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Estimators of the Magnitude-Squared Spectrum and
Methods for Incorporating SNR Uncertainty

Yang Lu and Philipos C. Loizou, Senior Member, IEEE

Abstract—Statistical estimators of the magnitude-squared
spectrum are derived based on the assumption that the magni-
tude-squared spectrum of the noisy speech signal can be computed
as the sum of the (clean) signal and noise magnitude-squared
spectra. Maximum a posterior (MAP) and minimum mean square
error (MMSE) estimators are derived based on a Gaussian statis-
tical model. The gain function of the MAP estimator was found
to be identical to the gain function used in the ideal binary mask
(IdBM) that is widely used in computational auditory scene anal-
ysis (CASA). As such, it was binary and assumed the value of 1 if
the local signal-to-noise ratio (SNR) exceeded 0 dB, and assumed
the value of 0 otherwise. By modeling the local instantaneous SNR
as an F-distributed random variable, soft masking methods were
derived incorporating SNR uncertainty. The soft masking method,
in particular, which weighted the noisy magnitude-squared spec-
trum by the a priori probability that the local SNR exceeds 0 dB
was shown to be identical to the Wiener gain function. Results
indicated that the proposed estimators yielded significantly better
speech quality than the conventional minimum mean square error
spectral power estimators, in terms of yielding lower residual
noise and lower speech distortion.

Index Terms—Binary mask, maximum a posterior (MAP) es-
timators, minimum mean square error (MMSE) estimators, soft
mask, speech enhancement.

I. INTRODUCTION

A
NUMBER of estimators of the signal magnitude spec-

trum have been proposed for speech enhancement (see

review in [1, Ch. 7]). The minimum mean square error (MMSE)

estimators [2], [3] of the magnitude spectrum, in particular, have

been found to perform consistently well, in terms of speech

quality, in a number of noisy conditions [4]. Several MMSE

estimators of the power spectrum [5]–[7] or more general the

th-power magnitude spectrum [8] have also been proposed. In

some applications such as speech coding [6], where the autocor-

relation coefficients might be needed, the optimal power-spec-

trum estimator might be more useful than the magnitude esti-

mator. Some [9], [10] have also incorporated the power-spec-

trum estimator in the “decision-directed” approach used for the
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computation of the a priori signal-to-noise ratio (SNR). This

was based on the justification that the MMSE estimator of the

power-spectrum is not equivalent to the square of the MMSE

estimator of the magnitude spectrum, which is often used in the

implementation of the “decision-directed” approach.

Analysis of the attenuation curves of the MMSE estimators

of the th-power magnitude spectrum revealed that these esti-

mators provide less attenuation than the linear and log-MMSE

estimators, at least for [8]. This in turn leads to sub-

stantial residual noise. In this paper, we derive estimators of

the short-time power-spectrum, henceforth denoted as mag-

nitude-squared spectrum, which markedly reduce the residual

noise without introducing speech distortion. Maximum a

posteriori (MAP) estimators and MMSE estimators of the

magnitude-squared spectrum are derived. A number of MAP

estimators of the magnitude spectrum have been proposed [11],

[7], [12]–[14] in the literature, but no MAP estimators of the

magnitude-squared spectrum have been reported. Furthermore,

no closed form solutions of the MAP estimators of the magni-

tude spectrum were derived in prior studies without resorting

to some approximations to the underlying density or the Bessel

function. In contrast, no approximations are used in the deriva-

tion of the proposed MAP estimator of the magnitude-squared

spectrum. The proposed MMSE and MAP estimators are de-

rived using a Gaussian statistical model [2] and the assumption

that the magnitude-square spectrum of the noisy speech signal

can be computed as the sum of the (clean) signal and noise

magnitude-squared spectra. This assumption has been used

widely in spectral subtraction algorithms [15]–[20], as well as

in statistical-model based speech enhancement algorithms [5],

and is known to hold statistically assuming that the signal and

noise are independent and zero mean. Under some conditions

[21], this assumption also holds in the instantaneous case, i.e.,

for short-time magnitude-squared spectra.

Of particular interest in this paper is the derived gain func-

tion of the MAP estimator of the magnitude-square spectrum,

which is shown to be the same as the ideal binary mask. The

ideal binary mask is a simple technique which is widely used

in the computational auditory scene analysis (CASA) field [22].

