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Abstract
This paper describes a technique for characterization and segmentation of
anisotropic patterns that exhibit a single local orientation. Using Gaussian
derivatives we construct a gradient-square tensor at a selected scale.
Smoothing of this tensor allows us to combine information in a local
neighborhood without canceling vectors pointing in opposite directions.
Whereas opposite vectors would cancel, their tensors reinforce.
Consequently, the tensor characterizes orientation rather than direction.
Usually this local neighborhood is at least a few times larger than the scale
parameter of the gradient operators. The eigenvalues yield a measure for
anisotropy whereas the eigenvectors indicate the local orientation. In
addition to these measures we can detect anomalies in textured patterns.

1.  Introduction
Information from subsurface structures may help geologists in their search for
hydrocarbons (oil and gas). In addition to seismic measurements which are performed at
the earth’s surface important information can be extracted from a borehole. This can be
done either by downhole imaging of the borehole wall or by analyzing the removed
borehole material “ the core” . Core imaging requires careful drilling with a hollow
drillbit. The cores are transported to the surface for further analysis. Apart from physical
measurements geologists are interested in the spatial organization of the acquired rock
formations. We show that this can be done with the help of quantitative image analysis.
The cylindrical cores can be cut longitudinally (slabbed) and digitization of the flat
surface yields a 2D slabbed core image.

Quantitative information about the layer structure in a borehole may help the
geologist to improve their interpretation. The approach to be followed is guided by a
simple layer model of the earth’s subsurface. These layers can be described by a number
of parameters which may all vary as a function of depth. Some of these parameters have
a direct geometric meaning (dip and azimuth) whereas others are much more difficult to
express quantitatively in a unique way. In this paper we will focus on orientation and
anisotropy measurements applied to slabbed core images.
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Deposition of various sediments (sand, shale) over time allows us to use layers
for modeling the earth’s subsurface. The core images under study exhibit a single
dominant local 3D orientation caused by cutting through a large number of mainly
parallel layers. The orientation of these layers can be described by two angles called dip
and azimuth. For slabbed core images cut along the azimuth we can find the local dip
from the 2D cross section. Due to the nature of the deposition in combination with other
environmental conditions the layers do not display themselves as high contrast, planar,
continuous boundaries (cf. figure 1). This prohibits the  use of edge or line detectors
followed by high level edge tracking or edge linking procedures. To estimate orientation
and anisotropy as well as to detect anomalies we have extended the orientation
estimators of [1,2].

2. Gradient-square tensor
Important features of core images are the amount and orientation of local anisotropy (cf.
figures 1) which can be used to characterize laminar beds. To all pixels of the image we
assign a vector, the gradient vector. The magnitude of the vector can be seen as the

a) b)

c) d)
Figure 1: Four samples of slabbed core images. a) planar region of high SNR; b) planar region
of low SNR; c) discontinuous layers of high SNR; d) isotropic region of low SNR.
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image contrast in the direction of the vector. In a window around an edge all these
vectors point roughly in the same direction. A weighted sum would result in an average
direction. Thus an edge can be uniquely characterized by a vector. The vector not only
describes the edge orientation, but also which side has the higher grey level. In a
window around a line all gradient vectors on one side point roughly in the same
direction. However, gradient vectors from opposite sides of the line have the same
orientation, but have opposite signs (direction). In a weighted sum, vectors from
opposite sides of a line cancel out. To avoid cancellation of vectors pointing in opposite
direction we need a quantity that depends on sin(2ϕ) and cos(2ϕ), i.e. a double angle.
This way vectors pointing in opposite direction do not cancel, but reinforce each other.
The first derivative or gradient consists of terms cos(ϕ) and sin(ϕ). The second
derivative depends on the double angle terms sin(2ϕ) and cos(2ϕ). In two-dimensions
the second derivative function space is defined by a 2x2 Hessian matrix. In order to use
the first derivative we must use the dyadic product of the gradient vector with itself g•gt:
the gradient-square tensor G.

G g g= • =t x x y

x y y

g g g

g g g

2

2
(1)

An alternative interpretation is as follows. Again we start with a set (window) of
gradient vectors. We transfer all vectors to a common origin. For line-like objects we
have seen that vectors from opposite sides of the line cancel out. To avoid this we
replace the vectors by their endpoints. For windows containing lines, this result yields a
cloud of points centered around the origin. To analyze the properties of such a cloud we
calculate the sample covariance matrix. If g gx y= = 0 then

cov ,g g
g g g g

g g g gx y
x x x y

x y y y

t= ≡ = •G g g (2)

with  the average of the set (window). Thus for all point clouds with zero mean
(gx = gy = 0) the covariance matrix equals the smoothed gradient-square tensor G . The
eigenvalues of the covariance matrix correspond to the variances along the axes of
inertia of the cloud. The axis with the lowest variance corresponds to the orientation of
anisotropic features in the input image. For windows containing strong edges, the mean
gradient (the cloud of endpoints) lies far away from the origin (g >> 0) . Note that in
general the smoothed gradient-square tensor G  is different from the covariance matrix.

