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Abstract

Information theoretic quantities play an important role in various settings in ma-
chine learning, including causality testing, structure inference in graphical models,
time-series problems, feature selection as well as in providing privacy guarantees.
A key quantity of interest is the mutual information and generalizations thereof,
including conditional mutual information, multivariate mutual information, to-
tal correlation and directed information. While the aforementioned information
quantities are well defined in arbitrary probability spaces, existing estimators add
or subtract entropies (we term them ΣH methods). These methods work only
in purely discrete space or purely continuous case since entropy (or differential
entropy) is well defined only in that regime.

In this paper, we define a general graph divergence measure (GDM),as a measure
of incompatibility between the observed distribution and a given graphical model
structure. This generalizes the aforementioned information measures and we con-
struct a novel estimator via a coupling trick that directly estimates these multivariate
information measures using the Radon-Nikodym derivative. These estimators are
proven to be consistent in a general setting which includes several cases where the
existing estimators fail, thus providing the only known estimators for the following
settings: (1) the data has some discrete and some continuous valued components
(2) some (or all) of the components themselves are discrete-continuous mixtures (3)
the data is real-valued but does not have a joint density on the entire space, rather is
supported on a low-dimensional manifold. We show that our proposed estimators
significantly outperform known estimators on synthetic and real datasets.

1 Introduction

Information theoretic quantities, such as mutual information and its generalizations, play an important
role in various settings in machine learning and statistical estimation and inference. Here we
summarize briefly the role of some generalizations of mutual information in learning (cf. Sec. 2.1 for
a mathematical definition of these quantities).

1. Conditional mutual information measures the amount of information between two variables X
and Y given a third variable Z and is zero iff X is independent of Y given Z. CMI finds a wide
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range of applications in learning including causality testing [1, 2], structure inference in graphical
models [3], feature selection [4] as well as in providing privacy guarantees [5].

2. Total correlation measures the degree to which a set ofN variables are independent of each other,
and appears as a natural metric of interest in several machine learning problems, for example, in
independent component analysis, the objective is to maximize the independence of the variables
quantified through total correlation [6]. In feature selection, ensuring the independence of selected
features is one goal, pursued using total correlation in [7, 8].

3. Multivariate mutual information measures the amount of information shared between multiple
variables [9, 10] and is useful in feature selection [11, 12] and clustering [13].

4. Directed information measures the amount of information between two random processes [14,15]
and is shown as the correct metric in identifying time-series graphical models [16–21].

Estimation of these information-theoretic quantities from observed samples is a non-trivial problem
that needs to be solved in order to utilize these quantities in the aforementioned applications. While
there has been long history in estimation of entropy [22–25], and renewed recent interest [26–28],
much less effort has been spent on the multivariate versions. A standard approach to estimating
general information theoretic quantities is to write them out as a sum or difference of entropy (denoted
H usually) terms which are then directly estimated; we term such a paradigm as ΣH paradigm.
However, the ΣH paradigm is applicable only when the variables involved are all discrete or there
is a joint density on the space of all variables (in which case, differential entropy h can be utilized).
The underlying information measures themselves are well defined in very general probability spaces,
for example, involving mixtures of discrete and continuous variables; however, no known estimators
exist.

We motivate the requirement of estimators in general probability spaces by some examples in
contemporary machine learning and statistical inference.

1. It is common place in machine learning to have data-sets where some variables are discrete,
and some are continuous. For example, in recent work on utilizing information bottleneck to
understand deep learning [29], an important step is to quantify the mutual information between the
training samples (which are discrete) and the layer output (which is continuous). The employed
methodology was to quantize the continuous variables; this is common practice, even though
highly sub-optimal.

2. Some variables involved in the calculation may be mixtures of discrete and continuous vari-
ables. For example, the output of ReLU neuron will not have a density even when the input data
has a density. Instead, the neuron will have a discrete mass at 0 (or wherever the ReLU breakpoint
is) but will have a continuous distribution on the positive values. This is also the case in gene
expression data, where a gene may have a discrete mass at expression 0 due to an effect called
drop-out [30] but have a continuous distribution elsewhere.

