)

where ηtj is stationary and ergodic and, furthermore, ηtj and η2tj −1 are martingale difference

sequences with respect to Ftj−1
, where Ftj−1

contains all information upto time tj−1, including

µtj , σtj . The stochastic processes {µtj , σtj}nt,T
j=1,t=1 are not assumed to be independent of the

process {ηtj}nt,T
j=1,t=1, i.e., we allow for leverage and volatility feedback effects in intra period

returns. In particular, ηtj can affect σsj+k
for s = t, k > 1 and s > t , k > 0. We do not

assume Gaussianity for the innovation process, so that the conditional distribution of returns

can be heavy tailed. This framework is broadly consistent with observed returns being the

discretized approximation to the continuously compounded returns r∗tj = p∗tj − p∗tj−1
, where

the true underlying efficient log-price p∗ follows the continuous time diffusion

dp∗t = µ(p∗t )dt+ σ(p∗t )dWt, (4)

for functions µ (.), σ (.), and Brownian motion W. Clearly, if µ (.) ≡ 0 and σ(.) = σ (a con-

stant), we have p∗t = σWt, so that r∗tj are independent and normally distributed and rtj = r∗tj
so that ηtj ∼ N(0, 1) and are i.i.d. More generally, one can show (under some conditions)

that, with probability one, rtj = r∗tj +o(n−ρ
t ) for some ρ > 1 (Euler, Milstein approximations;

see, e.g., Gonçalves and Meddahi (2009), Mykland and Zhang (2009)).4 The process (3) is

consistent with a stochastic volatility process as in Gonçalves and Meddahi (2009, section

4): in their case, high frequency returns are mutually independent but heterogeneous, con-

ditioning on the drift and volatility functions. Our process can be also seen as an example of

the discrete time approximations developed in Nelson (1990) where we replaced his generic

sequence h by the specific one n−1
t . For example, compare (3) with his expression 2.22 (with

4We will use the continuous time theory to justify some of our methodology. We recognize that the
approximation we make here in principle could affect our results, but remark that the more complicated
higher order approximations to the discrete time process may not necessarily work better in practice.
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c = 0) hr(k−1)h:kh =h σkh ×h Zkh, where hZkh ∼ N(0, h) and hσ
2
(k+1)h has some particular dy-

namic specification. Under appropriate conditions, special cases of our process can be shown

to converge to a stochastic volatility process (and our estimator below would converge to the

quadratic variation of that limiting diffusion process).

We do not explicitly allow for jumps in our stochastic process: we are treating large

observations through the traditional discrete time lens, whereby a heavy-tailed distribution

for ηtj would lead frequently to large values of rtj , that captures some aspects of the contin-

uous time notion of a jump. We also do not explicitly allow for microstructure noise in the

observed prices since high frequency observations refer to daily data in our application – a

frequency at which microstructure effects are arguably negligible.

We next define the ex-post measure of return variation for period t in this framework.

We assume that the following probability limit exists uniformly in t:

σ2
t ≡ p lim

nt→∞
σ2
t , where σ2

t =
1

nt

nt∑

j=1

σ2
tj
, (5)

where σ2
t can be stochastic, and that the convergence occurs so fast that the error term from

replacing σ2
t by σ2

t is negligible. If the underlying model were the diffusion process (4), then

σ2
t =

∫ 1

0
σ2(t− 1 + s)ds is the integrated variance and the approximation in Equation (5) is

indeed good.

The integrated variance is approximately an (ex-ante) unbiased estimator for the condi-

tional variance (see, e.g., Protter (2004)), so that

var (rm,t|Ft−1) ≈ E[σ2
t |Ft−1],

with strict equality if µ(.) ≡ 0 in Equation (4). The unbiasedness property of the integrated

variance gives us the following infeasible moment restriction:

E
[
rm,t − rf,t − b0 − b1 (xt−1) σ

2
t − b

⊺

2Zt−1|Ft−1

]
= 0. (6)

We will use this moment condition as the basis for estimation.

II.2 Estimation Procedure

We concentrate on the following realized variance estimator computed from the high fre-

quency intra period returns:

σ̂2
t =

nt∑

j=1

r2tj . (7)
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In the diffusion case, the theory of quadratic variation implies that the realized variance

provides a consistent nonparametric measure of the integrated variance (see, e.g., Andersen

et al. (2003) and Barndorff-Nielsen and Shephard (2002)): p limnt→∞ σ̂2
t = σ2

t , where the

convergence is uniform in probability (over t = 1, . . . , T ). Also, Jacod (1994), Jacod and

Protter (1998), and Barndorff-Nielsen and Shephard (2002) develop the following asymptotic

distribution theory for realized variance as an estimator of the integrated variance: n
1/2
t (σ̂2

t −
σ2
t ) ⇒

√
2(
∫ 1

0
σ2(t− 1 + s)dB(t− 1 + s)) as nt → ∞, where B is a Brownian motion that is

independent of W in Equation (4) and the convergence is in law stable as a process. This

result implies that n
1/2
t (σ̂2

t − σ2
t ) =⇒ MN(0, 2

∫ 1

0
σ4(t − 1 + s)ds), where MN denotes a

mixed Gaussian distribution. Barndorff-Nielsen and Shephard (2002) showed that the above

result can be used in practice as the integrated quarticity IQt ≡
∫ 1

0
σ4(t − 1 + s)ds can be

consistently estimated using (1/3)RQt, where

RQt = nt

nt∑

j=1

r4tj .

It further follows that (1.5RQ−1
t nt)

1/2(σ̂2
t − σ2

t ) =⇒ N(0, 1). This is a nonparametric result

as it does not require the specification of the form of the drift, µ(.), or the diffusion, σ(.),

in Equation (4). The integrated quarticity plays an important role in our bias correction

procedure below under our model assumptions.

Under the model (3), we have by the martingale CLT (Hall and Heyde (1980, Corollary

3.1),

n
1/2
t (σ̂2

t − σ2
t ) =⇒ MN(0, vt),

where vt = p limnt→∞
1
nt

∑nt

j=1 σ
4
tj
ϑtj , where ϑtj = E[η4tj |Ftj−1

] − 1. Under some additional

conditions, RQt → limnt→∞
1
nt

∑nt

j=1 σ
4
tj
E[η4tj |Ftj−1

]. Under stronger conditions (for example,

suppose that σ2
tj

are deterministic or stochastic but independent of the process {ηtj}), then,

vt = σ4
t (κ−1), where κ = E[η4tj ]. If ηtj were standard Gaussian, which follows from (4), then

κ = 3. Furthermore, in this case we will have ((κ− 1)RQt/κnt)
−1/2 (σ̂2

t −σ2
t ) =⇒ N(0, 1). We

do not assume Gaussianity for our innovation process, although we do make this assumption

to define a simple bias correction method.

Plugging the realized variance into the infeasible moment restriction (6), we obtain the

feasible moment restriction:

E
[
rm,t − rf,t − b0 − b1 (xt−1) σ̂

2
t − b

⊺

2Zt−1|Ft−1

]
= 0. (8)

Finally, with a set of chosen instruments, Yt−1 (that could include, for instance, lagged
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variances), we have the unconditional moment restrictions:

E
[(
rm,t − rf,t − b0 − b1 (xt−1) σ̂

2
t − b

⊺

2Zt−1

)
Yt−1

]
= 0. (9)

Defining Yt ≡
(
y

′

t, σ
2
t , σ

2
t−1, . . . , σ

2
t−p

)
, Zt ≡

(
z′t, σ

2
t , σ

2
t−1, . . . , σ

2
t−p

)
, where y

′

t and z
′

t are

the observable components of Yt and Zt, respectively, Xt ≡
(
rm,t, rf,t, y

′

t, z
′
t, xt

)
, Vt =

(σ2
t , σ

2
t−1, . . . , σ

2
t−p)

⊺

, and V̂t = (σ̂2
t , σ̂

2
t−1, . . . , σ̂

2
t−p)

⊺

, we can rewrite the feasible moment re-

striction as:

E
[
G(Xt, V̂t; θ0)

]
= 0.

where θ = (b0, b
⊺

1, b
⊺

2)
⊺ with true value θ0.