The ideal binary mask can be considered as a binary gain func-

tion which assumes the value of 1 if the local SNR at a partic-

ular time–frequency (T-F) unit is larger than a threshold, and

assumes the value of 0 otherwise. When the ideal binary mask

is applied to the spectrum (computed using either the FFT or a

filterbank) of the noisy speech signal, it can synthesize a signal

with high intelligibility even at extremely low SNR levels ( 5,

10 dB) [23], [24]. The optimality of the ideal binary mask, in

terms of maximizing the SNR, was analyzed in [25]. The con-

cept of the ideal binary mask has been motivated by auditory
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masking principles [26], but has not been derived thus far analyt-

ically using known statistical techniques. A theoretical formu-

lation of the ideal binary mask is presented in this paper, along

with some new techniques for estimating the binary mask. As

the construction of the MAP gain function relies on estimates of

the SNR at each frequency bin, new estimators are proposed that

incorporate SNR uncertainty. The SNR thresholding rule used

in the ideal binary mask bears resemblance to the “hard-thresh-

olding” rule used in wavelet denoising [27]–[29]. The similari-

ties and dissimilarities of the ideal binary mask with the wavelet

shrinkage rules are discussed.

Thispaper isorganizedasfollows.SectionIIpresents theback-

groundinformation,andSectionIIIpresents theassumptions,and

also derives the MMSE estimator that uses these assumptions.

The derivation of MAP estimator is presented in Section III-C.

Section IV presents the details of soft mask estimators incorpo-

rating SNR uncertainty, and also analyzed the relationship be-

tween these estimators and binary masking. Section V provides

the implementation details, Section VI presents the experimental

results, and finally Section VII gives the conclusions.

II. BACKGROUND

Let denote the noisy signal, with

and representing the clean speech and noise signals, re-

spectively. Taking the short-time Fourier transform of , we

get

(1)

The above equation can also be expressed in polar form as

(2)

where denote the magnitudes and

denote the phases at frequency

bin of the noisy speech, clean speech, and noise, respectively.

Wolfe and Godsill [7] proposed the following MMSE esti-

mator of the short-time power spectrum (MMSE-SP):

(3)

where

(4)

(5)

and and denote the a priori and a posteriori SNRs, respec-

tively. The derivations of the above MMSE estimator as well as

the MAP estimator were based on the following Rician poste-

rior density :

(6)

where

(7)

(8)

(9)

and is the first kind modified Bessel function of zeroth

order. Approximations of the Bessel function were found

necessary in [7] and [14] in order to derive the MAP estimator of

the magnitude spectrum. Analysis of the suppression curves in

[7] revealed that the MMSE spectral power suppression rule of

(3) follows that of the MMSE magnitude estimator [2] closely,

but provides less suppression in regions of low a priori SNR.

The proposed estimators of the short-time power-spectrum

will be compared against the above estimator.

III. PROPOSED MAGNITUDE-SQUARED ESTIMATORS

A. Statistical Model and Assumptions

Assuming that and are uncorrelated stationary

random processes, the power spectrum of the noise-corrupt

signal, is simply the sum of the power spectra of the

clean speech and noise

(10)

The above assumption is true only in the statistical sense. How-

ever, taking this assumption as a reasonable approximation for

short-term (20 ms in this paper) spectra, its application can lead

to simple noise reduction methods [16].

Two assumptions are used in the derivation of the proposed

estimators. The first assumption used in this paper is based on

(10) by approximating the power spectrum using the magnitude-

squared spectrum, which is the sample estimate of the ensemble

average. Therefore, we rewrite (10) as follows:

(11)

Note that is limited in due to (11). The above ap-

proximation is in fact widely used in all spectral subtractive al-

gorithms [16]–[20], as well as in statistical-model based speech

enhancement algorithms [5]. Analysis in [21] indicated that in

high or low SNR conditions, (11) still holds in the instantaneous

sense.

In the rest of the paper, we will be referring to and

as the magnitude-squared spectra of the noisy, clean and

noise signals, respectively.

The second assumption is that the real and imaginary parts of

the discrete Fourier transform (DFT) coefficients are modeled as

independent Gaussian random variables with equal variance [2],

[30]. Consequently, the probability density of is exponential

[31, p. 190], and is given by

(12)
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Similarly, the density of is given by

(13)

where and are given by (5).

The posterior probability density of the clean speech magni-

tude-squared spectrum can be obtained using the Bayes’ rule as

follows

if

if
(14)

where and is defined as

if (15)

and

(16)

Note that if , then , and vice

versa. Thus, in (14) is always positive.

