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ESTIMATIONS OF THE BEST CONSTANT INVOLVING

THE L� NORM IN WENTE�S INEQUALITY AND

COMPACT H�SURFACES IN EUCLIDEAN SPACE

GE YUXIN

Abstract� In the �rst part of this paper� we study the best constant
involving the L� norm in Wente�s inequality� We prove that this best
constant is universal for any Riemannian surface with boundary� or re�
spectively� for any Riemannian surface without boundary� The second
part concerns the study of critical points of the associate energy func�
tional� whose Euler equation corresponds to H�surfaces� We will estab�
lish the existence of a non�trivial critical point for a plan domain with
small holes�

�� Introduction

Let � be a smooth and bounded domain in R�� We denote V � fa �
H����� a �� constantg and V� � V �H�

����� Given two functions a� b � V �
we denote by � the unique solution in W ������ of the Dirichlet problem� ��� � axby � aybx� in �

� � �� on ���
�	�	�

where subscripts denote partial di
erentiation with respect to coordinates�
By developing a previous work from H� Wente ���� H� Brezis and J��M�

Coron �� showed the following result�

Theorem 	�	� The solution � of equation ����� is a continuous function on
�� and � � H����� Moreover there exists a constant C���� which depends
only on � such that

k�kL���� � kr�kL���� � C����krakL����krbkL���� �	���

This result is sharp in the sense that since the right hand side of �	�	� is in
L����� the classical theory of Calderon�Zygmund does provide estimates for
� only in Lq��� and W ��p��� for q �� and p � �� Note that equation �	�	�
appears in many problems arising in physics and geometry� and Theorem
	�	 has many applications�

Later on� F� Bethuel and J��M� Ghidaglia �� proved that in fact one can
�nd a constant C���� which does not depend on �� We are interested here
in the optimal �i�e� smallest� value of this constant such that estimates
analogous to �	��� hold� To be more precise we denote by C���� the best
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��� GE YUXIN

constant involving the L��norm in the estimations and by C���� for the
L��norm� i�e�

C���� � sup
a�b�V

k�k�
krak�krbk�

� �	���

C���� � sup
a�b�V

kr�k��
krak��krbk��

� �	���

S� Baraket �� obtained that C���� � �
�� for simply connected domain ��

This result has been recently extended to any domain by P� Topping ��	�
Our aim in this paper is to study C����� Thus we consider the following
energy functional de�ned on V 	 V

E�a� b����
kr�k��

krak��krbk��
� �	���

where a� b � V � and � is given by �	�	��
In this paper� we will prove the following main results�

Theorem 	��� Let � be a smooth bounded domain in R�� Then we have

C���� �
�

	��
�

Moreover� the best constant is achieved if and only if � is simply connected�

Notice that the functional E�a� b��� is invariant under the action of con�
formal di
eomorphisms on the domain � �see �	��� As a consequence we
deduce that C���� and C���� depend only on the conformal type of ��
Moreover it implies that the functional E makes sense on any Riemann sur�
face �i�e� a surface equipped with a conformal structure� with or without
boundary� In section �� we prove generalizations of Theorem 	��� namely

Theorem 	��� Let M be a Riemann surface with a non empty boundary�
then

C��M� �
�

	��
and the maximum in ����� is achieved if and only if M is topologically a
disc�

Theorem 	��� Let M be a Riemann surface without boundary� then

C��M� �
�

���

and the maximum in ����� is achieved if and only if M is topologically a
sphere�

An interesting observation� due to F� H�elein �	�� is that the study of
E leads to a solution of the H�surface equation ��u � ux 	 uy � satis�ed
by surfaces of constant mean curvature in R	 in conformal representation�
For this purpose� we will look for critical points of E� Note that direct
variational approaches on that problem were developed in ��� �	� and ����
In view of Theorem 	��� we can not maximise the problem if � is not simply
connected� The major obstruction in proving the existence of a maximum
comes from the fact that the norms krakL� and krbkL� are not continuous
under weak convergence in L�� Indeed� for any smooth bounded domain in
plan� concentration phenomena occur in the maximizing sequence as shown
ESAIM� Cocv� June ����� Vol� 	� 
�	�	



WENTE
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in section � of this paper� However� making use of a topological method�
invented by J��M� Coron ��� we establish the following result of existence�

Theorem 	��� Let � be the unit disc perfored with small holes� Then E
admits a non trivial critical point�

This paper consists of two parts� sections ��� are concerned with the
estimations of the best constant involving the L� norm in Wente�s inequality�
the remainder is devoted to search of a critical point for E� a study of the
compactness of minimizing sequences� of the Palais�Smale condition and
some existence results through a topological argument�

Part A� Estimations of the best constant involving the

L
� norm

�� Outline

In this part� we will study the energy functional E and estimate the value
of C����� Our approach is the following� In section �� we will look for
the Euler�Lagrange equation for critical points of the functional E�a� b���
on the �manifold� where krak� � krbk� � 	� After a scaling which uses
the Lagrange multiplier� we see that any critical point leads by a canonical
way to a solution of the H�surface equation� that is� the equation satis�ed
by a conformal parameterization of a surface when its mean curvature is
constant�

In section �� we will calculate C���� in the case where � is a smooth
bounded domain in R�� With the help of the isoperimetric inequality� we
will show that C���� �

	
��� � If � is a disc� it is easy to show also that this

constant is achieved� The next question is to know whether the maximum
of E is achieved for a multiply connected domain� This is an interesting
problem related to surfaces of constant mean curvature� Recall that for a
long time� we thought that there does not exist an immersion with constant
mean curvature from torus into R	� In 	���� H� Wente has given a coun�
terexample� In view of Euler equation� the torus of Wente gives rise to a
critical point of our functional E on an annulus� Indeed� let � � �a� b� ��
be a critical point of E on an annulus� we construct a compact oriented
Riemannian surface M � �

S
��

 � by sticking � and a copy of �� pro�

vided with opposing orientation and de�ne a C� map  � from M into R	

by  � � � on � and  � � �a� b���� on  �� Would this map be conformal�
then its image would be a torus of constant mean curvature� Conversely the
torus of Wente corresponds to a critical point of our functional E on some
annulus� Unfortunately� this surface can not be obtained by maximizing
the energy functional E and Wente tori thus correspond to nonmaximizing
critical points of E� We will prove this fact in section ��

At end of this part� we will also generalize all these results on a compact
manifold without boundary� An interesting fact is that C��M� is also uni�
versal and is just half of C����� Furthermore� a maximal critical point on
a domain in the plan gives rise to a maximal critical point on a compact
manifold� by sticking�
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��� GE YUXIN

�� The Euler�Lagrange Equation

Definition ��	� A point �a� b� � V 	 V is critical for the energy functional
E if it satis�es the following conditions�

�i� rE�a� t�� b� s	���j�s�t������ � �� for all �� 	 � H�����
�ii� if 
t � � �
 � is a family of di
eomorphisms� depending di
erentiably

on t� with 
� � id�� then we have

d

dt

����
t�

E�a � 
t� b � 
t��� � ��

We remark that E is invariant under a conformal transformation of � and
E��a� �b��� � E�a� b��� for all �� � � R�� Hence� without loss of generality�
we can assume that krak� � krbk� � 	�

Theorem ���� Assume that �a� b� � V 	V is a critical point of E such that
� �� �� Then

�i�

Z
�
rarb � ��

�ii�
�a

�n
�

�b

�n
� � on �� where n � �n�� n�� is the normal vector on ���

�iii� there exists � � R� such that � � �a�� b�� ��� � ��a� �b� ���� satis�es	��� ���� � fa�� b�g�
��a� � fb�� ��g�
��b� � f��� a�g�

���	�

where f� �g � x�y � y�x�
�iv� � is C� on ��
�v� the Hopf di
erential � � h�z�� �z�i is holomorphic� i�e�

��zh�z�� �z�i � ��

Moreover� if we denote t � �n�� in� the unit complex number tangent
to ��� we have

Im��t�� � � on ���

�vi� If � is simply connected� then the Hopf di
erential vanishes	

h�z�� �z�i � ��

where �z �
	

�
��x � i�y�� which implies that � is conformal�

�vii� if � is an annulus� then there exists c � R such that

h�z�� �z�i � c

z�
�

First we prove some technical lemma�

Lemma ���� �see �� and also ����� If � � H�
� ��� � L���� �resp� � �

H�
������ a � H���� � L���� �resp� a � H����� and b � H���� �resp�

b � W �������� then we haveZ
�
�fa� bg�

Z
�
afb� �g�
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Proof� Assuming �rst that �� a� b � C������ we haveZ
�
�fa� bg �

Z
�
��axby � aybx�

�

Z
�
���aby�x � �abx�y �

Integrating by parts and using the fact � � � on ��� we obtainZ
�
�fa� bg�

Z
�
a�bx�y � by�x� �

Z
�
afb� �g�

Now� we consider � � L�����H�
����� b � H���� and a � L�����H�����

We choose three suitable sequences of smooth functions f�ngn�N� fangn�N
and fbngn�N satisfying the following conditions�

�n �
 � in H���� and �n �
 � weakly � in L�����
bn �
 b in H�����
an �
 a in H���� and an �
 a weakly � in L�����

We state that

j
Z
�
�fa� bgj � k�kL�krak�krbk��

j
Z
�
afb� �gj � kakL�kr�k�krbk��

Passing to the limit in the inequality for an� bn and �n� this completes the
proof�

Lemma ���� �see �� and see also ����� Let � � H����R	� be a solution of
equation ���	� in the sense of distributions� Then � � C����R	��

Proof� �of Theorem ����� Let at � a � tb� bt � b� We denote by �t the
unique solution in H�

� ��� of equation �	�	�� Obviously� we have �t � � for

all t � R and kratk�� � krak�� � �t
R
�rarb�O�t��� Then �i� follows from

the de�nition of a critical point�
Given at � a� t�� bt � b with � � C������ We denote � the unique solution
in H�

���� of equation �	�	� with a � �� that is�� ��� � f�� bg� in �
� � �� on ���

It is clear thatZ
�
jr�tj� �

Z
�
jr�j� � �t

Z
�
r� � r� � O�t���

By Lemma ���� Z
�
�f�� bg �

Z
�
�fb� �g�

Hence� we obtainZ
�
jr�tj� �

Z
�
jr�j� � �t

Z
�
������ � O�t��

�

Z
�
jr�j� � �t

Z
�
�f�� bg� O�t��

�

Z
�
jr�j� � �t

Z
�
�fb� �g� O�t���
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On the other hand�Z
�
jratj� �

Z
�
jraj� � �t

Z
�
ra � r� �O�t���

Thus� we have

E�at� bt��� �

kr�k�� � �t

Z
�
�fb� �g�O�t���

krak�� � �t

Z
�
ra � r�

�
krbk�� � O�t��

�

With the de�nition of critical point� we conclude thatZ
�
�fb� �g� kr�k��

Z
�
ra � r�� � � C������

Performing analogous deformations for b� we obtainZ
�
	f�� ag � kr�k��

Z
�
rb � r	� for any 	 � C������

In particular� if we set �� 	 � C�
� ���� we deduce that���������

��a �
	

kr�k��
fb� �g�

��b � 	

kr�k��
f�� ag�

�����

In order to establish the property �ii�� we put �� 	 � C������ Setting
� � 	�kr�k�� the property �iii� is demonstrated�
In view of Lemma ���� � is C� on �� To prove the regularity of u up to the
boundary� �x x � ��� So there exists a conformal map I from B�x� r�� �
onto B� � B � fx � �g� where B is a unit disc� Without loss of generality�
we can assume that � is de�ned on B�� We de�ne the extensions of � on
B as follows�

f���x� y� � � ���x� y�� if x � ��
�����x� y�� if x � ��

ea��x� y� � � a��x� y�� if x � ��
a���x� y�� if x � ��

and

eb��x� y� � � b��x� y�� if x � ��
b���x� y�� if x � ��

Clearly�  � is in H��B�R	�� We will prove that  � is also a solution of
equation ���	�� Thus� by Lemma ���� we conclude that � is C� on �� Set
ESAIM� Cocv� June ����� Vol� 	� 
�	�	



WENTE
S INEQUALITY AND COMPACT H�SURFACES ���

� � C�
� �B�� From the properties �ii� and �iii�� we have

Z
B

rea� � r� �

Z
B�

ra� � r� �

Z
B�

rea� � r�
�

Z
B�

ra� � r� �

Z
B�

ra��x� y� � r����x� y��

�

Z
B�

fb�� ��g� �

Z
B�

feb�� e��g�x� y����x� y�
�

Z
B�

fb�� ��g� �

Z
B�

feb�� e��g��x� y���x� y�
�

Z
B
feb�� e��g��

i�e� ��ea� � feb�� e��g�
With the same arguments� we deduce that

��eb� � fe���ea�g�
On the other hand� we haveZ

B
re�� � r� �

Z
B�

r�� � r� �

Z
B�

re�� � r�
�

Z
B�

r�� � r� �
Z
B�

r���x� y� � r����x� y��

� �
Z
B�

���� �

Z
B�

����x� y����x� y�

�

Z
B�

fa�� b�g� �
Z
B�

fa�� b�g�x� y����x� y�

�

Z
B
fea��eb�g��

that is� ��e�� � fea��eb�g�
To prove the property �v�� set at � a � 
t� bt � b � 
t where 
t is a family of

smooth di
eomorphisms of �� Suppose that
d
t
dt

����
t�

� �X�� X��� Clearly�

�X�� X�� � n � � on �� where n is the normal vector on ��� Moreover� we
have Z

�
����t�� �

Z
�
�fa� bg � 
t�det�r
t��

�

Z
�
fa� bg�� � 
�t�

� �
Z
�
���� � 
�t�

�

Z
�
r� � r�� � 
�t��
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i�e�

Z
�
r�t � r� �

Z
�
r� � r�� � 
�t��

However� from Theorem 	�	� we get

�	

�

Z
�
jr�j� �

Z
�
r�t � r� �

	

�

Z
�
jr�tj� �O�t���

�	

�

Z
�
jr�j� �

Z
�
r� � r�� � 
�t� � 	

�

Z
�
jr�� � 
�t�j� � O�t���

Thus� we get Z
�
jr�� � 
�t�j� �

Z
�
jr�tj� � O�t���

This means that

E�at� bt��� �
kr�� � 
�t�k��
kratk��krbtk��

� O�t���

On the other hand� it is easy to get the following relations�

d�kratk���
dt

�����
t�

� �

Z
�
����xa�

� � ��ya�
����xX

� � �yX
��

� ��xa�ya��yX
� � �xX

��

d�krbtk���
dt

�����
t�

� �

Z
�
����xb�

� � ��yb�
����xX

� � �yX
��

� ��xb�yb��yX
� � �xX

��

d�kr�� � 
�t�k���
dt

�����
t�

� ��
Z
�
����x��

� � ��y��
����xX

� � �yX
��

� ��x��y���yX
� � �xX

���

Thus� we get the equalityZ
�

h
��x��

� � ��y��
� � kr�k�����xa�� � ��ya�

� � ��xb�
� � ��yb�

��
i

	 ��xX
� � �yX

��

� ���x��y�� kr�k����xa�ya� �xb�yb���yX
� � �xX

�� � �

i�e� Z
�

	
�j�x�j� � j�y�j����xX� � �yX

��

� � � �x�� �y� � ��yX
� � �xX

��



� �� �����

A convenient way to rewrite this equation is to set � � j�x�j��j�y�j���i �
�x�� �y� �� and we obtain

Re

Z
�
���z�X

�� iX��dxdy � ��

where ��z � �
���x � i�y�� In particular� if we put X� � iX� � C�

� ���� we
deduce that

��z� � ��
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i�e� � is holomorphic�
Now� if we use �X�� X�� such that �X�� X�� � f��n�� n�� on ��� where f
is an arbitrary continuous real�valued function on ��� we obtain

� � Re

Z
�
��z���X

�� iX���dxdy

� �Im

Z
��

�

�
ft�ds�

thus Im��t�� � � on ��� The property �v� is proved�
If � is a disc or an annulus� from �v�� we obtain Im��z�� � � on ���

From the principle of maximum� we have Im��z�� � � on � since Im��z��
is harmonic� So we deduce that there exists c � R such that �z� � c� In the
case where � is a disc� we have moreover

lim
z��

�z� � ��

So we conclude the properties �vi� and �vii��

Remark ���� If �a� b� � V� 	 V� is a critical point of E in V� 	 V�� then all
the conclusions of Theorem except �ii� are also right�

Remark ���� We know that every plane domain of one connectivity can be
mapped conformally onto some annulus �see Ahlfors �	�� Thus� we obtain
a characterization of Hopf�s di
erential �� But for a multiply connected
domain �� the characterization of � is less simple�

�� Isoperimetric inequality

In the following � denotes a smooth simply connected domain� For sim�
plicity� we suppose that � is a disc� that is� � � B � f�x� y��r � 	g� We
check easily that a stereographic representation of the upper hemi�sphere

�a� b� �� �

�
�x

	 � r�
�

�y

	 � r�
�
��	� r��

	 � r�

�

veri�es all the properties of Theorem ���� i�e� is a critical point of E� It is
just a maximum of E� More precisely� we have the following result�

Theorem ��	� Let � � B� then

�i� sup
a�b�V

E�a� b����
�

	��
and the map

�
x

	 � r�
�

y

	 � r�

�
achieves the best

constant�

�ii� sup
a�b�V�

E�a� b����
�

���
and the best constant is not achieved in V�	V��
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First� we will introduce the following notations� Given �� ! � H����Rn��
we de�ne

h��!iD �

Z
�
h�x�!xi� h�y�!yi �

Z
�
hr��r!i

j�j�D � h���iD
V ��� �

	

�

Z
�
�� ��x 	 �y�� if � � C�����R	�

L��� �

Z
�

q
f��� ��g� � f��� �	g� � f�	� ��g��

where � � ���� ��� �	�

�a� b� ��V � L�!�� where ! � �a� b� ���

In the proof� we will make use of the following lemmas�

Lemma ���� �see ���� Let �� ! � C�����R	� �H����R	� be two mappings
such that �j�� and !j�� describe the same oriented Jordan curve �� then

jV ���� V �!�j� � �L��� � L�!�	

���
� ���	�

In fact� this Lemma is equivalent to the isoperimetric inequality�

Lemma ���� �see ����� Let � � C�����R	� � C����R	� � H�
� ���R

	� be a
solution of equation ���	�� then � � ��

Proof� �of Theorem ��	�� Let a� b � C�����R	� and � be the corresponding
solution of �	�	�� By Lemma ���� we get