3. The variables involved may have a joint density only on a low dimensional manifold. For
example, when calculating mutual information between input and output of a neural network,
some of the neurons are deterministic functions of the input variables and hence they will have a
joint density supported on a low-dimensional manifold rather than the entire space.

In the aforementioned cases, no existing estimators are known to work. It is not merely a matter of
having provable guarantees either. When we plug in estimators that assume a joint density into data
that does not, the estimated information measure can be strongly negative.

We summarize our main contributions below:

1. General paradigm (Section 2): We define a general paradigm of graph divergence measures
which captures the aforementioned generalizations of mutual information as special cases. Given a
directed acyclic graph (DAG) between n variables, the graph divergence is defined as the Kullback-

Leibler (KL) divergence between the true data distribution PX and a restricted distribution PX

defined on the Bayesian network and can be thought of as a measure of incompatibility with the
given graphical model structure. These graph divergence measures are defined using the Radon
Nikodym derivatives which are well-defined for general probability spaces.

2. Novel estimators (Section 3): We propose novel estimators for these graph divergence measures,
which directly estimate the corresponding Radon-Nikodym derivatives. To the best of our knowl-
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Figure 1: (a) An example of Bayesian Network G with PX as the induced distribution PX1
PX2

PX3|X1

PX4|X1,X2
PX5|X4

PX6|X4
. (b) A Bayesian Network G inducing a Markov chain PX3

PX1|X3
PX2|X3

.

(c) A Bayesian Network G with PX as the induced distribution PX1
PX2

· · ·PXd
.

edge, these are the first family of estimators that are well defined for general probability spaces
(breaking the ΣH paradigm).

3. Consistency proofs (Section 4): We prove that the proposed estimators converge to the true value
of the corresponding graph divergence measures as the number of observed samples increases in a
general setting which includes several cases: (1) the data has some discrete and some continuous
valued components (2) some (or all) of the components themselves are discrete-continuous
mixtures (3) the data is real-valued but does not have a joint density on the entire space but is
supported on a low-dimensional manifold.

4. Numerical results (Section 5): Extensive numerical results demonstrate that (1) existing algo-
rithms have severe failure modes in general probability spaces (strongly negative values, for
example), and (2) our proposed estimator achieves consistency as well as significantly better
finite-sample performance.

2 Graph Divergence Measure

In this section, we define the family of graph divergence measures. To begin with, we first define
some notational preliminaries. We denote any random variable by an uppercase letter such as X .
The sample space of the variable X is denoted by X and any value in X is denoted by the lowercase
letter x. For any subset A ⊆ X , the probability of A for a given distribution function PX(.) over X
is denoted by PX(A). We note that the random variable X can be a d-dimensional vector of random
variables, i.e. X ≡ (X1, . . . , Xd). The N observed samples drawn from the distribution PX are

denoted by x(1), x(2), . . . , x(N), i.e. x(i) is the ith observed sample.

Sometimes we might be interested in a subset of components of a random variable, S ⊆
{X1, . . . , Xd} instead of the entire vector X . Accordingly, the sample space of the variable S
is denoted by S. For instance, X = (X1, X2, X3, X4) and S = (X1, X2). Throughout the entire
paper, unless otherwise stated, there is a one-to-one correspondence between the notations of X
and any S. For example for any value x ∈ X , the corresponding value in S is simply denoted by s.
Further, s(i) ∈ S represents the lower-dimensional sample corresponding to the ith observed sample

x(i) ∈ X . Furthermore, any marginal distribution defined over S with respect to PX is denoted by
PS .

Consider a directed acyclic graph (DAG) G defined over d nodes (corresponding to the d components
of the random variable X). A probability measure Q over X is said to be compatible with the graph
G if it is a Bayesian network on G. Given a graph G and a distribution PX , there is a natural measure

PX(.) which is compatible with the graph and is defined as follows:

PX =

d
∏

l=1

PXl|pa(Xl) (1)

where pa(Xl) ⊂ X is the set of the parent nodes of the random variable Xl, with the sample space
denoted by Xpa(l), and the sample values xpa(l) corresponding to x. The distribution PXl|pa(Xl) is

the conditional distribution of Xl given pa(Xl). Throughout the paper, whenever mentioning the

variable Xl with its own parents pa(Xl) we indicate it by pa+(Xl), i.e. pa+(Xl) ≡
(

Xl, pa(Xl)
)

.