5 The above set of moment restrictions are expressed

entirely in terms of observable variables and, therefore, the parameter vector θ may be

estimated using the GMM approach. Specifically, we define the estimator θ̂T ∈ Θ as the

minimizer of

θ̂T = argmin
θ∈Θ

∥∥∥ĜT (θ)
∥∥∥
W

, ĜT (θ) ≡
1

T

T∑

t=1

G(Xt, V̂t; θ),

where W is a symmetric positive definite weighting matrix, and ||A||W = (tr(A⊤WA))1/2.

III Asymptotic Properties

We derive an asymptotic approximation to the properties of our estimators of θ. Our asymp-

totic framework has T → ∞ and nt → ∞ for each t = 1, 2, . . . , T . Empirically, nt is really

only moderate size (e.g., daily in most empirical asset pricing applications where models

need to be estimated over long time periods when higher frequency data were not available)

and so the quality of the asymptotic approximation is likely to be an issue. We show how to

address this issue by providing a bias correction method that improves the approximation

error.

We first present a lemma that involves a useful extension of the existing asymptotic results

obtained for realized volatility in Barndorff-Nielsen and Shephard (2002). This lemma is

5We choose to present a theory for a general GMM estimator, rather than for the precise moment condi-
tions in Equation (9). This is because our theory is sufficiently general and amenable to other applications, in
addition to the linear (in variance) moment specification considered in this paper. For instance, our approach
can accommodate potential nonlinearities in the relation between the conditional means and variances of
stock returns – an implication of several popular equilibrium theories. Similarly, an extension of our frame-
work can be used to estimate conditional factor pricing models like the conditional Capital Asset Pricing
Model or the conditional Fama-French three and five factor models. In the latter extension, the underlying
latent variables are the conditional betas (multivariate for multifactor models) that could be replaced with
realized betas to make the estimation feasible.
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concerned with the uniformity of the estimation error. The existing financial econometrics

literature on nonparametric volatility estimation has focused on estimating financial market

volatility over a finite time horizon, typically daily or monthly. In these applications, it

suffices to establish consistency of the estimator over the finite time interval. In our present

application, however, the number of finite-length time periods tends to infinity, thereby

requiring a stronger consistency result. In this paper, we apply the methodology to estimate

the empirical risk-return relation. However, the results are considerably general and might

be useful in other contexts that require financial market variance estimation over successive

time periods.

Our first result establishes the consistency of σ̂2
t for σ2

t , uniformly in t. To derive the

result, we make the following regularity assumptions.

Assumptions A

1. The process µtj is uniformly bounded. There exists a small ǫ > 0 such that with

probability one, for large enough T and some constant M,

max
1≤t≤T

1

nt

nt∑

j=1

σ4
tj
≤ MT ǫ

2. For some γ > max
{

2
k−1

, 2ǫ
}
, where ǫ and k are as in Assumptions A1 and A4,

respectively,

nt = O(T γ) for all t

3. For θ > 2, there exists a probability limit σθ
t for each t such that ,

max
1≤t≤T

∣∣∣∣∣
1

nt

nt∑

j=1

σθ
tj
− σθ

t

∣∣∣∣∣ = Op(n
−λ
t )

for some 1
2

(
1− ǫ

γ

)
< λ < 1.

4. The process {ηtj}nt,T
j=1,t=1 is stationary and ergodic and has finite kth moment for some

large k > 6.

5. The process {ηtj}nt,T
j=1,t=1 is i.i.d with mean zero, variance one, and finite kth moment

for some large k > 6. Let κ = E
(
η4tj

)
.

Remarks. (i) Condition A1 controls the behaviour of the volatility process over long

time spans. One possibility is to require that the process σ2
tj

is uniformly bounded over all

t and all j and all sample paths, but this is a little strong. Instead, we shall control the

rate of growth of the maximum value this process can achieve over many periods. Let mt =∑nt

j=1 σ
4
tj
/nt denote the intraperiod second moment of volatilities. Suppose, for example,
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that the stochastic process mt was stationary and Gaussian, then max1≤t≤T mt would grow

to infinity at a logarithmic rate. We shall allow instead this process to grow at an algebraic

rate that is much faster than logarithmic. Over the sample period 1947− 2018, daily excess

market returns are highly leptokurtic with the degree of excess kurtosis being 16.5. The

evidence of very fat tails in the distribution of returns highlights the importance of this

assumption.

(ii) We are not assuming Gaussianity of ηtj and we are not exploiting the structure of

an underlying continuous time model so we need to make strong assumptions like A3. Note

that this assumption is similar to Assumption H of Goncalves and Meddahi (2009) with the

added feature that we need to control this error uniformly over the low frequency time span

of our data. This assumption is consistent with many sample schemes. For example, suppose

that σθ
tj

were i.i.d., then we can argue that 1√
nt

(∑nt

j=1 σ
θ
tj
− Eσθ

t

)
is asymptotically normal

for each t. In that case, we would have to control the growth rate of max
1≤t≤T

Zt√
nt

, which can

easily be shown to be of order (log T )1/2 /
√
nt, and so given our assumptions on the relative

magnitude of T and nt, this term is of smaller order in probability.

(iii) Since Assumption A4 is with regard to the standardized return series ηtj , it is not

so strong as requiring that returns themselves have many moments.

We have the following result, a formal proof of which is contained in Appendix A.1.

Lemma 1 Suppose that Assumptions A1-A4 hold. Then, for α < γ
2
− ǫ, we have

T α max
16t6T

(σ̂2
t − σ2

t ) = op(1). (10)

We next turn to the main result of this section - the asymptotic distribution of the

parameter estimator θ̂T . We define GT (θ) ≡ 1
T

∑T
t=1 G(Xt, Vt; θ) and the infeasible GMM

estimator θ̃T that minimizes ||GT (θ)||W . Let G(θ) = E[G (Xt, Vt; θ)] and define

Γ ≡ ∂

∂θ⊤
G(θ0),

Ω ≡ var
[√

TGT (θ0)
]
.

Then, under suitable regularity conditions, the infeasible GMM estimator, θ̃T , satisfies

√
T (θ̃T − θ0) = −(Γ⊤WΓ)−1Γ⊤W

√
TGT (θ0) + op(1) =⇒ N(0,Σ), (11)

where Σ = (Γ⊤WΓ)−1Γ⊤WΩWΓ(Γ⊤WΓ)−1 (see Pakes and Pollard (1989)). It is natural to

suppose that the process {Xt, Vt} is stationary and weakly dependent, e.g., strong mixing,

11



which would support the central limit theorem in (11). It is also a reasonable assumption

in this context that G (Xt, Vt; θ0) is a martingale difference sequence, in which case Ω ≡
var [G (Xt, Vt; θ0)] .

In order to derive the asymptotic distribution of the estimator θ̂T , we make some addi-

tional assumptions. Our theory parallels the work of Pakes and Pollard (1989), so we adopt

their regularity conditions:

Assumptions B

1. As T → ∞,

‖GT (θ̂T )‖W= inf
θ
‖GT (θ)‖W+op(1/

√
T );

2. The matrix Γ(θ) = ∂
∂θ⊤

G(θ) is continuous in θ and is of full (column) rank at θ = θ0.