�a� b� ��V �

Z
�
afb� �g�

Z
�
bf�� ag�

Z
�
�fa� bg�

Now the two vector functions

� �

�
a

jajD �
b

jbjD �
�

j�jD

�
and ! �

�
a

jajD �
b

jbjD �
��
j�jD

�
�

have the same boundary values� Noting that

V ��� � �V �!� and L��� � L�!� � 	

�
j�j�D �

�

�
�

from Lemma ���� we obtain that

jV ���j� � �

	��
�

Consequently�

kr�k�� �
Z
�
������ �

Z
�
�fa� bg � �a� b� ��V �

r
�

	��
jajDjbjDj�jD�

that is� E�a� b���� �

	��
� Then the density of C����� into H���� implies

that

sup
a�b�V

E�a� b���� �

	��
�

On the other hand� it is easy to check that

E

�
x

	 � r�
�

y

	 � r�
��

�
�

�

	��
�
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Hence� we deduce the property �i�� Similarly� putting ! � �� we get

E�a� b���� �

���
� for all a� b � H�

�����

We set a��� �
�x

�� � r�
� b��� �

�y

�� � r�
� a��� �

�x

	 � ��
and b��� �

�y

	 � ��
�

We claim that

kra���k�� � krb���k�� � �

Z �

��

�

�	 � r��dr

�	 � r��
�

kra���k�� � krb���k�� �
���

�	 � ����
�

where r �
p
x� � y�� Set a� � a���� a��� and b� � b���� b���� We denote by

�� the unique solution of equation �	�	�� Then �� can be written as follows�

�� �
�� � r�

���� � r��
� �� � 	

���� � 	�
� ���

where �� is the unique solution of the following equation� ���� � �fa���� b���g � fa���� b���g� fa���� b���g� in �
�� � �� on ���

�����

Using Theorem 	�	� we have kr��k�� � O����� Hence�

kr��k�� �
�

	�

Z �

��

�

rdr

�	 � r��
� O����

It is easy to see that

E�a�� b���� �
 �

���
as � �
 ��

Finally� we obtain

sup
a�b�V�

E�a� b����
�

���
�

Now we suppose that the best constant is achieved in the point �a� b� �
V� 	 V�� By Theorem ���� there exists � � R� such that ��a� �b� ���� sat�
is�es equation ���	�� From Lemma ��� and Theorem 	�	� ��a� �b� ���� �
C�����R	��C����R	�� And� applying Lemma ���� we obtain ��a� �b� ���� �
�� Thus� this contradiction completes the proof�

Remark ���� Because of the isoperimetric inequality� we always have

sup
a�b�V

E�a� b���� �

	��
and sup

a�b�V�
E�a� b���� �

���

for any multiply connected domain � in R�� Moreover in the light of ��� this
theorem implies that the embedding of Hardy space H��R�� into H���R�� is
not compact� Indeed� let �an� bn� � V� 	 V� be a maximizing sequence of E
in V�	V�� Clearly� fan� bng is bounded in H��R��� but it does not converge
strongly in H���R���

In the following� we consider a multiply connected domain �� We set
m��� � sup

a�b�V�
E�a� b���� The analogue of Theorem ��	 is following result�
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Theorem ���� Let �� �� be two smooth bounded domains such that � � ���
Then m��� � m����� Moreover� we have

m��� �
�

���
� �����

Furthermore� the best constant is not achieved in V� 	 V��

Proof� Let a� b be two functions in H�
� ���� We de�ne a embedding of H�

����
into H�

����� as follows� to any � � H�
����� we associated �� � H�

����� such
that �

���x� y� � ��x� y�� if �x� y� � �
���x� y� � �� if �x� y� �� ��

We de�ne a energy functional E� on H�
����� by following�

E��	� �
	

�

Z
��

jr	j� �
Z
��

f�a��bg	�

where 	 � H�
������ We denote �� the unique solution of equation �	�	� in

H�
������ i�e� � ���� � f�a��bg� in ��

�� � �� on ����
�����

Recall that �� is the unique minimal point of functional E�� Thus� we get
E�� ��� � E����� where � is the unique solution of equation �	�	� in H�

� ����
Therefore� we obtain that

E�� ��� �
	

�

Z
�
jr�j��

Z
�
fa� bg�

�
	

�

Z
�
jr�j��

Z
�
������

� �	

�

Z
�
jr�j��

Similarly� E����� � �	

�

Z
��

jr��j��
Consequently� we deduce that

kr�k�L���� � kr ��k�L����� � kr��k�L������
But� stating that kr�ak�

L�����
� krak�

L���� and kr�bk�L����� � krbk�
L����� we

conclude that
E�a� b���� E��a��b�����

that is� m��� � m����� Now we choose B�z�� r�� � fz � C j jz � z�j � r�g
and B�z�� r�� � fz � C j jz � z�j � r�g such that B�z�� r�� � � � B�z�� r���
Thus� we obtain

�

���
� m�B�z�� r��� � m��� �m�B�z�� r��� �

�

���
�

Hence� ����� follows�
We suppose that the best constant is achieved in the point �a� b� � V� 	 V��
It is clear that

�

���
� E�a� b���� E��a��b� B�z�� r��� � �

���
�
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Then in the point ��a��b�� the best constant is achieved in V��B�z�� r��� 	
V��B�z�� r���� By Theorem ��	� we obtain a contradiction� Thus� the theo�
rem is proved�

Now we write � � B � Sn
i��i where �i � B for i � 	 to n is simply

connected� We will show the following result�

Theorem ���� Under the above notations� we have

C���� �
�

	��
� �����

Proof� Set a �
x

r� � 	
and b �

y

r� � 	
� Then� it is clear that the unique

solution in H�
��B� of �	�	� is

� �
	� r�

��r� � 	�
�

Choosing a sequence ftngn�N such that � � tn � 	 and tn �
 	 as n �
 ��
We de�ne the maps Tn by�

Tn�z� �
z � tn
	� tnz

which are conformal transformations from B to B� Denote an � a � Tn and
bn � b � Tn� clearly�

E�an� bn� B� �
�

	��

and the unique solution of �	�	� for an and bn is �n � � � Tn� Clearly�
an��

R
� an� bn��

R
� bn and �n tend to � weakly in H�� Let

Sn
i��i � B��� r��

Choosing  � C��R�� such that � �  � 	� supp�� � R
�nB��� r� and  � 	

on R� n B��� r�� with r � r� � 	� Setting  an � an and  bn � bn and  �n
the unique solution of �	�	� for a �  an and b �  bn in H�

� ���� Therefore� it
is easy to obtain �see Lemma ��� below�

lim
n�� kr�  �n � ��n�kL���� � ��

since �n �
 � weakly in H�
���� and strongly in L����� A simple computa�

tion leads to

lim
n��

kr���n�k��
kr ank��kr bnk

�
�

�
�

	��
�

Thus� we deduce that

lim
n��E� an� bn��� �

�

	��
�

On the other hand�

C���� � �

	��
�

Hence� ����� is proved�
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�� Generalization on manifolds

Recall �rst some de�nitions and notations �see ���� Let �M� g� be a
smooth two dimensional Riemannian manifold without boundary� Let fxig
�i � 	� �� be a local coordinate system� We can write g as following�

g � gijdx
i � dxj �

Where gij are the components of inverse matrix of the metric matrix �gij��
Assume that M is oriented and A an atlas compatible with orientations�

In the coordinate system fxig corresponding to ��� �� � A� de�ne the dif�
ferential ��form by

dV � � �
p
jgjdx� � dx�� ���	�

where jgj is the determinant of the metric matrix �gij�� � is called oriented
volume element� denoted by dV � In the following� we will use a local isother�
mal coordinate� Let � � �p�M�� We associate to �� a ���p��form ��� called
the adjoint of �� de�ned as follows�

�	 � �� �dx� � dx�� �dx� � �dx�� �� � 	� �����

Now� we de�ne �� by

�� � ��	�p ��� d � �� where p � deg���� �����

Then� the Laplacian operator " is de�ned by

"g � d� � �d� �����

Assume that p � �� clearly in a chart� we have

"g � � 	pjgj ��xi
�p

jgjgij �

�xj

�
� �����

Moreover� let M be compact� we de�ne the global scalar product h�� 	i of
two p�forms � and 	� as follows�

h�� 	i �
Z
M
��� 	���

Now we consider the vector space of smooth functions� We denote H �
f� � C��M�R�� k�kH� ��g where

k�kH� �

Z
M
�gij�d��i�d��j � ���� �

Z
M
�ri�ri�� �����

The Sobolev space H��M� is completion of H with respect to the norm
kkH�� In fact� H� is independent on the metric g� Then we have the Sobolev
embedding theorem and the Kondrakov theorem� that is�

Lemma ��	� For any p ��� the embedding H��M� �
 Lp�M� is compact�

On the manifold M � we consider the Dirichlet problem� that is� to solve
the following linear elliptic equations���

�g� � f�Z
M
�dV � ��

�����

where f � L��M��
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It is well known that there exists a unique weak solution � � H� of �����
if and only if

R
M f � �� Moreover� if f � Cr�� then � � C��r�� �r � � an

integer and 	 � � � ���
We denote H�

��M� � fa � H��M��
R
M adV � �g and de�ne fa� bgg as

follows�

fa� bgg � ��da� db�� �����

where a� b � H�
��M�� Thus� if in the chart U �M� g� is conformal to the

Euclidian metric� under corresponding local coordinate system� we can write

fa� bgg � 	pjgj�ax�bx��bx�ax�� and �g � � 	pjgj
�

��

��x���
�

��

��x���

�
�

We consider the following equation����
�g� � fa� bgg�Z
M
�dV � ��

�����

We will generalize Wente�s inequality on the manifold M � Our result is the
following�

Theorem ���� There exists a unique solution � � H�
� of ������ Further

more� the solution is continuous on M and there exists a constant C��M�
which depends on M such that

k�k� � kr�k� � C��M�krak�krbk�� �����

where krak�� �
Z
M

gij�da�i�da�jdV �

Z
M

riariadV for any a � H��M��

In the proof� we will use Green�s function� First� we give some properties
of Green�s function on manifolds�

Lemma ���� Under the above notations� there exists G�P�Q� a Green�s func
tion of the Laplacian which has the following properties	

�i� for all functions � � C�

��P � � V ��
Z
M

��Q�dV �Q� �

Z
M

G�P�Q�"g��Q�dV �Q�� ���	��

where V is the volume of the manifold M �
�ii� G�P�Q� is C� on M 	M minus the diagonal �for P �� Q��
�iii� there exists a constant K such that�������

jG�P�Q�j � K�	 � j log rj��
jrQG�P�Q�j � Kr���

jr�
QG�P�Q�j � Kr���

���		�

where r � d�P�Q��
�iv� there exists a constant B such that G�P�Q� � B� Since the Green�s

function is de�ned up to a constant� we can thus choose the Green�s
function so that its integral equals to zero�

�v� G�P�Q� � G�Q�P ��
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Proof� �of Theorem ����� Set a� b � C��M�� First� by Stokes� Formula� we
see that Z

M
fa� bggdV �

Z
M
da � db �

Z
M
d�a� db� � ��

Thus there exists the unique C� solution of ������ On the other hand�
there exists r� � � such that for any P � M the set B�P� �r�� � fQ �
M� d�P�Q� � �r�g is included in a local chart where g is conformal to
the Euclidian metric and corresponding coordinate system is fxig�i � 	� ���
First� we assume that there exists P� � M such that supp�a� � B�P��

r�
� ��

We divide M into two parts� that is� M � M� � M� where M� � fQ �
M� d�P�� Q� � r�

� g and M� � fQ �M� d�P�� Q� � r�
� g�

Case �	 P �M�� Hence� applying Lemma ���� we conclude that

j��P �j �

����Z
M
G�P�Q�"g��Q�dV �Q�

����
�

�����
Z
MnB�P� r�

�
�
G�P�Q�"g��Q�dV �Q�

�����
�

�����
Z
MnB�P� r�

�
�
G�P�Q�da� db

�����
� CK

�
	 � log

���r�
�

���� krak�krbk��

���	��

Case �	 P �M�� We consider the solution �� of the following equation� �g�� � fa� bgg� on B�P� r���

�� � �� on �B�P� r���
���	��

So �g��� ��� � � on B�P� r��� Using the maximum principle� we obtain

k�� ��kL��B�P�r��� � k�� ��kL���B�P�r��� � k�kL���B�P�r���� ���	��

However� by Theorem 	�	 and using the conformal chart fxig�i � 	� ��� we
have

k��kL��B�P�r��� � CkrakL��B�P�r���krbkL��B�P�r��� � Ckrak�krbk��
���	��

Combining ���	��� ���	�� and ���	��� we get

k�kL��B�P�r��� � Ckrak�krbk��
In general case	 using partition of unity� we deduce

k�k� � Ckrak�krbk��
Finally�

kr�k�� �

Z
M
�"g� �

Z
M
�fa� bgg �

Z
M
�da � db

� Ck�k�krak�krbk��
Thus� by density� the conclusion follows�
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Now� we consider the energy functional E�a� b�M� and C��M� de�ned as
the same way as before� i�e��

E�a� b�M� �
kr�k��

krak��krbk��
�

and

C��M� � sup
a�b�H�

�

E�a� b�M��

First� we will give the Euler equation for critical point�

Definition ���� A point �a� b� � H�
� 	 H�

� is critical for the energy func�
tional E if it satis�es the following condition�
rE�a� t�� b� s	�M�j�s�t������ � �� for all �� 	 � H�

��M��

Clearly� E is also invariant under a conformal transformation of M and
E��a� �b�M� � E�a� b�M� for all �� � � R�� so without loss of generality�
we can assume that krak� � krbk� � 	�

Theorem ���� Assume that �a� b� � H�
� 	 H�

� is a critical point of E such
that � �� �� then there exists � � R� such that

�i�

Z
M
�ra�rb� � ��

�ii� denote � � �a�� b�� ��� � ��a� �b� ����� Then we have��� �g�� � fa�� b�gg�
�ga� � fb�� ��gg�
�gb� � f��� a�gg�

���	��

�iii� if M is a surface homeomorphic to S�� then � is conformal�

We need some similar technical lemmas as Lemmas ��� to ����

Lemma ���� If � � H��M��L��M�� a � H��M��L��M� and b � H��M��
then we have Z

M
�fa� bgg �

Z
M
afb� �gg� ���	��

Proof� Setting �� a� b � C��M�� we haveZ
M
�fa� bgg �

Z
M
�da� db

�

Z
M
d�a��� db�

Z
M
ad� � db

�

Z
M
d�a�b� �

Z
M
afb� �gg

�

Z
M
afb� �gg �Stokes� Formula��

However� we see that����Z
M
�fa� bgg�

���� � k�k�krak�krbk������Z
M
afb� �gg�

���� � kak�kr�k�krbk��

By approximation� ���	�� follows�
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Lemma ���� �see �	��� Let # be a surface homeomorphic to S� with a
metric tensor given in the local coordinates by bounded measurable functions
satisfying

g��g�� � g��� � � � � almost everywhere�

Then there is a homeomorphism h � S� �
 # satisfying the conformality
relations ���������

gij
�hi

�x

�hj

�x
� gij

�hi

�y

�hj

�y
�

gij
�hi

�x

�hj

�y
� ��

���	��

almost everywhere�
If �gij� � C�� then h is a di
eomorphism of class C���� satisfying ������
everywhere� If # is of class Ck��� C� or C�� then so is h�

Proof� �of Theorem ����� We only need to prove the property �iii�� The proof
of other assertions is the same that for Theorem ���� Thanks to Lemma ����
for simplicity� we can assume that M is S�� We use the coordinates of
stereographic projection� that is�

P � R
� �
 S� � ��� ���	�

�x� y� ��

�

�x

	 � r�
�

�y

	 � r�
�
	� r�

	 � r�

�
�

With these coordinates� we have

�"� � �x ��y �

Hence� we de�ne the Hopf�s di
erential � by � � j�xj��j�y j���ih�x��yi�
Clearly� a simple computation leads

��z� � ��

So� � is holomorphic on R�� On the other hand�

��x� y� �
��

�x� iy��
h���z����x�� y��� ���z����x�� y��i�

where �x�� y�� � �
x

r�
�
y

r�
� and z� � x� � iy�� Therefore�

lim
jzj��

��z� � ��

Thus� the conclusion follows�

Remark ���� By Lemma ���� � is C��

Actually� we calculate C��M�� In fact� we show that C��M� is indepen�
dent on the compact manifold M �

Theorem ���� Let M be a compact oriented Riemannian surface� then

C��M� �
�

���
� ���	��

ESAIM� Cocv� June ����� Vol� 	� 
�	�	



WENTE
S INEQUALITY AND COMPACT H�SURFACES ���

Proof� Denote � �

�
a

krak� �
b

krbk� �
�

kr�k�

�
� �a�� b�� ���� Thus� the area

of surface ��M� is�

A��� �

sZ
M
fa�� b�g�g � fb�� ��g�g � f��� a�g�gdV

� 	

�

Z
M
�d�� d��dV �

�

�
�

On the other hand� the oriented volume bounded by ��M� is

V ��� �
	

�

Z
M
���fa�� b�gg � a�fb�� ��gg � b�f��� a�gg�dV

�

Z
M
��fa�� b�ggdV

�
	

krak�krbk�kr�k�

Z
M

�da � db � kr�k�
krak�krbk�k

�

In view of the isoperimetric inequality� we have

jV ���j� � jA���j	�
Hence�

E�a� b�M�� �

���
�

Now� �x Q �M � Choose a local chart U of Q which is conformal to an open
subset W of R�� Denote by fxig�i � 	� �� the corresponding coordinates�
Choose a function  � C�

� �W �� Set

a� � �x�� x��
�x�

�� � r�
and b� � �x�� x��

�x�
�� � r�

where r� � x�� � x��� It is easy to check that

lim
���

E�a�� b��M� �
�

���
�

Hence� the theorem is proved�

Theorem ��	�� If M is not homeomorphic to S�� the maximum is not
achieved�

First� we need a result of Hartman and Wintner�

Lemma ��		� �see �	��� Let L �
�X

i�

��

�x�i
�

�X
i�

bi�x�
�

�xi
� c�x�� where bi

and c be continuous functions in B� Let u be a solution of class C� for the
equation

L�u� � �� in B�

or� more generally� let u be a function of class C� satisfyingZ
J

�u

�x�
dx� �

Z
J

�u

�x�
dx� �

Z
E

�
�X

i�

bi
�u

�xi
� cu

�
dx�dx��
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for every domain E bounded by a piecewise smooth C� Jordan curve J�
contained in B� Then if u satis�es

u�x� � o�j x jn�� for some n � N� ������

it must satisfy that

lim
x��

�zu

zn
�x� exists� ����	�

where z � x��ix� and �z �
�
���x��i�x��� Moreover� if u �� �� then �n� � N�

such that

lim sup
x��

j u�x� j
j x jn�

� �� ������

Proof� �of Theorem ��	��� Suppose that � � �a� b� �� is a maximum of E

with krak� � krbk� � kr�k� �
p
������ From the proof of Theorem ����

� is a conformal map and ��M� is a sphere S�� with radius equal to �� By
the property of degree� we deduce that

deg��� �

Z
M

���Z
S�
�

�
�

where � � �
��x�dx� � dx	 � x�dx� � dx	 � x	dx� � dx�� is the area element

on the sphere S�� � A simple calculation leads to deg��� � 	 if we choose
a suitable orientation on the sphere� On the other hand� if �x�� y�� is a
branch�point� using Lemma ��		� we obtain that there exists n � N

� and
c � C 	 � f�g such that

�z� � c�z � z��
n � o��z � z��

n��

where z� � x�� iy�� Thus� the branch�points are isolated� By the condition
of conformality and using the stereographic coordinates� we conclude that
det�����x� � � and � is a harmonic map� Moreover� � is holomorphic�
We claim that � has no branch�points� Otherwise� there exists c � C � and
n � N� such that

 ��z� � c�z � z��
n�� � o��z � z��

n����

where  � is the stereographic coordinates on the sphere and z� is a branch�
point� This contradicts the fact that the degree of � is equal to 	� Hence�
we deduce that � is a covering map since M is compact� And since the
degree of � is one� it is a di
eomorphism� This is a contradiction�

Corollary ��	�� If � is a multiply connected domain in R�� then C����
can not be achieved�

Proof� Suppose that � � �a� b� �� is a maximum of E� In view of Theorem
���� � is C�� We construct a compact oriented Riemannian surface M �
�
S
��

 � by sticking � and a copy of �� provided with opposing orientation�

We de�ne a C� map  � on M by

 � � � on � and  � � �a� b���� on  ��
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Thus�  � is a maximum of E on M � The result follows from the previous
theorem�

Part B� Compact H�surfaces in Euclidean space

�� Precise statement of the problem and setting of the

results

In this part� we consider the following equation

��u � ux � uy � in �� ���	�

where u � C����R	�� The equation ���	� is satis�ed by surfaces of mean
curvature �

� in R	 in conformal representation� Thus we will call ���	� the
incomplete H�system� Moreover� it is of variational type� The classical
energy functional associated with this equation is

E��u� �
	

�

Z
�
jruj�dxdy � 	

�

Z
�
u � ux � uydxdy�

As before� we study a new variational approach of ���	� proposed by H�elein
in �	�� In fact� in view of Theorem 	�	� we can consider the new energy
functional E�a� b���� or equivalently�

F �a� b��� �
krak�L���� � krbk�L����

�kr�kL����
� de�ned for a� b � H�����

or�

F��a� b��� �
	

�
�krak�L���� � krbk�L������ de�ned for all a� b �M�

where M � f�a� b� � H� 	H�� kr�kL� � 	g� Recall that� by Theorem ����
we can recognize in ���	� the Euler�Lagrange equation associated to the crit�
ical points of these functionals� through the substitution u � ��a� �b� ����
for � � krbk�� Moreover� we have

� �
�a

�n
�

�b

�n
� � on ��� �����

where n � �n�� n�� is the normal vector on ��� The conditions on boundary
allow us to construct a solution of ���	� from a compact oriented Riemannian
surface into R	 by sticking two copies of �� Thus� if � is an annulus� we
may expect to �nd again Wente�s torus� which is an immersion of a torus
into R	 with a constant mean curvature� For this purpose� we will look for
critical points of F on an annulus�

Our �rst task is to study a minimizing sequence for F � In part one�
we saw that the minimum of F is a universal constant for any bounded
and smooth domain� Here we will deal with a minimizing sequence for the
energy functional F� and we will show that we can not minimize the energy
functional F on a multiply connected domain� Our �rst result provides a
complete description of a minimizing sequence�

Theorem ��	� If � is simply connected� there exists some �a� b� �� which is
solution of ����� such that

F �a� b��� � G��� � inf
a�b�M

F �a� b����
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Moreover� if �an� bn� �n� is a minimizing sequence for F with �an� bn� � M
and

R
� an �

R
� bn � �� then �an� bn� �n� up to conformal transformations

is relatively compact in H�� If � is multiply connected� then there exists
x� � �� such that

�an� bn� �n� �
 �G���� G���� 	��x� in D��R���

where �x� is the Diracmass of mass � concentrated at x��

Remark ���� Clearly�

C���� �
	

G����
�

Thus� we see that concentration phenomena occur for a minimizing se�
quence� In some way� our problem is similar to the problem of the best
constant of Sobolev embedding for the limiting case� For a multiply con�
nected domain� we can not produce a solution of ���	� by minimizing this
energy� So we must study the compactness properties of F at higher energy
levels as well� The next result is to analyze the behavior of a Palais�Smale
sequence� It can be viewed as an extension of P��L� Lions� concentration
compactness method for minimizing problems� A similar phenomenon had
been observed by M� Struwe �	� in the context of Sobolev embedding for
the limiting case� Our proof is inspired by the method of concentration
compactness�

Theorem ���� F� satis�es the PalaisSmale condition for all C � �G����p
�G�����

The value
p
�G��� is optimal in the following sense� Let � � D �

f�x� y�� x�� y� � 	g be the unit disc� Let u � �a� b� �� be a solution of ���	�
satisfying the boundary conditions ������ After an extension by symmetry
has been performed� we are led to a �nite energy solution of ���	� on all ofR��
In view of H� Brezis and J��M� Coron�s result� we deduce that there exists k �
N
� such that F �a� b��� �

p
kG���� Now let ftngn�N be a sequence in ��� 	�

converging to 	 as n tends to in�nity� After the M$obius transformations

n�z� �

z�tn
��tnz with z � x�iy� we obtain a sequence �an� bn� � �a�
n� b�
n�

in H� 	 H�� Obviously� �an� bn� is a Palais�Smale sequence� But it is not
compact in H� 	 H�� It proves that Palais�Smale condition fails at the
energy values � �

p
kG���� Now� with the help of Theorem ���� we can

prove our main result in this part�

Theorem ���� Let � � D nSn
i�B�xi� ri� be a multiply connected domain

in R�� Assume that the set of points fxig is �xed� Then� there exists � � �
such that if ri � � for all i � 	� ���� n and there exists a solution of �����
satisfying the boundary conditions ������

A similar conclusion for Sobolev embedding has been obtained by J��M�
Coron ��� Here we will use the same strategy� For t � G��� denote by
Et
M � f�a� b� �M�F��a� b� � tg the level set of F�� In fact� the topology of

E�
M is equivalent to �� when � is near G���� We will argue by contradiction�

We will construct a topological disc " in E
p
�G���

M whose boundary is a non

contractible circle �" in E
G���
M � And if the system ���	�� ����� does not
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admit a solution in E
p
�G���

M � then it implies that there exists a contraction
h of " onto �"� which is a contradiction�

This part is organized as follows� In the section �� we prove Theorem
��	� In the section �� we establish Theorem ���� In the section �� we show
Theorem ���� In the last section� we describe some additional properties for
a solution of equation ���	� and ������

�� Study of a minimizing sequence

Now we consider the minimum of energy functional F � Let �an� bn� �n�
be a minimizing sequence� that is� �an� bn� �n� satisfying the equation �	�	�
and

F �an� bn��� � G��� � o�	��

Without loss of generality� we can assume that

�an� bn� �M and

Z
�
an �

Z
�
bn � ��

After extracting a subsequence� we may assume that

an �
 � weakly in H� and strongly in L��
bn �
 	 weakly in H� and strongly in L��
�n �
 � weakly in H� and strongly in L��

We will show the following result�

Theorem ��	� Under the above assumptions� we have the alternative	

�i� if � � �� then � � 	 � ��
or

�ii� if � �� �� then ��� 	� �� is a minimum of energy F � Moreover� the
following holds	

an �
 � strongly in H��
bn �
 	 strongly in H��
�n �
 � strongly in H��

First� we recall a technical lemma�

Lemma ���� �see ��� and also ���� We assume that �n is a bounded se
quence in H�

� � L�� Let an �
 � weakly in H� and strongly in L�� Then
for every b � H�� we have

lim
n��

Z
�nfan� bg � �� ���	�

Proof� We state that����Z �fa� bg
���� � k�k�krak�krbk� for all � � H�

� � L�� a � H�� b � H��

Given � � �� we �x �b � C����� such that kb� �bkH� � �� Thus we obtain����Z �nfan� bg�
Z
�nfan��bg

���� � C��

On the other hand� in view of Lemma ���� we have����Z �nfan��bg
���� � ����Z anf�n��bg

���� � kr�nk�kank�k�bkC� �
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that is�

lim
n��

Z
�nfan��bg � ��

Therefore� we obtain

lim sup
n��

����Z �nfan� bg
���� � C�� for any � � ��

which implies that

lim
n��

Z
�nfan� bg � ��

Corollary ���� Under the above notations� if � � H�
� � we have

lim
n��

Z
�fan� bng �

Z
�f�� 	g�

Proof� �of Theorem ��	�� By the corollary� ��� 	� �� is also a solution of
equation �	�	�� Set �n � an � �� 	n � bn � 	 and �n � �n � � so that

�n �
 � weakly in H� and strongly in L��
	n �
 � weakly in H� and strongly in L��
�n �
 � weakly in H� and strongly in L��

Denote by �n�� �resp� �n��� the unique solution of equation �	�	� for a � �n
and b � 	 �resp� a � � and b � 	n�� So �n � �n��n����n�� is the unique
solution of equation �	�	� for a � �n and b � 	n� Applying Lemma ���� we
deduce that

lim
n��

Z
jr�n��j� � lim

n��

Z
��"�n����n�� � lim

n��

Z
�n��f�n� 	g � ��

Similarly� we get

lim
n��

Z
jr�n��j� � ��

Clearly�
krank�� � kr�nk�� � kr�k�� � o�	��

krbnk�� � kr	nk�� � kr	k�� � o�	��

kr�nk�� � kr�nk�� � kr�k�� � o�	��

Therefore� we deduce that

	 � kr�nk�� � kr�nk�� � kr�k��� o�	� � kr�nk�� � kr�k��� o�	��

which implies

krank�� � krbnk�� � �G����kr�k�� kr�nk���
Now passing to the limit as n �
 �� we obtain

G��� � G����kr�k��
q
	� kr�k����

That is� kr�k� � � or kr�k� � 	� In the �rst case� we infer that � � 	 � ��
The second case implies that

lim
n�� kr��n � ��k� � ��
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Moreover� we have

kr�k�� � kr	k�� � lim inf
n�� �krank�� � krbnk��� � �G����

Hence� we achieve the proof�

The proof of Theorem ��	 is divided into several steps� First� we need
only study the case

an � �� bn � � and �n � � in H��

Step �� In this step� assume that � is the unit disc� Clearly� we have
k�nk� � kr�nk� � 	� By the continuity of �n on ��� there exists a point
zn � � such that

j�n�zn�j � k�nk��
Then� after a homographic transformation

z � zn
	� �znz

� we may assume that

j�n���j � k�nk��
Lemma ���� For any 	 � � � �� there exists ���� � � such that

lim sup
n��

Z
B�����

jranj� � jrbnj� � ����� �����

where B��� �� � f�x� y�� x�� y� � ��g�
Proof� Suppose that there exists �� � � such that

lim
n��

Z
B������

jranj� � jrbnj� � ��

Denote by �n the unique solution of equation �	�	� in H�
��B��� ����� i�e��� ���n � fan� bng� in B��� ���

� � �� on �B��� ����

So �n � �n is harmonic in B��� ���� Applying the mean value property� we
deduce that

�
Z
B������

��n � �n� � �n���� �n����

Obviously� from �	���� we get

lim
n��

Z
B������

�n � ��

and

lim
n���n��� � ��

On the other hand� but by the fact that �n 
 � in L����� we deduce

lim
n��

Z
B������

�n � ��

Consequently�

lim
n���n��� � ��

This contradiction completes our proof�
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Step �� Denote byM��� the space of non�negative measures on � with �nite
mass� Set �n � �

��jranj� � jrbnj��dx and �n � jr�nj�dx� We consider the
extensions of �n and �n to all of R� by valuing � in R� n �� Then f�ng
and f�ng are bounded in M�R��� Modulo a subsequence� we may assume
that �n �
 �� �n �
 � weakly in the sense of measures where � and � are
bounded non�negative measures on R��

Lemma ���� Under the above notations� then we have that there exists a
point x� � �� such that

� � �x� and � � G����x�� �����

Proof� Clearly� ��R� n ��� � ��R� n ��� � �� Choose  � C��R��� Denote by
�n the unique solution of equation �	�	� for a � an and b � bn� that is� ���n � fan� bng� in �

� � �� on ���

Thus�
an � � and bn � � in H��

From �	��� and by Lemma ���� we obtain

�n �
 � weakly in H� and strongly in L��

SinceZ
�
jr��n � ��n�j�

�

Z
�
�����n � ��n����n � ��n�

�

Z
�
�fan� bng � �fan� bng� �r���r�n � �����n���n � ��n�

�

Z
�
�bnfan� g� anf� bng� �r���r�n � �����n���n � ��n�

� C��kbnk� � kank���krbnk� � krank��kkC�k�n � ��nk�
� kk�C�k�nk�k�n � ��nk� � kk�C�kr�nk�k�n � ��nk��

and �n� �n� an and bn tend to � strongly in L�� we deduce that

lim
n�� kr��n � ��n�k� � ��

Hence� we obtain

G���kr���n�k� � o�	� � 	

�
�kr�an�k�� � kr�bn�k����

i�e�

G���

sZ
��jr�nj� � �r�r�n � ��njr�j�� � o�	�

� 	

�
�

Z
��jrbnj� � jranj�� � �r�ran �rbn� � jrj��a�n � b�n���

Passing to the limit as n �
 �� there holds

G���

sZ
�d� �

Z
�d��  � C�

� �R��� �����
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By approximation� therefore�

G���
p
��E� � ��E� �E � R

�� E Borel�� �����

Let  � be a open domain containing ��� Clearly� we have

�� �� � lim inf
n�� �n� �� � 	�

On the other hand� we obtain

����� � lim sup
n��

�n���� � 	�

Hence� ����� � 	� With the same argument� we deduce that ����� � G����
Now� let A be a Borel set contained in ��� It follows from ����� that

G���
p
��A� � ��A� and G���

q
���� nA� � ���� nA��

Or� ����� � 	 and ����� � G���� Therefore� we deduce that

��A� � ��A� � � or ���� nA� � ���� nA� � ��

Then we conclude the result�

Proof� �of Theorem ��	 completed�� Suppose �rst that � is a disc� Applying
Lemma ���� we deduce that

�� �B��� r�� � lim sup�n� �B��� r��� ��r� � ��

Using Lemma ���� we conclude that

� � �� and � � G������

Choose  � C�
� �R�� such that � �  � 	 and jB���r� � 	 with r � 	� Setting

�an � an and �bn � bn� denote by ��n the unique solution of �	�	� for a � �an
and b � �bn� Therefore� going back to ������ we obtain

kr�ank� � krank� � o�	��
kr�bnk� � krbnk� � o�	��
kr ��nk� � kr�nk� � o�	��

This implies that ��an��bn� ��n� is also a minimizing sequence� Or� �an� �bn � H�
� �

we infer

F ��an��bn��� � inf
a�b�V�H�

�

F �a� b����
p
�G��� � G����

This contradiction completes the proof of the �rst part� Now� let � be
multiply connected� We know that we can not minimize the energy F �
Therefore� with the same arguments as above� we establish the result�

Remark ���� For any compact Riemann surface without boundary� we have
the same result that in Theorem ��	 and Lemmas ��� to ����
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	� Proof of Theorem ���

Consider the energy functional F� on M and the energy level sets

E�
M � f�a� b� �M � F��a� b� � �g�

A simple calculation leads to

DF��a� b���� 	� �

Z
�
ra � r��rb � r	

� 	

�
�

Z
�
jraj� � jrbj���

Z
�
�f�� bg� �fa� 	g�� ���	�

for all �� 	 � H����� First� we introduce a result which is essential in our
proof of Theorem ����

Lemma ��	� �see ���� Let � � L�loc�R
��R	� be such that

�� � ��x � �y � on R�� �����

and Z
R�

jr�j� ��� �����

Then � has precisely the form

� � �

�
P �z�

Q�z�

�
� C� �����

where � � C �
 S� denotes stereographic projection� P � Q are polynomials
and C is a constant� In addition�Z