An example is shown in Fig. 1a.
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We note the fact that PS|X\S is well defined for any subset of variables S ⊂ X . Therefore if we let

S = X \ pa(Xl), then PX\pa(Xl)|pa(Xl) is well defined for any l ∈ {1, . . . , d}. By marginalizing over

X \ pa+(Xl) we see that PXl|pa(Xl) and thus the distribution PX is well defined.

The graph divergence measure is now defined as a function of the probability measure PX and the
graph G. In this work we will focus only on the KL Divergence as being the distance metric, hence
unless otherwise stated D(· ‖ ·) = DKL(· ‖ ·). Let’s first consider the case where PX is absolutely

continuous with respect to PX and hence the Radon-Nikodym derivative dPX/dPX exists. Therefore
for a given set of random variables X and a Bayesian Network G, we define Graph Divergence
Measure (GDM) as :

GDM(X,G) = D(PX‖PX) =

∫

X

log
dPX

dPX

dPX (2)

Here we implicitly assume that log
(

dPX/dPX

)

is measurable and integrable with respect to the
measure PX . The GDM is set to infinity wherever Radon-Nikodym derivative does not exist. It is
clear that GDM(X,G) = 0 if and only if the data distribution is compatible with the graphical model,
thus the GDM can be thought of as a measure of incompatibility with the given graphical model
structure.

We now have relevant variational characterization as below on our graph divergence measure, which
can be harnessed to compute upper and lower bounds (More details in supplementary material):

Proposition 2.1. For a random variable X , a DAG G, let Π(G) be the set of measures QX defined
on the Bayesian Network G, then GDM(X,G) = infQX∈Π(G)D(PX‖QX).

Furthermore, let C denote the set of functions h : X → R such that EQX
[exp(h(X))] < ∞. If

GDM(X,G) <∞, then for every h ∈ C, EPX
[h(X)] exists and:

GDM(X,G) = sup
h∈C

EPX
[h(X)]− logEQX

[exp(h(X))] . (3)

2.1 Special cases

For specific choices of X and Bayesian Network, G, the Equation 2 is reduced to the well-known
information measures. Some examples of these measures are as follows:
Mutual Information (MI): X = (X1, X2) and G has no directed edge between X1 and X2. Thus

PX = PX1
.PX2

, and we get, GDM(X,G) = I(X1;X2) = D(PX1X2
‖PX1

PX2
).

Conditional Mutual Information (CMI): We recover the conditional mutual information of X1

and X2 given X3 by constraining G to be the one in Fig. 1b, since PX = PX3
.PX2|X3

.PX1|X3
, i.e.,

GDM(X,G) = I(X1;X2|X3) = D(PX1X2X3
‖PX1|X3

PX2|X3
PX3

).

Total Correlation (TC): When X = (X1, · · · , Xd), and G is the graph with no edges (as in Fig. 1c,

we recover the total correlation of the random variables X1, . . . , Xd since PX = PX1
. . .PXd

, i.e.,
GDM(X,Gdc) = TC(X1, . . . , Xd) = D(PX1...Xd

‖PX1
. . .PXd

)

Multivariate Mutual Information (MMI) : While the MMI defined by [9] is not positive in gen-
eral,there is a different definition by [10] which is both non-negative and has an operational interpre-
tation. Since MMI can be defined as the optimal total correlation after clustering, we can utilize our
definition to define MMI (cf. supplementary material).