3. For all sequences of positive numbers δT such that δT → 0,

sup
‖θ−θ0‖≤δT

‖GT (θ)−G(θ)‖W = Op(1/
√
T );

sup
‖θ−θ0‖≤δT

‖
√
T [GT (θ)−G(θ)]−

√
T [GT (θ0)−G(θ0)]‖W = op(1);

4. As T → ∞, √
TGT (θ0) =⇒ N(0,Ω)

5. The true parameter θ0 is in the interior of Θ.

6. For some ω > 0,

sup
T≥1

1

T

T∑

t=1

E |G (Xt, Vt; θ0)|2+ω < ∞

7. The first three partial derivatives of G with respect to θ and Vt exist and satisfy

dominance conditions, namely for all vectors ν (pertaining to (Vt, θ)) with |ν| ≤ 3, and for

some sequence δT → 0,

sup
||x||≤δT

sup
θ∈Θ

‖DνG (Xt, Vt + x; θ)‖ ≤ Ut,

where EUt < ∞.

Remarks. The first condition is quite general and allows the estimator to be only an

approximate minimizer of the criterion function. Condition B2 is important for identification.

For example, when b1 (xt−1) = b1 (a scalar constant) and b′2 = 0, Condition B2 holds provided

the integrated variance process,
∫ t

t−1
σ2(s)ds, is not independent of the instruments used in

the estimation. For instance, when lagged integrated variance is used as an instrument,
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this condition requires that the integrated variance process is not independent across non-

overlapping time periods. Condition B3 is a technical condition that is satisfied in our case

because of the linearity of the moment condition and the assumptions we made on the data

in A. The central limit theorem in B4 is satisfied if G (Xt, Vt; θ0) is a martingale difference

sequence and Assumption B6 holds (See Pakes and Pollard (1989)). Condition B7 is a

smoothness condition on G(.). Note that the asymptotic derivations in Pakes and Pollard

(1989) do not require G (Xt, Vt; θ) to be smooth in θ or (Xt, Vt) but does require G(θ) to be

smooth. However, for the purposes of our current application, it is natural to assume the

function G to be smooth.

The following theorem provides an asymptotic expansion for the estimator θ̂T . Appendix

A.2 provides a formal proof of this result. Let Gσ2
t σ

2
t

denote the second partial derivative of

G with respect to σ2
t .

Theorem 1 Suppose that conditions A1-A4 and B are satisfied. Then,

θ̂T − θ0 = −(Γ⊤WΓ)−1Γ⊤WGT (θ0)− (Γ⊤WΓ)−1Γ⊤WbT (θ0) + op(T
−1/2), (12)

where

bT (θ0) =

p∑

k=0

1

2T

T∑

t=1

E
[
Gσ2

t−k
σ2
t−k

(Xt, Vt; θ0)(σ̂
2
t−k − σ2

t−k)
2
]
.

The first term on the right hand side of Equation (12) is the standard one that arises

in a GMM procedure in the absence of any measurement error. The second term, on the

other hand, is an additional bias term that arises because of the measurement error in

realized variance as an estimator of the integrated variance. A few comments are in order

for this bias term. First, note that the quantity bT (θ) is of order T ǫ

n
in probability (based

on Assumption A1). Therefore, its relative magnitude depends on the assumption we make

connecting n and T , i.e. on the relative growth rates of n and T . The direction of the

bias depends on the partial derivatives of the moment conditions. Second, the bias in non

zero if and only if the second derivatives of the moment restrictions with respect to the

market variances (contemporaneous or lagged ) are non zero. For example, the seminal

Capital Asset Pricing Model (CAPM) predicts a linear relationship between the conditional

expected excess return of the stock market and its conditional variance, with the coefficient

equal to the coefficient of risk aversion of the average investor in the economy. In this

case, if the comtemporaneous integrated variance is used as an approximately unbiased

estimator of the conditional variance, the moment restriction in Equation (6) reduces to

E
[
(rm,t − rf,t − b0 − b1σ

2
t ) |Ft−1

]
= 0, where b1 is the risk aversion coefficient, and, therefore,

Equation (12) implies that the bias term is identically equal to zero. On the other hand, if
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lags of the conditional variance are included as additional right hand side variables in the risk

return relation – a specification advocated by Whitelaw (1994), Brandt and Kang (2004),

and Ludvigson and Ng (2007) – then the bias term in non zero when lagged variances are

also included in the set of instruments used in the estimation. Also, the bias term in non

zero when there are non linearities in the risk return relation (e.g., a quadratic relation) – a

specification implied by several prominent asset pricing models.

We obtain the following result.

Corollary 1 Suppose that bT (θ0) = o(T−1/2). Then, we have

√
T (θ̂T − θ0) =⇒ N(0,Σ). (13)

Note that this requires nx/T → ∞, where x > 1
γ

and γ > ε + 1
2
. This condition for

the asymptotically negligibility of the bias can perhaps be more conveniently expressed as

T ε+ 1

2/n → 0. If σtj is assumed to be uniformly bounded, i.e. ǫ = 0 in Assumption A1, then

this condition reduces to
√
T/n → 0, and is reminiscent of a similar condition in Bai and

Ng (2006) under which they show that factor estimation uncertainty does not matter for

factor-augmented models. When (13) holds, standard inference can be applied. Specifically,

since G (Xt, Vt; θ0) is a martingale difference sequence, Σ̂ = (Γ̂⊤W Γ̂)−1Γ̂⊤W Ω̂W Γ̂(Γ̂⊤W Γ̂)−1

is a consistent estimator of Σ, where

Γ̂ =
1

T

T∑

t=1

∂

∂θ⊤
G
(
Xt, V̂t; θ̂T

)

Ω̂ =
1

T

T∑

t=1

G
(
Xt, V̂t; θ̂T

)
G
(
Xt, V̂t; θ̂T

)⊤
.

When the condition in Corollary 1 is not satisfied, i.e., bT (θ0) 6= o(T−1/2), then the bias

term in Equation (12) may not vanish asymptotically and, consequently, Equation (13) does

not hold. Define the bias corrected estimator, θ̂bcT , as

θ̂bcT = θ̂ + (Γ̂⊤W Γ̂)−1Γ̂⊤Wb̂T (θ̂T ),

where

b̂T (θ̂T ) =

p∑

k=0

1

2T

T∑

t=1

Gσ2
t−k

σ2
t−k

(Xt, Vt; θ̂T )
κ− 1

κ

RQt−k

nt−k

,

and RQt = nt

nt∑
j=1

r4tj . In this case, we have the following result.
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Corollary 2 Suppose that
√
T b̂T (θ̂T ) =

√
TbT (θ0)+op(1). Then, under Assumptions A1-A5

and B, we have √
T (θ̂bcT − θ0) =⇒ N(0,Σ).

This result requires the weaker condition that nx/T → ∞, where x > 1
γ

and γ > ε+ 1
2
−α.

This result is the basis of the application we conduct in the empirical section. In particular,

it provides the basis for confidence intervals and test statistics regarding θ, and provides the

methodology to take into account the potential consequences of small intraperiod samples.

IV Simulation Results

We perform Monte Carlo simulations to examine the finite-sample performance of the esti-

mators of θ. We assume that the continuously compounded returns on the market portfolio

are generated by Equation (3) from Section II (that we restate here for convenience):

rtj =
1

nt

µtj +
1

n
1/2
t

σtjη
(1)
tj .

Note that our nonparametric estimation approach, described in Sections II and III, does

not require us to specify the functional forms of either the drift, µtj , or the diffusion, σtj ,

processes in the above equation. In other words, the approach remains valid for any par-

ticular functional form specifications for these stochastic processes, provided they satisfy

Assumptions A and B.