B. Minimum Mean Square Error Estimator

Using (11)–(14), we can derive two different estimators of the

magnitude-squared spectrum. The MMSE estimator is obtained

by computing the mean of the posteriori density given in (14)

if

if
(17)

where is defined as

(18)

Note that the above MMSE estimator is derived by computing

the mean of the posteriori density conditioned on the noise-cor-

rupt magnitude-squared spectrum , rather than the complex

noisy spectrum ( . This differentiates the present MMSE

estimator from that derived in (3) [6], [7].

The gain function of the above MMSE estimator is given by

if

if

(19)

We will henceforth refer to the above estimator as the MMSE-

SPZC estimator, where SPZC stands for Spectrum Power esti-

mator based on Zero Cross-terms assumptions. Note that much

like the gain function of MMSE-SP estimator (3), the above

Fig. 1. Gain function of the proposed MMSE-SPZC estimator of the power
spectrum plotted as a function of the instantaneous SNR �� � �� for fixed
values of � . The gain function of the MMSE-SP estimator [7] is superimposed
for comparison.

Fig. 2. Gain function of the proposed MMSE-SPZC estimator of the power
spectrum plotted as a function of the a priori SNR �� � for fixed values of � .
The gain function of the MMSE-SP estimator [7] is superimposed for compar-
ison.

gain function depends on two parameters, and . Figs. 1

and 2 show the gain function of the MMSE-SPZC estimator

for fixed values of and fixed values of , respectively. As

can be seen from these two figures, the MMSE-SPZC estimator

provides more suppression than the MMSE-SP estimator for

small values of ( dB) and large values of (

dB). We thus expect the MMSE-SPZC estimator to reduce

the residual noise commonly encountered in speech processed

by the MMSE-SP estimator. It is interesting to note, that when

dB, the MMSE-SPZC estimator provides constant atten-

uation of 3 dB, independent of the value of . This is shown

analytically in (17) and in Appendix A.

Note that Ding et al. [5] proposed this MMSE estimator incor-

porating a mixture of Gaussians for modeling the clean speech
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variance. A mixture model, trained using data from a large data-

base, was used for online estimation for the clean speech from

the corrupted speech. Unlike [5], a single Gaussian was used in

the present study for modeling the density of the real and imag-

inary parts of the DFT coefficients.

C. Maximum a Posterior (MAP) Estimator

The a posterior probability density (14) function is mono-

tonic, and when (expressed in dB) changes its sign, the den-

sity changes its direction (increasing versus decreasing). This

simplifies the maximization a great deal. The MAP estimator is

given as follows:

if

if

if

if
(20)

Note that is limited in due to (11). Based on (14),

when , the conditional density is uniformly

in the range of , and therefore the MAP estimate

in this special case could be any value in the range of . In

our case, we chose to use the noisy observation as in (20). The

gain function of the MAP estimator is given by

if

if
(21)

Using (4), the above gain function can also be written as

if

if
(22)

Note that unlike the MMSE gain function (19), the MAP gain

function is binary valued. In fact, it is nearly the same as the ideal

binary mask widely used in CASA [22], [23]. In CASA, the bi-

nary mask assigns a binary weight for each time–frequency unit

based on the value of the local, instantaneous, SNR. If the local

SNR is greater than a pre-defined threshold (e.g., 0 dB), the bi-

nary mask takes the value of 1, and if it is less than the threshold,

the binary mask takes the value of 0. Speech is synthesized by

multiplying the binary mask with the noisy signal, and large

gains in intelligibility were reported in [23], [24] with speech

synthesized by the ideal binary mask. The gain function implic-

itly used in the ideal binary mask technique is nearly identical to

that given by (22). The main difference between the ideal binary

mask and the MAP gain function (22) is that the latter is based

on the a priori SNR, whereas the ideal binary mask is based on

the instantaneous SNR.

It is also interesting to note that this MAP estimator follows

a so-called “hard-thresholding” rule often used in the wavelet

shrinkage literature [32], [27], [28]. The hard-thresholding rule

belongs to the class of diagonal linear projection estimators.