Directed Information : Suppose there are two stationary random processes X and Y , the directed
information rate from X to Y as first introduced by Massey [31] is defined as:

I(X → Y ) =
1

T

T
∑

t=1

I
(

Xt;Yt
∣

∣Y t−1
)

It can be seen that the directed information can be written as:

I(X → Y ) = GDM
(

(XT , Y T ),GI

)

−GDM
(

(XT , Y T ),GC

)

where the graphical model GI correponds to the independent distribution between XT and Y T , and
GC corresponds to the causal distribution from X to Y (more details provided in supplementary
material).
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3 Estimators

3.1 Prior Art

Estimators for entropy date back to Shannon, who guesstimated the entropy rate of English [32]. Dis-
crete entropy estimation is a well-studied topic and minimax rate of this problem is well-understood as
a function of the alphabet size [33–35]. The estimation of differential entropy is considerably harder
and also studied extensively in literature [23,25,26,36–39] and can be broadly divided into two groups;
based on either Kernel density estimates [40,41] or based on k-nearest-neighbor estimation [27,42,43].
In a remarkable work, Kozachenko and Leonenko suggested a nearest neighbor method for entropy
estimation [22] which was then generalized to a kth nearest neighbor approach [44]. In this method,
the distance to the kth nearest neighbor (KNN) is measured for each data-point, and based on this the
probability density around each data point is estimated and substituted into the entropy expression.
When k is fixed, each density estimate is noisy and the estimator accrues a bias and a remarkable
result is that the bias is distribution-independent and can be subtracted out [45].

While the entropy estimation problem is well-studied, mutual information and its generalizations
are typically estimated using a sum of signed entropy (H) terms, which are estimated first; we term
such estimators as ΣH estimators. In the discrete alphabet case, this principle has been shown to be
worst-case optimal [28]. In the case of distributions with a joint density, an estimator that breaks the
ΣH principle is the KSG estimator [46], which builds on the KNN estimation paradigm but couples
the estimates in order to reduce the bias. This estimator is widely used and has excellent practical
performance. The original paper did not have any consistency guarantees and its convergence rates
were recently established [47]. There have been some extensions to the KSG estimator for other
information measures such as conditional mutual information [48, 49], directed information [50] but
none of them show theoretical guarantees on consistency of the estimators, furthermore they fail
completely in mixture distributions.

When the data distribution is neither discrete nor admits a joint density, the ΣH approach is no longer
feasible as the individual entropy terms are not well defined. This is the regime of interest in our
paper. Recently, Gao et al [51] proposed a mutual-information estimator based on KNN principle,
which can handle such continuous-discrete mixture cases, and the consistency was demonstrated.
However it is not clear how it generalizes to even Conditional Mutual Information (CMI) estimation,
let alone other generalizations of mutual information. In this paper, we build on that estimator in
order to design an estimator for general graph divergence measures and establish its consistency for
generic probability spaces.

3.2 Proposed Estimator

The proposed estimator is given in Algorithm 1 where ψ(·) is the digamma function and 1{·} is the
indicator function. The process is schematically shown in Fig. 3 (cf. supplementary material). We
used the ℓ∞-norm everywhere in our algorithm and proofs.

The estimator intuitively estimates the GDM by the resubstitution estimate 1
N

∑N

i=1 log f̂(x
(i)) in

which f̂(x(i)) is the estimation of Radon-Nikodym derivative at each sample x(i). If x(i) lies in a

region where there is a density, the RN derivative is equal to gX(x(i))/ḡX(x(i)) in which gX(.) and

ḡX(.) are density functions corresponding to PX and PX respectively. On the other hand, if x(i) lies

on a point where there is a discrete mass, the RN derivative will be equal to hX(x(i))/h̄X(x(i)) in

which hX(.) and h̄X(.) are mass functions corresponding to PX and PX respectively.

The density function ḡX(x(i)) can be written as
∏d

l=1

(

gpa+(Xl)(xpa+(l)
(i))/gpa(Xl)(xpa(l)

(i))
)

for continuous components. Equivalently, the mass function h̄X(x(i)) can be written as
∏d

l=1

(

hpa+(Xl)(xpa+(l)
(i))/hpa(Xl)(xpa(l)

(i))
)

. Thus we need to estimate the density functions g(.)

and the mass functions h(.) according to the type of x(i). The existing kth nearest neighbor algorithms
will suffer while estimating the mass functions h(.), since ρnS ,i (the distance to the nS-th nearest
neighbor in subspace S) for such points will be equal to zero for large N . Our algorithm, however, is
designed in a way that it’s capable of approximating both g(.) functions as ≈ nS

N
1

(ρnS,i)dS
and h(.)

functions as ≈ nS

N
dynamically for any subset S ⊆ X . This is achieved by setting ρnS ,i terms such

that all of them cancel out, yielding the estimator as in Eq. (4).
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.