Our modeling of µtj is motivated by the empirical specification of the risk-return relation,

Equation (1), considered in this paper. In particular, we assume that the instantaneous

conditional mean µtj is linear in the conditional variance σ2
tj

and the lagged variance σ2
(t−1)j

:

µtj = b0 + b1σ
2
tj
+ b2σ

2
(t−1)j

. (14)

We consider two different models for σ2
tj

that have been employed extensively in the

literature and shown to provide a good fit to the dynamic properties of returns. The first

specification is motivated by the GARCH(1, 1) diffusion (see, e.g., Andersen and Bollerslev

(1998)):

σ2
tj
− σ2

tj−1
=

1

nt

0.035
(
0.636− σ2

tj−1

)
+

1

n
1/2
t

0.236σ2
tj−1

η
(2)
tj . (15)

The second model for σ2
tj

is motivated by the lognormal diffusion (see, e.g., Andersen,
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Benzoni, and Lund (2002)):

log
(
σ2
tj

)
− log

(
σ2
tj−1

)
= − 1

nt

0.0136
(
0.8382 + log

(
σ2
tj−1

))
+

1

n
1/2
t

0.1148η
(3)
tj . (16)

In Equations (15) and (16), the innovations to the variance processes, η
(2)
tj and η

(3)
tj , are

assumed to be i.i.d N (0, 1). We present simulation results when η
(2)
tj and η

(3)
tj are assumed

to be independent of the return innovation η
(1)
tj , i.e., there are no leverage and volatility

feedback effects, as well as when these effects are present.

The lower frequency period-t market return, rm,t, is computed as the sum of higher

frequency intra period returns, rtj , i.e. rm,t = 1
nt

∑nt

j=1 rtj . Note that the conditional ex-

pectation of rm,t, with respect to the information set available at time t − 1, delivers the

moment restrictions in Equation (1), with b1 (xt−1) = b1 and Zt−1 = σ2
t−1. Similarly, the

lower frequency realized market variance is computed as the sum of squares of the higher

frequency intra period returns. These are then used in the GMM estimation problem (9), to

estimate the parameter vector, θ. This procedure is repeated across 1000 simulated samples

for different combinations of nt and T .

To illustrate the finite sample performance of our proposed bias correction, we first focus

on the simplest specification of the moment restrictions that require a non-zero bias correc-

tion, namely b0 = 0, b1 = 0, and b2 = 2 in Equation (14). This implies a risk-return relation

given by Et−1

[
rm,t − b0 − b2σ

2
t−1

]
= 0. We use the lagged variance σ2

t−1 as an instrument.

Table I reports the simulation results for the GARCH(1,1) model for the variance, where η
(2)
tj

is assumed to be independent of η
(1)
tj . Consider first Panel A. Each row of Panel A reports

results for nt ≡ n = 22 and a different value of T . In the context of our empirical appli-

cation, for example, this corresponds to estimating the risk-return relation at the monthly

frequency, using daily returns to estimate the monthly variance. T = 864 corresponds to

the length of the historical time series (72 years). We report results for smaller and larger

values of T to show the effect of increasing the number of lower frequency time periods on

the performance of the estimators.

Panel A, Row 1 corresponds to n = 22 high frequency data points within each of T =

500 time periods. The second and third columns report the mean and 95% confidence

interval (in square brackets below) of the estimators of b0 and b2, respectively, across the

1000 simulations. The fourth and fifth columns report the same statistics as columns two

and three, respectively, but for the bias-corrected estimators of these parameters. Panel

A, Row 1 reveals that the bias correction proposed in Section III substantially reduces the

bias in estimating the risk-return tradeoff coefficient, b2. The mean of the standard GMM
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estimator b̂2 across the simulations is 1.13 while the mean of the bias-corrected estimator,

b̂bc2 , is 1.33 - much closer to the population value of 2. Alternatively stated, the bias of the

standard estimator is 30% higher at 0.87 compared to the bias of 0.67 for the bias-corrected

estimator. Rows 2, 3, and 4 of Panel A show that increasing T to 1000, 5000, and 10, 000,

respectively, monotonically increases the bias of both the standard estimator as well as that

of the bias-corrected one. Note that this is not surprising because the bias is O
(
T ǫ

n

)
and,

therefore, is expected to increase as T is increased for a given n. However, note that, for

each value of T , the bias-corrected estimator has a smaller bias than the standard GMM

estimator.

Consider next Panel B. Each row of Panel B reports results for T = 1000 and a different

value of n. This allows us to study the effect of increasing the number of high frequency

data points within a lower frequency time period on the performance of the estimators.

The results in Panel B show that, similar to Panel A, the bias-corrected estimator of b2

has a smaller bias for all the values of n compared to the standard estimator and that, not

surprisingly, the difference between the two estimators diminish with increasing n for a given

T .

Note that Table I presents results ruling out leverage and volatility feedback effects. We

repeated our simulations allowing for these effects, in particular, by setting the correlation

between η
(2)
tj and η

(1)
tj to be −0.5. The results, presented in Table II, remain almost identical

to those obtained in Table 1.

Table III reports simulation results for the lognormal model for the variance, when lever-

age and volatility feedback effects are ruled out. The results are largely similar to those

obtained in Tables 1-2 for the GARCH(1,1) model. Panels A and B shows that the bias

of the bias-corrected estimator is smaller than that of the standard GMM estimator for all

combinations of n and T , particularly when n is small relative to T . Once again, the results

remain virtually unchanged in the presence of leverage and volatility feedback effects. These

are omitted for brevity.

Overall, the simulation results point toward the superior performance of the bias-corrected

estimator relative to the standard GMM estimator. And, importantly, the improvement is

particularly pronounced in the empirically relevant scenario, where the size of the intra-

period sample is small compared to the number of low frequency time periods.

V Empirical Results

In our empirical analysis, we focus on the risk-return relation at the monthly frequency.

The data is from the Centre for Research in Security Prices (CRSP) daily returns data file.
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Our market proxy is the CRSP value-weighted index of all stocks on the NYSE, AMEX,

and NASDAQ. The sample extends over the entire post war period, 1947:01 - 2018:12. The

monthly market return is obtained as the sum of daily continuously compounded market

returns within the month and the realized monthly market variance as the sum of squares

of the daily continuously compounded market returns. Figure 1 displays the time series of

the monthly returns and realized volatility.

The analysis in Section II shows that the estimation of the risk-return trade-off parameters

can be posed as a GMM estimation problem, with the moment specification in Equation (9),

that we restate here for convenience:

E
[(
rm,t − rf,t − b0 − b1 (xt−1) σ̂

2
t − b

⊺

2Zt−1

)
Yt−1

]
= 0,

where θ = (b0, b
⊺

1, b
⊺

2)
⊺ is the vector of parameters to be estimated, Zt−1 is a vector of pre-

determined variables, and Yt−1 is a vector of instruments. We report estimation results for

different specifications of b1 (xt−1), Zt−1, and Yt−1.

Our first specification is obtained by setting b1 (xt−1) = b1 (a scalar constant), b⊺2 = 0⊺,

and using the lagged variance, σ̂2
t−1, as an instrument. The rationale for using the lagged

variance as an instrument is that the variance process is highly persistent. The first order

autocorrelation coefficient of the realized variance process is 0.52 in monthly data for the

full sample. Hence, the lagged variance is useful in predicting the contemporaneous variance

which enters the moment specification. This makes it a good choice of instrument, improving

the efficiency of the estimation procedure. This specification produces an exactly identified

system of two moment restrictions in two unknown parameters, θ = (b0, b1), to be estimated.