These estimators [32] share the same rule as given in (22) in

that they keep the observation when the signal is larger than the

noise level, and “kill” the observation otherwise. According to

[32] the ideal risk for our estimation problem at hand can be

computed as . There are, how-

ever, a number of differences between the diagonal estimators

used in the wavelet literature and the above MAP estimator. For

one, the diagonal estimators operate on the wavelet coefficients,

which possess a different distribution than the Fourier coeffi-

cients used in the present study. The wavelet transform produces

a sparse signal and noise is typically spread out equally over all

coefficients [29]. Second, most of the oracle risk bounds that

were computed for different thresholding rules are not appli-

cable here, as those bounds were derived under the assumption

that the additive noise was Gaussian [33], [34]. In our case, the

magnitude-squared spectrum of the noise in our model in (11)

is assumed to have an exponential distribution, i.e., our addi-

tive noise model in (11) is based on an exponential distribution

assumption and not a Gaussian assumption. In brief, while the

proposed MAP estimator is similar to the hard-thresholding rule

used in the wavelet shrinkage literature, the underlying assump-

tions and criteria are totally different.

As mentioned earlier, a number of MAP estimators of the

magnitude spectrum have been proposed in the literature [35],

[12]–[14], [11], [7] for speech enhancement, and these are sum-

marized in Table I. There are however a number of distinct dif-

ferences between the derived MAP estimator and the previous

MAP estimators. For one, no MAP estimators of the magni-

tude-squared spectrum have been reported previously. Second,

the posteriori density used in prior studies (except [14]) is dif-

ferent as it is conditioned on the complex spectrum of the noisy

signal, rather than the magnitude-squared spectrum of the noisy

signal (see Table I). As shown in (6), the posteriori density in-

volved in the derivation of previous MAP estimators contains

a Bessel function , making it difficult to derive a closed

form solution for the MAP estimator. In fact, a closed form solu-

tion was found in previous MAP estimators [11], [7], [12]–[14]

only after approximating the Bessel function with a function

of the form . While this approximation is valid

for large values of , it becomes erroneous for small values of

. In contrast, the derived posteriori density [see (14)] in the

present study has a much simpler form enabling us to derive a

closed form solution without resorting to any approximations.

Furthermore, based on the fact that [owing to (11)],

the integration is simplified a great deal, as shown for instance in

(17). In [14], the authors opted to approximate the Laplacian and

Gamma distributions with parametric density functions. In brief,

we derived in the present study a MAP estimator of the magni-

tude-squared spectrum, rather than a MAP estimator of the mag-

nitude spectrum (already reported previously—see Table I), and

this MAP estimator was derived in closed-form without making

any approximations. Finally, and perhaps more importantly, we

demonstrated that there exists a link between the proposed MAP

estimator and the ideal binary mask used in CASA applications.

IV. INCORPORATING SNR UNCERTAINTY AND

PROPOSED SOFT MASKS

We showed in the last section that the MAP estimator is sim-

ilar to the binary mask technique used in CASA [22]. The ideal

binary mask (IdBM) is often used as the computational goal in

CASA [25], [22]. Use of IdBM has been shown to restore speech
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TABLE I
MAP ESTIMATOR COMPARISONS

intelligibility even when speech is corrupted at extremely low

SNR levels [23], [24], [36]. However, implementation of IdBM

requires access to the true local (instantaneous) SNR rather than

the a priori SNR. Estimation of the local SNR is difficult as it

requires knowledge of the speech and noise magnitude-squared

spectra, which we do not have. Furthermore, applying a binary

gain to noisy speech spectra, could affect the quality of speech

in that frequent zeroing of spectral components (when the local

SNR ) could potentially produce musical noise. This is so

because the zeroing of spectral components can create small,

isolated peaks in the spectrum occurring at random frequency

locations in each frame. Converted to the time domain, these

peaks sound similar to tones with frequencies that change ran-

domly from frame to frame, and produce musical noise. In brief,

there exists an uncertainty in estimating the local and a priori

SNR accurately and reliably at all SNR levels.

In this section, we propose soft masking methods which in-

corporate local SNR uncertainty, thereby making the gain func-

tion continuous (soft) rather than binary. Henceforth, we refer

to these estimators as soft masking estimators. Methods for esti-

mating reliably binary gain functions, as required for the IdBM

technique, have been reported in [36] and [37].

In the rest of this section, we propose two soft masking

methods that incorporate a priori and a posteriori SNR uncer-

tainty, respectively.

A. Soft Mask Formulation

The variances of the speech and noise spectra are the key

parameters in most statistical models. As neither speech or

noise are stationary, their variances are time-varying. However,

in short-time intervals (10–30 ms), the speech and noise signals

can be assumed to be quasi-stationary processes. Their vari-

ances can be modeled as unknown but deterministic parameters.