R�

jr�j� � ��MaxfdegP� degQg�

Let f�an� bn�gn�N�M be a Palais�Smale sequence such that

F��an� bn�
 C � �G����
p
�G����� DF��an� bn�
 �� as n
�� �����

By the boundedness of �an� bn� �n� where �n is a solution of �	�	� for a � an
and b � bn� there exists a� b� � � H���� such that� modulo a subsequence�

an � a� bn � b� �n � �� in H�����

Applying the Rellich�s theorem� we have also

an 
 a� bn 
 b� �n 
 �� in L�����

Fix �� 	 � C������ From ���	� and ������ it follows that

DF��an� bn���� 	� �

Z
�
ran � r� �rbn � r	

� 	

�
�

Z
�
ran� �rbn���

Z
�
�fbn� �ng� 	f�n� ang�

� o�	��

Lemma ��� impliesZ
ra � r� �

Z
r	 � rb� C

Z
�fb� �g� C

Z
	f�� ag � ��
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that is� �����
��a � Cfb� �g� in �
��b � Cf�� ag� in �
�a

�n
�

�b

�n
� �� on ���

�����

On the other hand� �a� b� �� satis�es �	�	�� Thus�

C �
�
Z
a�aZ

afb� �g
�

krak��
�
Z
���

�
krak��
kr�k��

� �����

Similarly�

C �
krbk��
kr�k��

� �����

Set  an � an � a�  bn � bn � b and  �n � �n � �� Denote by �n the solution
of �	�	� for a �  an and b �  bn� Similarly to the proof of Theorem ��	� we
deduce that

kr�  �n � �n�kL� � o�	��

Set �n � �
��jr anj�� jr bnj��dx and �n � jr�nj�dx� Then f�ng and f�ng are

bounded in M�R��� Modulo a subsequence� we may assume that �n 
 ��
�n 
 � weakly in the sense of measures where � and � are bounded non�
negative measures on R�� It is clear that ��R� n ��� � ��R� n ��� � �� Fix
 � C�

� �R��� Recall ������ we have

DF��an� bn�� an�  bn� � o�	��

which implies Z
ran � r� an�� C

Z
�nf an� bng � o�	��Z

rbn � r� bn�� C

Z
�nfan�  bng � o�	��

�����

Using the equation ������ we get the following equalitiesZ
ra � r� an� � C

Z
�f an� bg�Z

rb � r� bn� � C

Z
�fa�  bng�

���	��

Combining ����� and ���	��� we deduce thatZ
r an � r� an�� C

Z
 �nf an� bng�  �nf an� bg� �f an� bng � o�	��Z

r bn � r� bn�� C

Z
 �nf an�  bng�  �nfa�  bng� �f an�  bng � o�	��

Applying Lemma ���� we obtainZ
jr anj� � C

Z
 �nf an� bng � o�	��Z

jr bnj� � C

Z
 �nf an�  bng � o�	��
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Consequently�

	

�

Z
�jr anj� � jr bnj�� � C

Z
jr�nj� � o�	��

since Z
 �nf an� bng �

Z
  �nf an� bng� o�	� � �

Z
  �n��n � o�	�

�

Z
r  �n � r�n � o�	� �

Z
jr�nj� � o�	��

and Z
 �nf an�  bng �

Z
jr�nj� � o�	��

Thus� we conclude that

� � C�� ���		�

With the same arguments that in the proof of Lemma ��� and Theorem ��	�
we deduce thatp

��E� � 	

G���
��E� �E � �� E borel ��p

��E� � 	p
�G���

��E� �E �� �� E borel ��
���	��

Thus� it follows from ���		� and ���	�� that if ��E� �� �� then

��E� �
	

�
�E � �� and ��E� � 	 �E �� ���

Hence� there exists x� � �� and � � �
� such that

� � ��x� �

since ����� � 	� On the other hand� from ����� and ������ we have

kr�k� � �krak�� � krbk���
�Ckr�k� �

	p
�
� if kr�k� �� �

Or�

	 � kr�nk�� � kr�nk�� � kr�k��� o�	��

This leads to

� � � or � � ��

For the case � � �� in view of ���		�� we have � � �� Therefore� �an� bn� is
compact in M �
For the case � � �� then from ����� and ������ we have a � b � �� So
we have ����� � 	� From ���		�� it follows that � � �x� and � � C�x� for
some x� � ��� Notice that our problem is invariant under the conformal
mapping� Without loss of generality� we can assume � � D nSn

i�
��i where

�i is a simply connected domain verifying ��i � D and suppose that x� �
�D� Choose a function  � C�

� �R� n Sn
i�

��i� such that j�D � 	� Let

��an��bn� � � �anen �
�bn
en

�� where en is a constant such that ��an��bn� � M � So
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��an��bn� can be extended to D� Obviously� modulo a subsequence� we can
assume that

�an 
 � and �bn 
 �� strongly in L��D� and weakly in H��D��
�
��jr�anj� � jr�bnj��dx
 C�x� in M�R���

Moreover� it is easy to check that ��an��bn� is a Palais�Smale sequence for
� � D� Now� we can choose a sequence of M$obius transformations f
ngn�N
such that Z

B��� �
�
�
jr�an � 
nj� � jr�bn � 
nj� � ��� for some �� � ��

since we can use the same arguments as in the proof of Lemma ���� We
repeat the above procedure so that ��an � 
n��bn � 
n� is compact in M for
� � D� Let ��n be a solution of �	�	� for a � �an � 
n and b � �bn � 
n with
� � D� Assume that

��an � 
n��bn � 
n� ��n� � �a� b� ��� in H��D��

Thus� u � �
p
Ca�

p
Cb� C�� is a solution of ���	�� We consider the following

extension of u to all of R�

 u�z� �

���
u�z� in D��p

Ca�
z

jzj� ��
p
Cb�

z

jzj��� C��
z

jzj��
�

in R� nD�

Hence�  u is a solution of ���	�� By Lemma ��	� we obtain

kruk�L��D� � 	��k� for some k � N��
Observing that k

p
Crak�� � k

p
Crbk�� � kCr�k�� and kr�k� � 	� we

deduce�

C �

r
	��k

�
�
p
kG��� �� �G����

p
�G�����

Therefore� this contradiction completes the proof of Theorem ����


� Proof of Theorem ���

In this section� arguing by contradiction� we assume that F� does not
admit a critical value in �G����

p
�G���� on M � For simplicity� we consider

annular domains� Let � � D n B��� r�� We divide the proof into several
steps�
Step �� First we show a technical lemma�

Lemma ��	� M is a complex C� Finsler manifold�

Proof� Let us consider a map I

I � H����	H���� �
 R

�a� b� ��

Z
�
jr�j�dx�

where � is a solution of �	�	�� Clearly� I is a smooth analytical multilinear
map and the di
erential of I at �a� b� is

DI�a� b���� 	� �

Z
�
�f�� bg�

Z
�
�fa� 	g� for all �� 	 � H�����
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Note that M � f�a� b� � H���� 	 H����� I�a� b� � 	g and DI �� � on M �
Hence� we conclude the result�

Step �� We show that� for su%ciently small �� EG�	
M has the same topology

as �� �where G denotes G����� For this purpose� we introduce a map C
from H����	H���� into R��

C � H����	H���� �
 R
�

�a� b� ��
 	

�G

Z
�
x � �jraj� � jrbj��dx � R��

It is easy to prove that C is continuous� We have the following result�

Lemma ���� � � �� �� � � such that

�a� b� � EG�	
M � dist�C�a� b�� ���� �� ���	�

Proof� Argue by contradiction� Suppose that ���	� is not right� Then� there
exists a sequence �an� bn� in M such that

dist�C�a� b�� ���� �� for some � � ��

and
F��an� bn� �
 G����

By Theorem ��	� there exists x� � �� such that

C�an� bn� �
	

�G

Z
�
x � �jranj� � jrbnj��dx �
 x��

This contradiction terminates our proof�

The main result of this step is the following�

Lemma ���� There exists �� � � such that � � ��� E
G�	
M and �� are of

the same homotopy type�

Proof� Set W
 � fx � R�� dist�x� ���� �g� Choose a small � � � such that
we can de�ne the nearest point projection P �W
 �
 ��� i�e��

dist�x� ��� � jP �x�� xj�
Clearly� P is a continuous map� In view of Lemma ���� we construct a
continuous map � for all small � � �

� � EG�	
M �
 ��

�a� b� ��
 ��a� b� � P �C�a� b���

Let

�a� b� �

�
�x�

	 � r�
�

�x�

	 � r�

�
and 
x�t�z� �

z � tz�
	 � t�z�z

where r �
p
�x��� � �x���� t � ��� 	� and z� � x�� � ix��� Denote 
�z� � rz

jzj� �
Now� we de�ne another continuous map � from �� to M such that

��x� �

�
e�a � 
x�t� b � 
x�t�j� if x � �B��� 	��
e�a � 
 x

jxj
�t � 
� b � 
 x

jxj
�t � 
�j� if x � �B��� r��

where t � ��� 	 and e � R are well chosen such that ��x� � EG�	
M � Using

Theorem ��	� we deduce that � �� and Id
EG��
M

are homotopic and that � � �
and Id�� are homotopic� Thus� Lemma ��� is proved�
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Step �� We prove the existence of an embedded two�disc " in E
p
�G