Note that for this specification of the moment restrictions and choice of instruments, the

bias-correction is identically zero (see Theorem 1). Table IV, Panel A reports the estimation

results. The first row presents results over the entire available sample period, while Rows

2 and 3 do the same for two non-overlapping subsamples of equal length. Row 1 shows

that, over the full sample, the estimated coefficient of the conditional variance b1 is negative

and statistically significant at the 5% level of significance. Rows 2 and 3 show that while

the coefficient is statistically indistinguishable from zero over the first subsample covering

the period 1947:01–1982:12, it is statistically significantly negative in the second subperiod

covering 1983:01–2018:12.

Our second specification is identical to the first, except that the lagged (instead of con-

temporaneous) variance is used in the moment restriction. This specification is obtained by

setting b1 (xt−1) = 0 and Zt−1 = σ̂2
t−1. Unlike the first specification, for this specification

of the moment restrictions and choice of instruments, Theorem 1 suggests a bias-correction

to the standard GMM estimator to improve its performance. Table IV, Panel B reports
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the estimation results. Row 1 shows that, over the full sample, both the standard GMM

estimator as well bias-corrected estimator of the coefficient b2 are negative and statistically

significant. The bias-correction increases the magnitude of the estimate, thereby further

increasing its statistical significance relative to that of the standard GMM estimator. As

in Panel A, Row 2 shows that a statistically insignificant risk-return relation is obtained in

the first subsample. Row 3, however, shows that, for the second subsample, the standard

GMM estimator of the risk-return relation is significantly negative. We obtain even stronger

results for the bias-corrected estimator.

The finding in Panels A and B of a negative unconditional correlation between the ex-

pected stock market return and its conditional variance is consistent with those in Graham

and Harvey (2008) and Lettau and Ludvigson (2010). However, while the latter paper finds

that the unconditional risk-return relation is negative but not statistically different from

zero, we find a strongly statistically significant negative relation in the second subsample

applying our proposed bias-correction to the standard estimator.

Our final specification is obtained by setting b1 (xt−1) = b1 (a scalar constant) and

Zt−1 =
(
rm,t−1, σ̂

2
t−1

)
. This specification is motivated by the findings in Whitelaw (1994),

Brandt and Kang (2004), and Lettau and Ludvigson (2010) that the lagged conditional mean

and conditional variance are a statistically important feature of the empirical risk-return re-

lation and that it is important to distinguish between the unconditional correlation and the

conditional correlation (conditional on the lagged mean and variance) between the first two

moments of the market return to uncover the relation between them. Thus, we have four

parameters to estimate. We use two lags of the variance and one lag of the market return as

instruments giving an exactly identified system of four moment restrictions in four parame-

ters. The results in Table IV, Panel C show that the estimated coefficient of the conditional

variance b1 is positive for the full sample (Row 1) as well as in each subsample (Rows 2-3).

This is consistent with the findings in Lettau and Ludvigson (2010) who find a negative

unconditional correlation between the expected market return and its conditional variance

but a positive conditional correlation (conditional on the lagged mean and variance) between

these moments. However, while the latter paper finds the positive conditional correlation

to be strongly statistically significant, our estimate of the conditional correlation is not sta-

tistically significant. The bias-correction increases the magnitude of the point estimate but

not sufficiently relative to its standard error to make it statistically significant.

Panels A, B, and C of Table V report results similar to those in Table IV, but for an

over-identified system that includes the one-month Treasury Bill rate and the default spread

as additional instruments. The results are very similar to those obtained in Table IV. Specif-

ically, the unconditional correlation between the expected market return and its conditional
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variance is typically estimated to be negative (Panels A-B), while their conditional correla-

tion to be positive (Panel C). Moreover, unlike in Table IV where the conditional correlation

is found to not be statistically significant, statistical significance is obtained for the over-

identified system over the full sample (Table V, Panel C, Row 1). And the bias correction

aids in increasing the statistical significance of the estimator.

Finally, in Table VI, we present the estimates of the unconditional risk-return relation

separately over the expansionary and recessionary phases of the business cycle. We split

the sample into two subsamples. The first subsample consists of those months that are in

NBER-designated expansion periods. The second subsample, on the other hand, includes

those months that are in NBER-designated recessionary episodes. Panel A presents the

results for the same specification as in Panels A of Tables IV-V. The risk-return tradeoff is

estimated to be negative during both expansions and recessions. Similar negative estimates

are obtained in Panel B, that presents the results for the same specification as in Panels B

of Tables IV-V. In this case, the bias-correction increases the magnitudes of the estimated

coefficients making them statistically significant at conventional levels of significance.

VI Conclusion and Extensions

In this paper, we offer a solution to the measurement error problem that arises because of

the use of realized variance as a proxy for the latent integrated variance in order to estimate

the risk-return relation. Our asymptotic framework requires n → ∞ and T → ∞, where

n denotes the number of high-frequency intra-period returns used to compute the realized

variance in every period, and T denotes the number of low-frequency time-periods used in

the GMM estimation of the risk-return relation.

We derive the limiting distribution of the estimated coefficients under this double asymp-

totic framework. We find that under fairly strong conditions on n and T , the estimates are√
T -consistent and have the standard distribution as when there is no measurement-error.

However, if the above condition is not satisfied, there is an asymptotic bias that would in-

validate this approximation. In that case, we find that under weaker conditions on n and

T , a bias-corrected estimator has the standard limiting distribution. This improvement is

particularly relevant in the empirical case we examine where n is quite modest relative to T .

The paper makes an important methodological contribution to the extant literature on

high-frequency volatility estimation. Most work has currently been about just estimating

that quantity itself and using it to compare discrete time models in settings where the noise

is small. Our approach is concerned with small sample issues when using estimated real-

ized volatility as regressors in the estimation of parameters associated with the unobserved
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quadratic variation. This involves a useful extension of the existing asymptotic results for

realized volatility concerned with the uniformity of the estimation error. We establish the

properties of the parameter estimates and propose a bias correction in the case where the

estimation error is large. Simulation studies demonstrate the superior properties of the bias-

corrected estimator relative to the standard estimator for empirical realistic combinations of

n and T .
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A Appendix

A.1 Proof of Lemma 1

The proof of Lemma 1 relies on the exponential inequality of de La Peña (1999, Theorem

1.2A) for martingale difference sequences, which we repeat here for convenience.

Theorem. Let (Xj,Fj), j = 1, 2, . . . , n, be a martingale difference sequence with E(Xj|Fj−1) =

0 and σ2
j = E(X2

j |Fj−1) and let V 2
n =

∑n
j=1 σ

2
j . Furthermore, suppose that for some c

Pr [|Xj| ≤ c|Fj−1] = 1.

Then

Pr

[
n∑

j=1

Xj ≥ x, V 2
n ≤ y

]
≤ exp

(
− x2

2(y + cx)

)
. (17)

Lemma 1. Suppose that Assumptions A1-A4 hold. Then, we have

(a) max
1≤t≤T

∣∣∣∣∣(σ̂
2
t − σ2

t )−
1

nt

nt∑

j=1

σ2
tj

(
η2tj − 1

)∣∣∣∣∣ = Op(T
−λγ),

(b) T α max
1≤t≤T

∣∣σ̂2
t − σ2

t

∣∣ = op(1) for α < γ/2− ε.

Proof of Lemma 1. From (3) we obtain

nt∑

j=1

r2tj =
1

nt

nt∑

j=1

µ2
tj
+

1

nt

nt∑

j=1

σ2
tj
η2tj +

2

n
3/2
t

nt∑

j=1

µtjσtjηtj .