Thus, the a priori SNR can also be assumed to be unknown

but deterministic.1 Given the a priori SNR, the probability

density of the local (instantaneous) SNR can be computed.

More precisely, after defining the instantaneous SNR, , as

follows:

(23)

we express the ideal binary mask (IdBM) rule as

if where

if where
(24)

Following the approach in [40], we formulate the binary mask

problem using the following binary hypothesis model:

masker dominates

target signal dominates. (25)

The gain function in (24) can be considered to be a random

variable as it depends on the instantaneous SNR, . In the con-

text of binary masking, is a Bernoulli distributed random vari-

able taking the value of 0 or 1, and its parameter is the hypoth-

esis probability . It is difficult to estimate as it depends

1The noise variance is typically estimated using noise PSD estimation
methods, such as the minimum statistics [38], and minimum controlled recur-
sive average [39] algorithms. The a priori SNR is usually estimated by the
“decision-directed” [2] method.
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on accurate estimates of the instantaneous SNR. However, we

can obtain more reliably by taking its expectation. In doing so,

we obtain the following weighted average estimate of the mag-

nitude-square spectrum now incorporating the aforementioned

two hypothesis:

(26)

where denotes the probability that hypothesis is true,

denotes the gain function assuming that hypoth-

esis is true (i.e., target signal dominates) and

denotes the gain function assuming that hypothesis is true

(i.e., masker dominates). From (24), and

. In practice, using a very small value for

results in better quality and with enhanced speech

containing small amounts of residual noise. In our study, we

used the value of dB for to minimize

the residual noise. In the next two subsections, we derive the

probability terms and .

B. Soft Masking by Incorporating a Priori SNR Uncertainty

Assuming independence between the clean speech and noise

magnitude-squared spectra, we can easily use (12) and (13) to

model the hypothesis probability given the a priori SNR . As

we do not use any other constraint or assumption, we refer to

this hypothesis probability as the a priori SNR uncertainty.

Using the exponential models for and [i.e., (12) and

(13)] it is easy to derive (see Appendix B) the probability density

of as

(27)

where is the step function. For an arbitrary SNR threshold

, the hypothesis probability needed in (26) is computed as

(28)

Note that the above probability can only be assessed when the

a priori SNR is given. We refer to this probability as priori

since it does not require information from the noise-corrupt ob-

servations and does not need the assumption of (11). As men-

tioned before, can be estimated using the “decision-directed”

approach in conjunction with noise PSD estimation algorithms.

Finally, by inserting (28) into (26), we get

(29)

where is the a priori SNR (4). It is interesting to note that

when , the above estimator becomes identical to the

Wiener filter. We will be referring to the above estimator as the

soft mask estimator with a priori SNR uncertainty, and we de-

note it as SMPR.

Fig. 3 plots the gain function of the SMPR estimator for three

different thresholds, 5, 0, and 5 dB. The gain function of

Fig. 3. Gain function of the SMPR estimator plotted as a function of the a

priori SNR � and for different values of threshold �. The Wiener gain function
is superimposed for comparison.

the Wiener filter is superimposed for comparative purposes. As

discussed, the Wiener gain is identical to the SMPR gain for

dB. For thresholds dB, the SMPR gain func-

tion becomes steep and more aggressive, while for thresholds

dB, the SMPR gain function becomes shallow and less

aggressive.

There exists a large body of literature in wavelet denoising

in terms of choosing the right threshold, and includes among

others adaptive selection procedures such as the SURE [28] and

cross-validation methods. These threshold selection techniques,

however, are based on the Gaussian additive model assumption,

which as discussed previously (see Section III-C) is not appli-

cable to our study. Our choice of thresholds was based largely on

perceptual studies. The study in [23], for instance, indicated that

SNR threshold values in the range of dB produced large

improvements in intelligibility. This range of SNR threshold

values will be examined in the present study.

C. Soft Masking Based on Posteriori SNR Uncertainty

Clearly the above SMPR estimator did not incorporate in-

formation about the noisy observations, as it relied solely on

a priori information about the instantaneous SNR . It is rea-

sonable to expect that a better estimator could be developed by

incorporating posteriori information about the SNR at each fre-

quency bin. In this case, we incorporate the assumption given in

(11) to compute the hypothesis probability, which is referred to

as a posteriori SNR uncertainty.

This hypothesis probability can be computed as the posteriori

probability of as follows:

(30)
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Fig. 4. Gain function of the SMPO estimator plotted as a function of the a

priori SNR � and for different values of � . The threshold � was fixed at � �
� dB. The gain function of the MMSE-SPZC estimator is superimposed for
comparison.