M whose
boundary is in EG

M � Consider the unit circle in R�

S� � fx � R�� jxj � 	g�
Let

�a� b� �� �

�
�
p
�x�p

��	 � r��
�

�
p
�x�p

��	 � r��
�

p
��	� r��

�
p
��	 � r��

�
�

Note that �a� b� �� is a minimizer of F� for � � D� For x � S�� � � t � 	
let 
x�t�z� be de�ned as above� Set ax�t � a � 
x�tj�� bx�t � b � 
x�tj� and
�x�t � � � 
x�tj�� We see that �ax�t� bx�t� �x�t� �concentrates� at x as t 
 	�
Moreover� letting t
 �� we have

�ax�t� bx�t� �x�t� �
 �a� b� ��� in H��

The set " � f�ax�t� bx�t��x � S�� t � ��� 	�g is a disc embedded in E�
M with

G � � �
p
�G� as a consequence of the following lemma�

Lemma ���� Let �x�t be a solution of� ���x�t � fax�t� bx�tg� in � � D nB��� r��
�x�t � �� on ���

�����

Then� for any � � �� there exists � � � independent of t and x such that for
any r � �

kr��x�t� �x�t�k�L���� � ��

Proof� First� we see that

���x�t � fax�t� bx�tg in D�

We will decompose �x�t into its harmonic �x�t and non�harmonic �x�t com�
ponents

�x�t � �x�t � �x�t�

where � ���x�t � �� in ��
�x�t � �x�t� on ���

�����

Hence� for any � � �� there exists � � � such that for any r � �

kr�x�tkL��B���r�� � ��

since

lim
r��

diam�
x�t�B��� r��� � ��

Set  �x�t � �x�t�r�z�jzj��� Thus�  �x�t is harmonic in � � B��� r� n B��� r���
Choose  � C�

� �R� nB��� r��� such that jB���r�nB���r��� � 	 and jrj � �
r �

So� we have

kr���x�t� ����kL��B���r�� � kr�x�tkL��B���r���
�

r
k�x�t � ��kL��B���r��

� Ckr�x�tkL��B���r���
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where �� � �
Z
B���r�

�x�t� Consequently�

kr�x�tkL��B�����nB���r�� � kr �x�tkL��B���r�nB���r���
� kr���x�t � ����kL��B���r��
� Ckr�x�tkL��B���r�� � C��

Hence� we get the result�

Hence� we deduce that� for r � �� " is embedded in E�
M � for � � G� ��

Step �� Conclusion� By the deformation lemma� for any � � �G�
p
�G�

there exists a continuous &ow � � E�
M 	 ��� 	
 E�

M such that

��u� �� � u� for all u � E�
M �

���� 	� � EG�	
M �

��u� t� � u� for all u � EG�	
M �

where � � G��� Thus� by Step �� we can de�ne the map h � S�	��� 	
 ���
given by

h�x� t� � �����ax�t� bx�t�� 	���

then it is continuous and satis�es

h�x� �� � �����a� b�� 	�� �� x� � �� for all x � S��
h�x� 	� � x for all x � S��

Hence� h is a contraction of S� in �� This contradicts our assumptions�
Thus� Theorem ��� is proved�

��� Some extensions

In this section� we study the properties of a solution of the incomplete H�
system� i�e�� a solution of equation ���	�� We remark �rst that a conformal
covering map of a sphere is such a solution� But these solutions are not
interesting� from a geometric point of view� Hence one di%culty for our
approach to the construction of H�tori is that there are holomorphic maps
from a torus T into a sphere of arbitrary degrees � �� However� we expect
that we may �nd a non�trivial solution for H�system� And� we will give here
a criterion�

Let �N� g� be a compact orientable smooth Riemannian surface without
boundary� Given a� b � H��N�R�� we de�ne

fa� bg � ��da� db��
where � is the Hodge operator associated to g� We consider the following
equation� called H�system���� �g� � fa� bg on N�

�ga � fb� �g on N�
�gb � f�� ag on N�

�	��	�

where u � �a� b� �� � C��N�R	� and �g is Laplacian operator associated
to g� This equation is of variational type associated to a energy functional
arising from the generalized Wente�s inequality on a manifold as above �see
also �	��� In isothermal charts� it follows from �	��	�

��u � ux � uy on N� �	����
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If u maps N into a sphere� then u is also a harmonic map� J� Eells and J�C�
Wood have shown the following useful result for a harmonic map�

Lemma 	��	� Let X and Y be closed orientable smooth surfaces and � �
X 
 Y be a smooth map� If � is a harmonic map relative to Riemannian
metrics g and h� and if

e�X� � jd�e�Y �j � �� �	����

then � is holomorphic or antiholomorphic relative to the complex structures
determinated by g and h�

Here e�X� � �� �p and e�Y � � �� �q denote Euler characteristics� and
d� is the degree of �� With the help of this result� we have the following�

Theorem 	���� Let N be a Riemannian surface with a genus p � � or 	�
Assume that u is a solution of ������ and u maps N into a sphere� Then�
there exists k � N such that

krak� � krbk� � kr�k� �
r

��k�

�
� �	����

Proof� Suppose u � N 
 S� where S is a sphere� Note �rst that u is a
harmonic map� It is clear that

krak�� �
Z
N
adb�d� �

Z
N
d�ab��d��

Z
N
bda�d� �

Z
N
bd��da � krbk���

Similarly� we obtain
krak�� � kr�k���

Case �	 N is simply connected� Clearly� it follows from Lemma ��	 and
the fact that N is conformal to S��
Case �	 the genus of N is equal to �� Assume u is not a constant map� We
claim that deg�u� �� �� Indeed� assuming that u�N� � �B��� r� and by the
properties of degree� we have

deg�u� �

Z
N
���Z

�B���r�
�
�

where � � �
r �x

�dx� � dx	 � x�dx� � dx	 � x	dx� � dx�� is the element of
volume on the sphere �B��� r�� Hence� from equation �	��	�� it follows

��r	deg�u� �

Z
N
adb � d�� bda� d�� �da� db

� krak�� � krbk�� � kr�k�� � �krak���
�	����

Now� applying Lemma 	��	 and using e�M� � � and e��B��� r�� � �� we de�
duce that u is a conformal map� Suppose that z� is a branch�point� Thanks
of Hartman�s and Wintner�s result �see �	� and �	��� there exist n � N�
and c � C 	 n f�g such that

�zu � c�z � z��
n � o��z � z��

n��

where �z � �
���x � i�y�� This implies that the branch�point is isolated�

Recalling �	��	�� we conclude that u�N� is a sphere with radius equal to ��
Therefore� by using �	����� �	���� is proved� Moreover� we have k �deg�u��
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With the same method� we have the following general result�

Theorem 	���� Under the above assumptions and supposing that N is a
Riemannian surface with a genus p � 	� then we have that either

�i� krak� � krbk� � kr�k� �
r

��deg�u��

�
� for deg�u� � p�

or

�ii� krak� � krbk� � kr�k� �
r

��deg�u��

�
� for deg�u� � p�

Proof� It is easy to check that

�jruj��� � jHopf�u�j�� ��jux � uy j���
where Hopf�u� � juxj� � juyj� � �ihux� uyi� From �	��	�� it follows that

jHopf�u�j� � �r� � ��jux � uy j��
since u is harmonic� i�e��

��
u

r
� � �u

r

���r�
u

r
�
���� �

Thus�

r � ��

Using �	����� we terminate the proof�

Corollary 	���� Let u be a solution of ������ on a torus obtained by The
orem ���� Then� u is not a covering map of a sphere�

Now� return to equation ���	�� Let � be an annulus� We know that for
each solution of ���	� satisfying the boundary condition ������ there exists
c � R such that

h�zu� �zui � c

z�
� �	����

Here we study the branch�points� Set P � f�x� y� � �� rank�ru�x� y�� �
	g� So we have the following result�

Theorem 	���� Under the above assumptions we have

H��P � ���

where H� designates the �dimensional Hausdor
 measure�

Proof� Set H � xux � yuy and J � yux � xuy � Hence� we obtain

hH� Ji � xy�huy� uyi � hux� uxi� � �x� � y��hux� uyi
� ��Im�z�h�zu� �zui��

It follows from �	���� that H and J are orthogonal�
Case �	 c � �� Thus� u is a conformal map� By Hartman�s and Wintner�s
result on real�valued vector functions� we conclude that a branch�point is
isolated�
Case �	 c �� �� By de�nition� we have

Hx � ux � xuxx � yuxy� Hy � uy � xuxy � yuyy �
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Assume that x� �� � and H�x�� y�� � �� Hence� using �	��	�� we deduce

��H � ���u� x��u�x � y��u�y
� �ux � uy � x�ux � uy�x � y�ux � uy�y
� �xux � uy�x � �yux � uy�y
� �H � uy�x � �

y

x
H � uy�y�

Therefore� by Hartman�s and Wintner�s result� there exist n � N� and c �
C
	 n f�g such that

lim
z��

Hzz
�n � c�

which implies that there exists some neighborhood V of �x�� y�� such that

H��V � f�x� y�� H�x� y� � �g� ���

Now let y� �� � and J�x�� y�� � �� With the same arguments� there exists
some neighborhood V � of �x�� y�� such that

H��V � � f�x� y�� J�x� y� � �g� ���

Hence� we prove Theorem 	����

The author thanks Professor Fr�ed�eric H�elein who brought this problem
to him and for his constant support and many suggestions� The author is
grateful to Dong Ye and Tristan Rivi�ere for their helpful discussions�
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