Therefore,

σ̂2
t − σ2

t =

(
1

nt

nt∑

j=1

σ2
tj
− σ2

t

)

︸ ︷︷ ︸
Op(n−λ)

+
1

nt

nt∑

j=1

σ2
tj
(η2tj − 1)

︸ ︷︷ ︸
Op

(√
Tǫ

n

)

+
1

n2
t

nt∑

j=1

µ2
tj

︸ ︷︷ ︸
Op(n−1)

+
2

n
3/2
t

nt∑

j=1

µtjσtjηtj

︸ ︷︷ ︸
Op(n−1)

= J1t + J2t + J3t + J4t. (18)

We have max1≤t≤T |J1t| = Op(n
−λ) by Assumption A3. We have max1≤t≤T |J3t| = Op(n

−1)

under our conditions. Furthermore, max1≤t≤T |J4t| = Op(n
−1) by a similar argument to

the sequel under our conditions. Thus, J3t and J4t are smaller than J1t since λ < 1. This

establishes Lemma 1(a).

Consider next the term J2t. This is a sum of martingale differences, which satisfies for
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each t

1

nt

nt∑

j=1

E
[
σ2
tj
(η2tj − 1)|Ftj−1

]
= 0 (19)

1

n2
t

nt∑

j=1

E
[
σ4
tj
(η2tj − 1)2|Ftj−1

]
=

1

nt

(
1

nt

nt∑

j=1

σ4
tj
E
[
(η2tj − 1)2|Ftj−1

])
(20)

≤ C

nt

1

nt

nt∑

j=1

σ4
tj

6
C

n
MT ǫ

= O

(
T ǫ

n

)
= o(1), since γ > ǫ.

Note that the second-to-last line derives from Assumption A1. Therefore, J2t = Op

(√
T ǫ

n

)

uniformly over t.

Let Xj(t) = σ2
tj
(η2tj − 1) and write Xj(t) = X+

j (t) +X−
j (t), where:

X+
j (t) = Xj(t)1

(
|Xj(t)| ≤

√
n

log n

)
− E

[
Xj(t)1

(
|Xj(t)| ≤

√
n

log n

)
|Fj−1

]

X−
j (t) = Xj(t)1

(
|Xj(t)| >

√
n

log n

)
− E

[
Xj(t)1

(
|Xj(t)| >

√
n

log n

)
|Fj−1

]
.

Then we have

max
1≤t≤T

∣∣∣∣∣
1

nt

nt∑

j=1

σ2
tj
(η2tj − 1)

∣∣∣∣∣ ≤ max
1≤t≤T

∣∣∣∣∣
1

nt

nt∑

j=1

X+
j (t)

∣∣∣∣∣+ max
1≤t≤T

∣∣∣∣∣
1

nt

nt∑

j=1

X−
j (t)

∣∣∣∣∣ = I1 + I2.

For I1 we can apply (17). Write σ+2
j (t) = E[X+2

j (t)|Fj−1] and V 2+
nt

=
∑nt

j=1 σ
+2
j (t). Then with

probability one max1≤t≤T V 2+
nt

≤ CnT ǫ for some constant C. By the Bonferroni inequality
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and (17)

Pr

[
max
1≤t≤T

∣∣∣∣∣

nt∑

j=1

X+
j (t)

∣∣∣∣∣ ≥ cT ǫ/2
√

n log n

]
≤ 2T Pr

[∣∣∣∣∣

nt∑

j=1

X+
j (t)

∣∣∣∣∣ ≥ cT ǫ/2
√

n log n, V 2+
nt

≤ CnT ε

]

≤ 2T exp


− c2T ǫn log n

2(CnT ε +
√

n
logn

cT ε/2
√
n log n)




= 2T exp

(
− c2 log n

2(C + cT−ǫ/2)

)

= 2Tn−ρ

for some ρ > 0. Choosing ρ large enough ensures this term is small, which means that

I1 = OP

(√
T ǫ logn

n

)
. Regarding I2, we have

Pr

[
max
1≤t≤T

∣∣∣∣∣

nt∑

j=1

X−
j (t)

∣∣∣∣∣ ≥ cT ǫ/2
√

n log n

]
≤ Pr

[
max
1≤t≤T

max
1≤j≤nt

∣∣∣σ2
tj
(η2tj − 1)

∣∣∣ > c

√
n

log n

]

≤ Tnc′
(log n)k/2 E

[
(η2tj − 1)k

]

nk/2

= o(1)

by the Markov inequality applied to the stationary process η2tj − 1. The last equality holds

provided k is taken large enough.

Thus, it follows that

max
1≤t≤T

|σ̂2
t − σ2

t | = Op

(√
T ǫ log n

n

)
.

So, provided α < γ
2
− ǫ, the result of Lemma 1(b) follows.

A.2 Proof of Theorem 1

A.2.1 Consistency of θ̂T

We just verify the Uniform Law of Large Numbers (ULLN) condition. By the triangle

inequality

sup
θ∈Θ

‖ĜT (θ)−G(θ)‖W ≤ sup
θ∈Θ

‖ĜT (θ)−GT (θ)‖W + sup
θ∈Θ

‖GT (θ)−G(θ)‖W .
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Let AT = {max1≤t≤T |σ̂2
t − σ2

t | ≤ δT}, were δT is a sequence such that Pr(Ac
T ) = o(1). Note

that such a sequence is guaranteed by Lemma 1 with α = 0, which just requires γ > 2ǫ.

Then

Pr

[
sup
θ∈Θ

‖ĜT (θ)−GT (θ)‖W > η

]
≤ Pr

[
sup
θ∈Θ

‖ĜT (θ)−GT (θ)‖W > η,AT

]
+ Pr [Ac

T ]

= Pr

[
sup
θ∈Θ

‖ĜT (θ)−GT (θ)‖W > η,AT

]
+ o(1).

By the Mean Value Theorem, for a set of mean values V t

ĜT (θ)−GT (θ) =
1

T

T∑

t=1

GV

(
Xt, V t; θ

)⊺
(V̂t − Vt)

where V t is intermediate between V̂t and Vt. Furthermore, on the set AT ,

sup
θ∈Θ

‖ĜT (θ)−GT (θ)‖W = sup
θ∈Θ

∥∥∥∥∥
1

T

T∑

t=1

GV

(
Xt, V t; θ

)⊺
(V̂t − Vt)

∥∥∥∥∥
W

≤ dim (Vt) δT
1

T

T∑

t=1

Ut = op(1),

where the second line follows from Assumption B7. Consistency then follows from the

identification condition (Assumption B2) and the ULLN condition on the infeasible moment

conditions supθ∈Θ ‖GT (θ)−G(θ)‖W = op(1) (Assumption B3).

A.2.2 Asymptotic Normality of θ̂T

Under our conditions, the infeasible GMM estimator has the following limiting distribution:

√
T (θ̃T − θ0) =⇒ N(0, (Γ⊤WΓ)−1Γ⊤WΩWΓ(Γ⊤WΓ)−1).

For the asymptotic expansion, our proof parallels the work of Pakes and Pollard (1989). We

expand the estimated moment condition out to third order. Therefore, for the i-th moment
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restriction, we have

Ĝi,T (θ0)−Gi,T (θ0) =
1

T

T∑

t=1

Gi,V (Xt, Vt; θ0)
⊺ (V̂t − Vt)

+
1

2T
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t=1

(V̂t − Vt)
⊺

Gi,V V (Xt, Vt; θ0) (V̂t − Vt)

+
1

6T
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(
Xt, V t; θ0

)
(V̂t − Vt)

⊗3

where V t is intermediate between V̂t and Vt.