Inserting (14) into (30), we get

if

if
(31)

Finally, substituting (31) into (26), we obtain the following es-

timator:

if

if
(32)

We will be referring to the above estimator as the soft mask

estimator with posteriori SNR uncertainty, and will be denoted

as SMPO.

The SMPO gain function (32) is dependent on both the and

the values. Figs. 4 and 5 plot the gain functions of SMPO

as a function of (for fixed values of ) and as function of

(for fixed values of ), respectively. For these plots the SNR

threshold was fixed at dB. The gain function of the

MMSE-SPZC estimator (19) is plotted for comparison. As can

be seen from both figures, the gain function of the SMPO esti-

mator is more aggressive (i.e., provides more attenuation) than

the MMSE-SPZC for low values of ( dB). Fig. 6 plots

the gain function of the SMPO estimator for different values of

(with fixed at 0 dB). Overall, the gain functions are steep, re-

sembling to some degree binary functions (at least for the value

of chosen), with small values of ( dB) shifting the

curve to the left and large values of ( dB) to the right, as

expected. Unlike the binary gain function of the MAP estimator

(22) which depends solely on the value of , the gain function

of the SMPO estimator depends on information collected from

both the and parameters. As shown in Fig. 4, the parameter

can shift the gain function to the right (for large values of ) and

to the left (for smaller values of ). For that reason, we expect

the SMPO estimator to be more robust than the MAP estimator

(22) to inaccuracies in the estimate of .

Fig. 5. Gain function of the SMPO estimator plotted as a function of the instan-
taneous SNR �� ��� and for different values of � . The threshold � was fixed
at � � � dB, while the floor gain � was set to ��� dB. The gain function of
the MMSE-SPZC estimator is superimposed for comparison.

Fig. 6. Gain function of the SMPO estimator plotted as a function of the a

priori SNR � (� � � dB) and for different values of threshold �.

V. IMPLEMENTATION

Estimates of the a priori SNR are needed in the implemen-

tation of the MMSE-SPZC, SMPO and SMPR estimators. For

that, we used the “decision-directed” [2] approach:

(33)

where dB, denotes the frame index and

denotes the estimate of the noise variance.

The MAP estimator can be implemented by either using (21)

or (24). Both implementations were considered. In order to es-

timate the instantaneous SNR needed in (24), we used the
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Fig. 7. Panel (d) shows example estimates of the smoothing constant � (at bin � � ���Hz) used in the computation of the signal variance (34). Panel (a) shows
the time waveform for a sentence corrupted by babble noise at 10 dB SNR. Panel (b) shows the a priori SNR � (solid) and the a posteriori SNR � (dash-dotted)
values. Panel (c) shows the estimated speech variance (solid), based on (34) and (37), and the true speech variance (dash-dotted).

MMSE estimator [2] to obtain the spectral amplitude estimate

of the clean speech and thereafter computed the instanta-

neous SNR as . This method was noted as

MAP-BM.

For the implementation of the MAP estimator given in (21), a

method was needed to compute the signal variance . More

precisely, the following method was adopted for estimating the

signal variance

(34)

where is a smoothing constant (computed adaptively) and

is estimated from the current frame as follows:

(35)

and is computed using first-order recursive smoothing

(36)

where is a smoothing constant. The signal variance

was computed using (3) as follows:

(37)

A simple adaptive method was used to adjust the smoothing

constant in (34). The motivation behind the adaptive rule

described below is to use a small value of when is large,

and a comparatively larger value when is small:

if

if
(38)

where , and are adaptive thresholds determined

similarly by

if

if
(39)

where , , and are constants. Fig. 7 shows example esti-

mates of for a sentence corrupted by babble at 10 dB SNR.

The signal variance estimate is also shown in panel (c) based

on (34) and (37). As can be seen, when is small, the value of

is large , suggesting that more emphasis should

be placed on the previous frame’s variance estimate. Hence, for

the most part, low-energy segments use , while high-energy

segments use .

In our study we adopted the following constants:

(36), , , , , and .

Different values of were used in (33) for different estimators.

For the MMSE-SP estimator it was set to , for the

MMSE-SPZC estimator it was set to , and for the

SMPR and SMPO estimators it was set to . These
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TABLE II
PERFORMANCE, IN TERMS OF MSE, OF THE SMPR AND SMPO ESTIMATORS AS A FUNCTION OF THRESHOLD �

values were optimized for each estimator based on their re-

sulting PESQ [41] score.2 This ensured best performance from

each estimator.