Input: Parameter: k ∈ Z
+, Samples: x(1), x(2), . . . , x(N), Bayesian Network: G on Variables:

X = (X1, X2, · · · , Xd)

Output: ĜDM
(N)

(X,G)
1: for i = 1 to N do
2: Query:
3: ρk,i = ℓ∞-distance to the kth nearest neighbor of x(i) in the space X
4: Inquire:

5: k̃i = # points within the ρk,i-neighborhood of x(i) in the space X

6: n
(i)
pa(Xl)

= # points within the ρk,i-neighborhood of x(i) in the space Xpa(l)

7: n
(i)
pa+(Xl)

= # points within the ρk,i-neighborhood of x(i) in the space Xpa+(l)

8: Compute:

9: ζi = ψ(k̃i) +
∑d

l=1

(

1{pa(Xl) 6=∅} log
(

n
(i)
pa(Xl)

+ 1
)

− log
(

n
(i)
pa+(Xl)

+ 1
))

10: end for
11: Final Estimator:

ĜDM
(N)

(X,G) =
1

N

N
∑

i=1

ζi +

(

d
∑

l=1

1{pa(Xl)=∅} − 1

)

logN (4)

Algorithm 1: Estimating Graph Divergence Measure GDM(X,G)

4 Proof of Consistency

The proof of consistency for our estimator consists of two steps: First we prove that the expected
value of the estimator in Eq. (4) converges to the true value as N → ∞ , and second we prove that the
variance of the estimator converges to zero as N → ∞. Let’s begin with the definition of PX(x, r):

PX(x, r) = PX

{

a ∈ X : ‖a− x‖∞ ≤ r
}

= PX

{

Br(x)
}

(5)

Thus PX(x, r) is the probability of a hypercube with the edge length of 2r centered at the point x.
We then state the following assmuptions:

Assumption 1. We make the following assumptions to prove the consistency of our method:

1. k is set such that limN→∞ k = ∞ and limN→∞
k logN

N
= 0.

2. The set of discrete points {x : PX(x, 0) > 0} is finite.

3.
∫

X

∣

∣ log f(x)
∣

∣dPX < +∞, where f ≡ dPX/dPX is Radon-Nikodym derivative.

The Assumption 1.1 with 1.2 controls the boundary effect between the continuous and the discrete
regions; with this assumption we make sure that all the k nearest neighbors of each point belong
to the same region almost surely (i.e. all of them are either continuous or discrete). Assumption
1.3 is the log-integrability of the Radon-Nikodym derivative. These assumptions are satisfied under
mild technical conditions whenever the distribution PX over the set X is (1) finitely discrete; (2)
continuous; (3) finitely discrete over some dimensions and continuous over some others; (4) a mixture
of the previous cases; (5) has a joint density supported over a lower dimensional manifold. These
cases represent almost all the real world data.

As an example of a case not conforming to the aforementioned cases, we can consider singular
distributions, among which the Cantor distribution is a significant example whose cumulative
distribution function is the Cantor function. This distribution has neither a probability density
function nor a probability mass function, although its cumulative distribution function is a continuous
function. It is thus neither a discrete nor an absolutely continuous probability distribution, nor is it a
mixture of these.

The Theorem 1 formally states the mean-convergence of the estimator while Theorem 2 formally
states that convergence of the variance to zero.
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Theorem 1. Under the Assumptions 1, we have limN→∞ E

[

ĜDM
(N)

(X,G)

]

= GDM(X,G).

Theorem 2. In addition to the Assumptions 1, assume that we have (kN logN)2/N → 0 as N goes

to infinity. Then we have limN→∞ Var

[

ĜDM
(N)

(X,G)

]

= 0.

The Theorems 1 and 2 combined yield the consistency of the estimator 4.