Consider the first term

1

T

T∑
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Gi,V (Xt, Vt; θ0)
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1

nt−k
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σ2
t−kj
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For each of the terms on the right hand side of the above expression, we have

E
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T
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1

nt−k

nt∑
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σ2
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]
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1

T
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1
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E
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Also,
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1

T
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Gi,σ2
t−k
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1

nt−k

nt∑
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t−kj

(η2t−kj
− 1)

]

= E

[
1

T 2
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t=1

1

n2
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nt∑

j=1

G2
i,σ2
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(Xt, Vt; θ0)σ

4
t−kj

(η2t−kj
− 1)2

]

6
C

nt−kT
E

[(
1

T

T∑

t=1

G2
i,σ2

t−k
(Xt, Vt; θ0)

)(
1

nt

nt∑

j=1

σ4
t−kj

)]

6
C

nt−kT
E (Ut)MT ǫ = O

(
T ǫ

nt−kT

)
= o

(
1

T

)
, provided γ > ǫ.

Next, consider the second term,
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⊺
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=
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[
1

nt
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σ2
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σ2
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1
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σ2
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1
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σ2
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=
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1

2T

T∑
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1

nt−knt−l

nt∑
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Gσ2
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σ2
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We have

E

[
1

2T

T∑

t=1

(V̂t − Vt)
⊺

GV V (Xt, Vt; θ0)(V̂t − Vt)

]

=
1

2T

T∑
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tr
(
E
{
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[
(V̂t − Vt)(V̂t − Vt)
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=
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1
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E
[
Gσ2
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σ2
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Similar calculations show that var
[

1
2T

∑T
t=1(V̂t − Vt)

⊺

GV V (Xt, Vt; θ0)(V̂t − Vt)
]
= o

(
1
T

)
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vided γ > ǫ.

Finally, we consider the third order terms,

1

6T

T∑

t=1

Gσ2
t σ

2
t σ

2
t
(Xt, V tθ0)(σ̂

2
t − σ2

t )
3

≤
(
max
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t
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)3

1

6T
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sup
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t σ

2
t σ

2
t
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2
t + x, σ2

t−1 + x′, σ2
t−2 + x′′, θ0)|

= Op(T
−3α).

For this term to be op(T
−1/2), we require α > 1/6. This requires γ > 1

3
(1 + 6ǫ).

Hence,
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ĜT (θ0) ≃ GT (θ0) +

p∑
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E
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Therefore, we have

θ̂T − θ0 = −(Γ⊤WΓ)−1Γ⊤WGT (θ0)− (Γ⊤WΓ)−1Γ⊤WbT (θ0) + op(T
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Corollary 1:
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provided γ > ǫ+ 1/2. Therefore, this requires Nx

T
→ ∞ where x > 1

γ
, where γ > ǫ+ 1/2. In

this case,

√
T
(
θ̂T − θ0

)
= −(Γ⊤WΓ)−1Γ⊤W

√
TGT (θ0) + op(1).

Hence,

√
T
(
θ̂T − θ0

)
d→ N(0,Σ), where Σ = (Γ⊤WΓ)−1Γ⊤WΩWΓ(Γ⊤WΓ)−1.

Corollary 2: When the above condition is not satisfied, we may not have T 1/2 consistency

because of the asymptotic bias. However, we show that a bias corrected estimator θ̂ +

(Γ⊤WΓ)−1Γ⊤WbT (θ0) would be T 1/2 consistent. We propose to make a bias correction,
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which requires that we estimate bT (θ0). Provided the estimation error is small enough we

will achieve the limiting distribution in (13). Define the estimated bias function

b̂T (θ) =

p∑

k=0

1

2T

T∑

t=1

Gσ2
t−k

σ2
t−k

(Xt, Vt; θ0)
κ− 1

κ

RQt−k

nt−k

where RQt = nt

nt∑

j=1

r4tj

and κ = 3 if ηtj is normally distributed. Then, for the bias corrected estimator

θ̂bc = θ̂T + (Γ̂⊤W Γ̂)−1Γ̂⊤Wb̂T (θ̂T ).

we have that √
T (θ̂bcT − θ0) =⇒ N(0,Σ).

provided

√
T b̂T (θ̂T )−

√
TbT (θ0) = op(1).

Using similar arguments as above, this requires nx

T
→ ∞ where x > 1

γ
, where γ > ǫ+ 1

2
− α.
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Table I: Simulation Results for GARCH(1,1) Diffusion

Bias-Uncorrected

Estimators

Bias-Corrected

Estimators

b0 b2 bbc0 bbc2

Panel A: Effect of Changing T Keeping N Fixed

N = 22;T = 500
.41

[.18, .99]

1.13

[.64, 1.42]

.28

[.04, .89]

1.33

[.69, 1.73]

N = 22;T = 1, 000
.44

[.23, 1.03]

1.08

[.51, 1.34]

.33

[.09, .97]

1.24

[.54, 1.60]

N = 22;T = 5, 000
.56

[.31, 1.15]

.90

[.30, 1.20]

.49

[.20, 1.13]

.99

[.31, 1.39]

N = 22;T = 10, 000
.62

[.35, 1.14]

.81

[.23, 1.15]

.56

[.25, 1.12]

.89

[.24, 1.31]

Panel B: Effect of Changing N Keeping T Fixed

N = 22;T = 1, 000
.44

[.23, 1.03]

1.08

[.51, 1.34]

.33

[.09, .97]

1.24

[.54, 1.60]

N = 66;T = 1, 000
.22

[.06, .70]

1.55

[1.05, 1.80]

.16

[−.01, .65]

1.64

[1.09, 1.95]

N = 132;T = 1, 000
.12

[.01, .38]

1.75

[1.43, 1.95]

.08

[−.03, .36]

1.81

[1.45, 2.04]

N = 264;T = 1, 000
.06

[−.04, .24]

1.87

[1.63, 2.07]

.04

[−.06, .23]

1.90

[1.65, 2.11]

The table reports simulation results for the system Et−1

[
rm,t − b0 − b2σ

2
t−1

]
= 0. High frequency returns

are assumed to be generated by Equation (3), where the diffusion term σ2
tj

is assumed to follow a GARCH(1,1)

process, while the drift term µtj = b0 + b2σ
2
(t−1)j

, with b0 = 0 and b2=2. The table reports the mean

and the 95% confidence interval (in square brackets) of the standard GMM parameter estimates and the

bias-corrected estimates across 2000 simulations.
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Table II: Simulation Results for GARCH(1,1) Diffusion With Leverage Effects

Bias-Uncorrected

Estimators

Bias-Corrected

Estimators

b0 b2 bbc0 bbc2

Panel A: Effect of Changing T Keeping N Fixed

N = 22;T = 500
.39

[.17, .96]

1.14

[.64, 1.41]

.26

[.03, .87]

1.33

[.68, 1.73]

N = 22;T = 1, 000
.42

[.21, .90]

1.08

[.61, 1.35]

.31

[.08, .83]

1.24

[.66, 1.62]

N = 22;T = 5, 000
.55

[.30, 1.10]

.88

[.28, 1.21]

.48

[.19, 1.07]

.98

[.30, 1.39]

N = 22;T = 10, 000
.61

[.34, 1.12]

.81

[.25, 1.16]

.55

[.23, 1.11]

.89

[.26, 1.32]

Panel B: Effect of Changing N Keeping T Fixed

N = 22;T = 1, 000
.42

[.21, .90]

1.08

[.61, 1.35]

.31

[.08, .83]

1.24

[.66, 1.62]

N = 66;T = 1, 000
.19

[.05, .61]

1.57

[1.06, 1.80]

.13

[−.03, .55]

1.66

[1.09, 1.95]

N = 132;T = 1, 000
.11

[−.01, .39]

1.76

[1.36, 1.97]

.07

[−.06, .36]

1.81

[1.38, 2.05]

N = 264;T = 1, 000
.05

[−.06, .25]

1.87

[1.59, 2.08]