3. Orientation estimation from a Gradient-square tensor
The gradient-square tensor G at each image location is per definition one-dimensional,
i.e. it contains a single vector. A weighted sum of such gradient-square tensors yields a
smoothed tensor G  that represents a window with potentially more than one orientation.
An arbitrary smoothing filter can be used to produce a tensor G  with orientation
information from an arbitrary weighted neighborhood. The eigenvalues and
corresponding eigenvectors yield specific information about the local neighborhood.

λ1 largest eigenvalue: tensor energy in the direction of the first eigenvector v1;
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λ2 smallest eigenvalue: tensor energy in the direction of the second
eigenvector v2;

1–λ2/λ1 anisotropy (consistency of local orientation);
ϕ local orientation;
λ1 + λ2 smoothed gradient-square magnitude.

A smoothed gradient-square tensor can be written as

G g g= • =t x x x y

x y y y

g g g g

g g g g
(3)

The eigenvalues can be found by solving G I− =λ 0 resulting in

λ12
1
2

2 2 1
2

2 2
2 2

4, = + ± − +g g g g g gx y x y x y
(4)

The normalized eigenvectors v1 and v2 that correspond to the eigenvalues λ1 and λ2 are
of course orthogonal. The eigenvalues satisfy the relations v1

t Gv1 = λ1 and v2
t Gv2 =

λ2. The orientations of both eigenvectors are

ϕ
λ
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λ
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1
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2
2
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(5)

Note that ϕ1 is the local gradient direction. This solution uses a simple rule borrowed
from linear algebra which solves the double angle problem implicitly. The relation
between the gradient direction and the double angle phenomenon is presented in
Appendix A. The local orientation ϕ corresponds to the direction of the smallest
eigenvalue.

a)       b)
Figure 2: a) concentric circles; b) local orientation − 1

2
1
2π π,  obtained by smoothed

gradient-square tensor.

The local orientation is automatically mapped into interval − 1
2

1
2π π, . The double-

angles (introduced by the dyadic product) give rise to two discontinuities in the
orientation field per revolution of the input pattern. Figure 2 shows the relation between
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the direction of anisotropy in the input image and the corresponding local orientation ϕ.
The discontinuities occur for vertically oriented patterns which have a very low
frequency of occurrence in our core images. Note that in all our images we have mapped
monotonically increasing pixel values to monotonically increasing brightness levels.
Where it can be of help to interpret the images we have indicated the interval that
corresponds to the brightness values ranging from black to white.

The tensor G is constructed from first derivatives which are implemented as
convolutions with a derivative-of-Gaussian. The Gaussian is applied as regularization
function, to suppress noise and allows scale selection. The scale parameter should be
large enough to suppress noise and small enough to detect thin linear structures that
present themselves at a small scale (very thin layers of sand and shale). The smoothing
of the tensor allows us to combine information in a local neighborhood. This smoothing
describes the orientation inside that local neighborhood at the selected scale. Usually
this local neighborhood is at least a few times larger than the scale parameter embedded
in the gradient operators. The tensor smoothing can be accomplished by any low-pass
filter. Since the smoothing size will be large we restrict ourselves to low-pass filters that
have processing times independent of the filter size. We have two such filters at our
disposal: the square-shaped uniform filter and a recursive implementation of the
Gaussian filter [3]. The uniform filter takes approximately 70 ms and the recursive
Gaussian filter takes approximately 100 ms when applied to an image of size 256x256.
Figure 3 illustrates the information embedded in the smoothed gradient-square tensor. It
shows that the method is suitable for measuring the local orientation. All sub-images
use the full intensity scale (contrast stretching). The input image can be segmented into
regions containing a single dominant orientation.
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a) b) [0, 1.5] c) [0, 0.3] d) [0.2, 0.9] e) [0.4, 1]
Figure 3: A smoothed gradient-square tensor yields the following information. a) input
image; b) largest eigenvalue λ1; c) smallest eigenvalue λ2; d) local orientation ϕ; e)
anisotropy (1–λ2/λ1).