The proof of the Theorem 1 starts with writing the Radon-Nikodym derivative explicitly. Then

we need to upper-bound the term
∣

∣E
[

ĜDM
(N)

(X,G)
]

− GDM(X,G)
∣

∣. To achieve this goal, we

segregate the domain of X into three parts as X = Ω1 ∪ Ω2 ∪ Ω3 where Ω1 = {x : f(x) = 0},
Ω2 = {x : f(x) > 0, PX(x, 0) > 0} and Ω3 = {x : f(x) > 0, PX(x, 0) = 0}. We will show that
PX(Ω1) = 0. The sets Ω2 and Ω3 correspond to the discrete and continuous regions respectively.
Then for each of the two regions, we introduce an upperbound which goes to zero as N grows
boundlessly. Thus equivalently we show the mean of the estimate ζ1 is close to log f(x) for any x.

The proof of the Theorem 2 is based on the Efron-Stein inequality, which upperbounds any estimator

for any quantity from the observed samples x(1), . . . , x(N). For any sample x(i), we then upperbound
the term

∣

∣ζi(X)− ζi(X\j)
∣

∣ by segregating the samples into various cases, and examining each case

separately. ζi(X) is the estimate using all the samples x(1), . . . , x(N) and ζi(X\j) is the estimate
when the jth sample is removed. Summing up over all the i’s, we obtain an upper-bound which will
converge to 0 as N goes to infinity.

5 Empirical Results

In this section, we evaluate the performance of our proposed estimator in comparison with other
estimators via numerical experiments. The estimators evaluated here are our estimator referred to as
GDM, the plain KSG-based estimators for continuous distributions to which we refer by KSG, the
binning estimators and the noise-induced ΣH estimators. A more detailed discussion can be found in
Section G.

Experiment 1: Markov chain model with continuous-discrete mixture. For the first experiment,
we simulated an X-Z-Y Markov chain model in which the random variable X is a uniform random
variable U(0, 1) clipped at a threshold 0 < α1 < 1 from above. Then Z = min (X,α2) and
Y = min (Z, α3) in which 0 < α3 < α2 < α1. We simulated this system for various numbers of
samples, setting α1 = 0.9, α2 = 0.8 and α3 = 0.7. For each set of samples we estimated I(X;Y |Z)
via different methods. The theory value for I(X;Y |Z) is 0. The results are shown in Figure 2a. We
can see that in this regime, only the GDM estimator can correctly converge. The KSG estimator and
the ΣH estimator show high negative biases and the binning estimator shows a positive bias.

Experiment 2: Mixture of AWGN and BSC channels with variable error probability. For the
second scheme of our experiments, we considered an Additive White Gaussian Noise (AWGN)
Channel in parallel with a Binary Symmetric Channel (BSC) where only one of the two can be

activated at a time. The random variable Z = min(α, Z̃) where Z̃ ∼ U(0, 1) controls which channel
is activated; i.e. if Z is lower than the threshold β, activate the AWGN channel, otherwise initiate
the BSC channel where Z also determines the error probability at each time point. We set α = 0.3,
β = 0.2, BSC channel input as X ∼ Bern(0.5), and AWGN input and noise deviation as σX = 1
and σN = 0.1 respectively, and obtained the estimates of I(X;Y |Z,Z2, Z3) for various estimators.
While the theory value is equal to I(X;Y |Z) = 0.53241, yet it’s conditioned over a low-dimensional
manifold in a high-dimensional space. The results are shown in Figure 2b. Similar to the previous
experiment, the GDM estimator can correctly converge to the true value. The ΣH and binning
estimators show a negative bias, and the KSG estimator gets totally lost.

Experiment 3: Total Correlation for independent mixtures. In this experiment, we estimate
the total correlation of three independent variables X , Y and Z. The samples for the variable X
are generated in the following fashion: First toss a fair coin, if heads appears we fix X at αX ,
otherwise we draw X from a uniform distribution between 0 and 1. samples from Y and Z are also
generated in the same way independently with parameters αY and αZ respectively. For this setup,
TC(X,Y, Z) = 0. We set αX = 1, αY = 1/2 and αZ = 1/4, and generated various datasets with
different lengths. Then estimated total correlation values are shown in the Figure 2c.