.03

[−.08, .23]

1.90

[1.61, 2.13]

The table reports simulation results for the system Et−1

[
rm,t − b0 − b2σ

2
t−1

]
= 0. High frequency returns

are assumed to be generated by Equation (3), where the diffusion term σ2
tj

is assumed to follow a GARCH(1,1)

process, while the drift term µtj = b0 + b2σ
2
(t−1)j

, with b0 = 0 and b2=2. The table reports the mean

and the 95% confidence interval (in square brackets) of the standard GMM parameter estimates and the

bias-corrected estimates across 2000 simulations.
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Table III: Simulation Results for Lognormal Diffusion

Bias-Uncorrected

Estimators

Bias-Corrected

Estimators

b0 b2 bbc0 bbc2

Panel A: Effect of Changing T Keeping N Fixed

N = 22;T = 500
.36

[.13, .76]

1.18

[.87, 1.46]

.19

[.01, .51]

1.48

[1.12, 1.84]

N = 22;T = 1, 000
.34

[.17, .61]

1.21

[.99, 1.40]

.19

[.04, .42]

1.46

[1.17, 1.72]

N = 22;T = 5, 000
.34

[.24, .48]

1.20

[1.01, 1.30]

.21

[.11, .39]

1.40

[1.13, 1.57]

N = 22;T = 10, 000
.34

[.26, .47]

1.19

[1.00, 1.28]

.22

[.13, .39]

1.39

[1.12, 1.52]

Panel B: Effect of Changing N Keeping T Fixed

N = 22;T = 1, 000
.34

[.17, .61]

1.21

[.99, 1.40]

.19

[.04, .42]

1.46

[1.17, 1.72]

N = 66;T = 1, 000
.15

[.05, .30]

1.65

[1.46, 1.83]

.06

[−.04, .19]

1.80

[1.59, 2.01]

N = 132;T = 1, 000
.08

[−.01, .20]

1.81

[1.63, 2.00]

.03

[−.06, .14]

1.90

[1.71, 2.11]

N = 264;T = 1, 000
.04

[−.04, .14]

1.90

[1.73, 2.08]

.02

[−.07, .11]

1.95

[1.77, 2.14]

The table reports simulation results for the system Et−1

[
rm,t − b0 − b2σ

2
t−1

]
= 0. High frequency returns

are assumed to be generated by Equation (3), where the diffusion term σ2
tj

is assumed to follow a lognormal

process, while the drift term µtj= b0+b2σ
2
(t−1)j

, with b0= 0 and b2=2. The table reports the mean

and the 95% confidence interval (in square brackets) of the standard GMM parameter estimates and the

bias-corrected estimates across 2000 simulations.
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Table IV: Estimation Results at the Monthly Frequency

Sample
Bias-Uncorrected

Estimators

Bias-Corrected

Estimators

b0 b1 b2 b3 bbc0 bbc1 bbc2 bbc3

Panel A: Et−1 [rm,t − b0 − b1υt] = 0

1947:01-2018:12 .01
(6.13)

−2.41
(−2.21)

1947:01-1982:12 .01
(1.26)

1.43
(.28)

1983:01-2018:12 .02
(5.16)

−2.79
(−2.42)

Panel B: Et−1 [rm,t − b0 − b1υt−1] = 0

1947:01-2018:12 .01
(7.18)

−1.27
(−2.35)

−.01
(7.46)

−1.47
(−2.79)

1947:01-1982:12 .01
(2.59)

.72
(.28)

.01
(2.52)

.88
(.34)

1983:01-2018:12 .01
(5.56)

−1.42
(−2.61)

.01
(5.83)

−1.66
(−3.05)

Panel C: Et−1 [rm,t − b0 − b1υt − b2υt−1 − b3rm,t−1] = 0

1947:01-2018:12 −.004
(−.04)

10.5
(.96)

−6.19
(−.90)

.14
(1.14)

−.004
(−.30)

16.7
(.97)

−10.3
(−.93)

.16
(.87)

1947:01-1982:12 −.02
(−.79)

33.4
(1.13)

−13.6
(−1.05)

.30
(1.39)

−.03
(−.93)

52.0
(1.36)

−25.1
(−1.51)

.40
(1.42)

1983:01-2018:12 −.003
(−.17)

9.81
(.83)

−5.84
(−.84)

.15
(.75)

−.008
(−.35)

15.9
(.86)

−9.85
(−.88)

.17
(.55)

The table reports estimation results at the monthly frequency for exactly identified systems.
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Table V: Estimation Results at the Monthly Frequency for Over-Identified Systems

Bias-Uncorrected

Estimators

Bias-Corrected

Estimators

b0 b1 b2 b3 Jstat bbc0 bbc1 bbc2 bbc3 Jstat

Panel A: Et−1 [rm,t − b0 − b1υt] = 0

1947:01-2018:12 .01
(5.14)

−1.38
(−1.17)

9.1
(.01)

1947:01-1982:12 .01
(1.89)

−.63
(−.12)

11.4
(.003)

1983:01-2018:12 .02
(4.66)

−2.28
(−1.96)

3.22
(.20)

Panel B: Et−1 [rm,t − b0 − b1υt−1] = 0

1947:01-2018:12 .01
(7.62)

−1.60
(−3.14)

7.51
(.023)

.01
(7.85)

−1.88
(−3.56)

7.56
(.023)

1947:01-1982:12 .01
(2.58)

1.37
(.47)

11.6
(.003)

.01
(2.47)

1.64
(.57)

11.6
(.003)

1983:01-2018:12 .01
(5.64)

−1.67
(−3.28)

1.75
(.42)

.01
(5.87)

−2.00
(−3.65)

1.75
(.42)

Panel C: Et−1 [rm,t − b0 − b1υt − b2υt−1 − b3rm,t−1] = 0

1947:01-2018:12 .002
(.38)

8.32
(1.69)

−4.90
(−1.57)

.13
(1.77)

.16
(.92)

.001
(.12)

10.9
(1.88)

−6.76
(−1.79)

.12
(1.51)

.13
(.92)

1947:01-1982:12 .001
(.08)

8.48
(.51)

−1.41
(−.18)

.11
(.85)

12.1
(.002)

.000
(.04)

9.68
(.58)

−2.23
(−.28)

.12
(.89)

12.3
(.002)

1983:01-2018:12 .005
(.82)

3.49
(.94)

−2.04
(−1.06)

.08
(.92)

.52
(.77)

.005
(.70)

4.62
(1.21)

−2.84
(−1.41)

.07
(.82)

.34
(.77)

The table reports estimation results at the monthly frequency for over identified systems. The short term

risk free rate and the default spread are used as instruments, in addition to the lagged integrated variance.
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Table VI: Estimation Results For Subperiods

Sample
Bias-Uncorrected

Estimators

Bias-Corrected

Estimators

b0 b1 bbc0 bbc1

Panel A: Et−1 [rm,t − b0 − b1υt] = 0

Expansions .02
(3.03)

−3.88
(−1.14)

Recessions .01
(2.07)

−1.90
(−1.90)

Panel B: Et−1 [rm,t − b0 − b1υt−1] = 0

Expansions .01
(7.18)

−1.00
(−1.78)

.01
(7.61)

−1.23
(−2.49)

Recessions .01
(1.82)

−1.42
(−1.55)

.01
(1.93)

−1.57
(−1.73)

The table reports estimation results at the monthly frequency for exactly identified systems.
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Figure 1

Market Returns & Realized Volatility, 1947:01-2018:12
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Notes: The figure plots the time series of the monthly stock market returns and realized volatility over the

full sample period 1947:01-2018:12. The realized variance for a given month is computed as the sum of

squares of the daily returns within the month.
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