4. Anisotropy estimation from a Gradient-square tensor
The ratio λ2/λ1 lies in the interval [0,1] and therefore 1–λ2/λ1 lies in the interval [0,1] as
well. The quantity 1–λ2/λ1 is a measure of anisotropy. A value equal to zero indicates
perfect isotropy whereas a value equal to one indicates perfect anisotropy. In practice
perfect anisotropy does not occur since the embedded noise is independent from pixel to
pixel. The noise power always contributes a certain amount of isotropy. Note that for
images with a high SNR the quantity 1–λ2/λ1 is dominated by the signal, whereas for
images with a very low SNR this quantity is dominated by the noise (c.f. figure 4).
Figure 4 shows that a laminar region with low SNR cannot be detected from the
eigenvalues but is easily identified from the ratios of these eigenvalues (1–λ2/λ1) (cf. the
dark area in figure 4e). However, areas where (1–λ2/λ1) is low do not always correspond
to laminar regions of low SNR. Figure 5 shows that low values of (1–λ2/λ1) also arise
from isotropic regions of any SNR. Isotropic regions of high SNR can be distinguished
from laminar regions of low SNR after examining the images with eigenvalues. Figures
4 and 5 show that both images contain regions with very low values for anisotropy (cf.
dark areas in figures 4e and 5e). In figure 4 this region contains very little contrast and is
dominated by noise. The isotropic regions have very low values of λ1 and λ2. In figure 5
very low anisotropy values occur also in regions with high contrast (high SNR). Here we
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notice that isotropy occurs due to the isotropic characterization of the signal (high values
of λ1 and λ2).

a) b) [0, 1.2] c) [0, 0.4] d) [–0.9, –0.1] e) [0, 0.85]
Figure 4: Gradient-square tensor method applied to a region of low SNR. In the middle-
left part of the image the noise dominates the gradient-square tensor producing an
unreliable estimate of local orientation. a) input image; b) largest eigenvalue λ1; c)
smallest eigenvalue λ2; d) local orientation ϕ; e) anisotropy (1–λ2/λ1).

a) b) [0, 7.8] c) [0, 4.1] d) − 1
2

1
2π π, e) [0, 0.8]

Figure 5: Gradient-square tensor method applied to a region without anisotropy of high
SNR. a) input image; b) largest eigenvalue λ1; c) smallest eigenvalue λ2;
d) local orientation ϕ; e) anisotropy (1–λ2/λ1).

5. Detection of anomalies in laminar beds
An important application of this technique is the detection of anomalies in laminar beds.
At the position of such anomalies the local one-dimensional pattern is disturbed. Here
λ2 is higher. This is clearly demonstrated in figure 6. The anomalies show up as well
defined regions in the smallest eigenvalue λ2 as well as the anisotropy image (1–λ2/λ1).
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a) b) [0, 1.6] c) [0, 0.6] d) [–1.0, 1.0] e) [0, 1]
Figure 6: Gradient-square tensor method applied to a laminar region with a few
anomalies. a) input image; b) eigenvalue λ1; c) eigenvalue λ2; d) local orientation ϕ; e)
anisotropy (1–λ2/λ1).

6. Conclusions
In this paper we showed that the smoothed gradient-square tensor is a powerful tool for
analyzing oriented patterns. The size of the smoothing filter allows us to choose
between a very localized measure with low signal-to-noise ratio and a measure over a
larger region with a higher SNR. Applied to core images we obtained a robust estimate
of local orientation when the diameter of the smoothing filter is equal to the diameter of
the core cylinder (thus equal to the width of the image). This estimates yields exactly
one orientation for every depth. Statistics as a function of depth transform the 2D
images (ϕ, (1–λ2/λ1)) into a series of 1D logs. From anisotropy we derive a second
measure called consistency. Consistency is derived from range of anisotropy values
found. A small difference between the upper and lower values of anisotropy indicates a
consistent orientation over the entire width of the core diameter (at that position). A
large difference indicates that an anisotropic pattern is locally disturbed by anomalies
such as fractures, nodules, lenses or other artifacts.
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Appendix A: Double angle of the gradient square tensor
The gradient vector g has orientation φ  (φ  = atan(gy/gx)). The dyadic product of the
gradient vector with itself yields the gradient square tensor g•gt = G. The gradient square
in a direction ϕ  equals
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this expression can be simplified by introducing a double-angle 2χ
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The gradient square in a direction ϕ depends on angle between the chosen direction ϕ
and the gradient direction φ. It is maximal for ϕ = χ, thus φ ≡ χ.
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Smoothing of the tensor yields the average orientation χ’.
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Note that the average orientation of the gradient-square tensor is expressed in double
angles. The orientation is estimated without using the eigenvalues of G. Below we show
that the orientation of first eigenvector ϕ1 (the first eigenvector v1 corresponds to the
largest eigenvalue λ1) equals the angle χ’ .

Using two simple matrix properties G I− =λ 0 and G I v i− =λ i 0 yields

λ1
1
2

2 2 1
2

2 2
2 2

4= + + − +g g g g g gx y x y x y (A5)

tanϕ
λ

1
1

2
=

− g

g g
x

x y
(A6)

Substitution of λ1 into tanϕ1 yields
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using simple trigonometry the double angle can be expressed in terms of χ’
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From this we may conclude that the direction of the first eigenvector ϕ1 equals the angle
χ’ and thus is identical to the average gradient orientation φ’ .

ϕ χ φ1 ≡ ≡ (A9)