7



Experiment 4: Total Correlation for independent uniforms with correlated zero-inflation. Here

we first consider four auxiliary uniform variables X̃1, X̃2, X̃3 and X̃4 which are taken from

U(0.5, 1.5). Then each sample is erased with a Bernoulli probability; i.e. X1 = α1X̃1, X2 = α1X̃2

and X3 = α2X̃3, X4 = α2X̃4 in which α1 ∼ Bern(p1) and α2 ∼ Bern(p2). As we see, after
zero-inflation X1 and X2 become correlated, so do X3 and X4 while still (X1, X2) |= (X3, X4). In
the experiment, we set p1 = p2 = 0.6. The results of running different algorithms over the data can
be seen in Figure 2d. For the total correlation experiments 3 and 4, similar to that of conditional
mutual information in experiments 1 and 2, only the GDM estimator can best estimate the true value.
The estimator ΣH was removed from the figures due to its high inaccuracy.

Experiment 5: Gene Regulatory Networks. In this experiment we use different estimators to
do Gene Regulatory Network inference based on the conditional Restricted Directed Information
(cRDI) [20]. We do our test on the simulated neuron cells’ development process, based on a model
from [52]. In this model, the time series vector X consists of 13 random variables each of which
corresponding to a single gene in the development process. We simulated the development process for
various lengths of time-series in which the noise N ∼ N (0, .03) is added for all the genes, and every
single sample is then subject to erasure (i.e. be replaced by 0s) with a probability of 0.5. Then we
applied the cRDI method utilizing various CMI estimators and then calculated the Area-Under-ROC
curve (AUROC). The results are shown in Figure 2e. It’s seen that the cRDI method implemented
with the GDM estimator outperform the other estimators by at least %10 in terms of AUROC. In the
tests, cRDI for each (Xi, Xj) is conditioned over the node k 6= i with the highest RDI value to j. We
notice that the causal signals are highly destroyed due to the zero-inflation, so we won’t expect high
performance of the causal inference over the data. We did not include the ΣH estimator results due
to its very low performance.

Experiment 6: Feature Selection by Conditional Mutual Information Maximization. Feature
selection is an important pre-processing step in many learning tasks. The application of information
theoretic measures in feature selection is well studied in the literature [7]. Among the well-known
methods is the conditional mutual information maximization (CMIM) first introduced by Flueret [4],
a variation of which was later introduced called CMIM-2 [53]. Both methods use conditional mutual
information as their core measure to select the features. Hence the performance of the estimators can
significantly influence the performance of the methods. In our experiment, we generated a vector
X = (X1, . . . , X15) of 15 random variables in which all the random variables are taken from N (0, 1)
and then each random variable Xi is clipped from above at αi which is initially taken randomly
from U(0.25, 0.3) and then kept constant during the sample generation. Then Y is generated as

Y = cos
(
∑5

i=1Xi

)

. Then we did the CMIM-2 algorithm with various CMI estimators to evaluate
the performance of the estimators in extracting the relevant features X1, . . . , X5. The AUROC values
for each algorithm versus the number of samples generated are shown in Figure 2f. The feature
selection methods implemented with the GDM estimator outperform the other estimators.

6 Discussion and Future Work

A general paradigm of graph divergence measures and novel estimators thereof, for general probability
spaces are proposed, which estimate several generalizations of mutual information. In future, we
would like to derive further efficient estimators for high dimensional data. In the current work,
estimators are shown to be consistent with infinite scaling of parameter k. In future, we would like to
understand the finite k performance of the estimators as well as guarantees on sample complexity and
rates of convergence. Another potential direction to follow is to study the variational characterization
of the graph divergence measure to design estimators. Improving the computational efficiency of
the estimator is another direction of future work. Recent literature including [54] provide a new
methodology to estimate mutual information in a computationally efficient manner and leveraging
these ideas for the generalized measures and general proabability distributions can be a promising
direction ahead.
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Figure 2: The results for the experiments versus the number of samples: 2a: The estimated CMI for
the X-Z-Y Markov chain. 2b: CMI for the AWGN+BSC channels with low-dimensional Z manifold.
2c: The estimated TC values for three independent variables. 2d: The estimated TC for zero-inflated
variables. 2e: The AUROC values for gene regulatory network inference. The error bars show the
standard deviation scaled down by 0.2. 2f: The AUROC values for feature selection accuracy. The
error bars show the standard deviations scaled down by 0.2.
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