For the soft masking methods incorporating SNR uncertainty,

i.e., SMPR (29) and SMPO (32), the term was set to

dB in order to retain small amounts of residual noise

and make the quality of the enhanced speech more natural.

Speech was segmented into 20 ms frames and Han-windowed

with 50% overlap. The short-time Fourier transform was applied

to each frame to obtain the noisy magnitude spectrum . The

gain functions of the derived estimators (Sections III and

IV) were applied to the noisy magnitude spectrum to get the en-

hanced signal spectrum as . An inverse Fourier

transform was taken of using the noisy speech phase spec-

trum to reconstruct the time-domain signal. The overlap-add

method was used to obtain the enhanced signal.

VI. EXPERIMENTS

A total of 30 sentences taken from the NOIZEUS [4] data-

base was used to evaluate the performance of the proposed esti-

mators. The sentences were corrupted by car, street, babble and

white noise at 0, 5, 10, and 15 dB. Two measures were used

to assess performance, the mean-square error (MSE) between

the estimated (short-time) and the true magnitude-squared spec-

trum, and the Perceptual Evaluation of Speech Quality (PESQ)

[41] measure. The MSE measure is defined as

MSE (40)

where is the short-time magnitude-squared spectrum of the

clean signal, is the estimated magnitude-squared spectrum,

is the total number of frequency bins, and is the total

number of the frames in a sentence. While small values of MSE

imply a better estimate of the true magnitude-squared spectrum,

they do not imply better speech quality. For that reason, we used

the PESQ [41] measure which has been found to correlate highly

[42] with speech quality. Unlike the MSE, higher PESQ values

indicate better performance, i.e., better speech quality.

2Thirty sentences in 10 dB babble noise were used to optimize the selection
of� for each estimator. Consistent results were obtained in other types of noise.

A. Influence of Threshold Value on Performance

In the first set of experiments, we wanted to examine the influ-

ence of the selected thresholds in the performance of the SMPO

and SMPR estimators. The thresholds were varied from 5 dB

to 5 dB, and performance (in terms of MSE and PESQ scores)

was assessed. Table II shows the MSE results and Table III

shows the PESQ results. In terms of PESQ scores, better per-

formance is obtained with the SMPR estimator when dB.

This was found to be consistent for all types of noise examined.

For the SMPO estimator, good performance (in terms of PESQ

scores) was obtained with dB. The MSE values were

consistently low for dB. For that reason, we fixed the

threshold to dB for the SMPO estimator and to dB

for the SMPR estimator in subsequent experiments.

B. Evaluation of Proposed Estimators

In the second set of experiments, we first compared the

performance of the magnitude-squared spectrum estimators

derived in the present study against that proposed by [7] [see

(3)]. The latter estimator (3) derived in [7], [6] is denoted as

MMSE-SP. In addition, for benchmark purposes we report the

performance of the (oracle) ideal binary mask and ideal ratio

masks [25], which assume access to the true instantaneous

SNR of each bin. These oracle estimators are included as they

provide the upper bound in performance of the MAP estimators.

The ideal binary mask (noted as IdBM) adopts the rule of (24),

while the ideal ratio mask (noted as IdRM) is computed using

the following gain function [43]:

(41)

For further evaluation of the MMSE-SPZC (17) estimator,

and following [40] and [44], we incorporated the SNR uncer-

tainty in the estimator. In Section IV, we derived the probability

of the local SNR exceeding a threshold. We assume that when

the local SNR is below 20 dB, speech is absent. The hypoth-

esis is given as follows:

dB Speech absent

dB Speech present. (42)

Therefore, the probabilities of can be computed by

(30), by setting the threshold dB.
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TABLE III
PERFORMANCE, IN TERMS OF PESQ SCORES, OF THE SMPR AND SMPO ESTIMATORS AS A FUNCTION OF THRESHOLD �

The MMSE-SPZC estimator incorporating a priori SNR un-

certainty is denoted as “MMSE-SPZC-U” and is implemented

as follows:

(43)

When speech is absent, a minimum gain dB is

used.

Finally, to determine the influence of noise estimation accu-

racy in the performance of the proposed estimators, we run ex-

periments using an oracle noise estimator [10], and a different

set of experiments using the minimum controlled recursive av-

erage (MCRA) noise estimator [39]. The oracle estimator of the

noise variance is computed as

(44)

where in this study and is the true noise mag-

nitude-squared spectrum in frame and frequency bin . The

above oracle noise estimator was used to assess the performance

of the various estimators in the absence of the confounding ef-

fect of the feedback introduced by the estimate of the noise spec-

trum in the computation of the a priori SNR in (33). To assess

significant differences between the scores obtained with the var-

ious estimators, we used the Fisher’s LSD statistical test.

1) Results With the Oracle Noise Estimator: Tables IV and

V show the performance comparisons based on the MSE and

PESQ measures respectively. In terms of MSE, lower values

indicate better performance. The unprocessed corrupted speech

is noted as UNProc in the Tables. The MMSE-SPZC estimator

yielded significantly (significance level ) lower MSE

values than the MMSE-SP estimator for all four types of noise

tested and for all SNR levels. The SMPR estimator yielded the

lowest MSE values in most noisy conditions, followed by the

SMPO estimator. The MAP estimator also yielded significantly

lower MSE values than the MAP-BM estimator.

The MMSE-SPZC-U estimator yielded slightly higher MSE

than MMSE-SPZC. The IdRM yielded lower MSE values than

IdBM. This outcome was consistent with that reported in [25].

In the following discussion, comparisons in performance are

analyzed only between the proposed estimators and not against

the oracle estimators, IdBM and IdRM.

In terms of PESQ, higher values indicate better performance,

i.e., better speech quality. The IdRM and IdBM yielded, as ex-

pected, the highest scores. The MMSE-SPZC yielded signifi-

cantly higher PESQ scores than MMSE-SP. The

MAP estimator yielded significantly better PESQ scores than

MMSE-SP, MMSE-SPZC, and MAP-BM. Finally, the perfor-

mance of the SMPR and SMPO estimators was significantly

higher than the other estimators (except for IdRM and IdBM),

and in particular the MMSE-SP and MMSE-SPZC estimators.

In babble noise (0 dB SNR), for instance, the PESQ scores im-

proved from 1.894 with the MMSE-SP estimator [7] to 2.137

with the proposed SMPO estimator. Similar improvements were

also noted at all SNR levels and with the other types of noise.

The MMSE-SPZC-U estimator yielded slightly higher PESQ

value than MMSE-SPZC for car, street, and babble noise, but

it yielded significantly higher PESQ than the MMSE-SPZC in

white-noise conditions, but still lower PESQ values than SMPR

and SMPO. Overall, the SMPO estimator yielded the highest

PESQ scores in all conditions.

2) Results With the MCRA Noise Estimator: Tables VI and

VII show the performance, in terms of MSE and PESQ values,

respectively, of the proposed estimators implemented using the

MCRA noise estimation algorithm.

In terms of MSE, the MMSE-SPZC estimator yielded signif-

icantly lower MSE values than MMSE-SP, for most

cases except at 0 dB SNR in the street and babble noise condi-

tions. The MMSE-SPZC-U yielded slightly higher MSE values

than MMSE-SPZC. The MAP estimator yielded significantly

lower MSE values than MAP-BM for most cases

except at 0 dB SNR in the street and babble noise conditions.

The SMPR estimator yielded the lowest MSE values in the low

SNR (0 dB and 5 dB) conditions, while the SMPO estimator

yielded the lowest MSE values in the high SNR (10 dB and 15

dB) conditions.

In terms of PESQ, shown in Table VII, the MMSE-SPZC

yielded significantly higher PESQ scores than

MMSE-SP. The MMSE-SPZC-U yielded slightly higher PESQ

scores than MMSE-SPZC for car, street and babble noise

conditions, but yielded higher (by 0.1) PESQ scores than

MMSE-SPZC in white-noise conditions. The MAP estimator

yielded significantly better PESQ scores than MAP-BM in
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TABLE IV
PERFORMANCE COMPARISON, IN TERMS OF MSE, BETWEEN THE VARIOUS ESTIMATORS TESTED USING THE ORACLE NOISE ESTIMATOR

TABLE V
PERFORMANCE COMPARISON, IN TERMS OF PESQ SCORES, BETWEEN THE VARIOUS ESTIMATORS TESTED USING THE ORACLE NOISE ESTIMATOR

the car and white noise conditions, but no statistically signif-

icant difference was noted between the MAP and

MAP-BM estimators in the street and babble noise conditions.

The SMPO estimator yielded significantly higher

PESQ scores than the other estimators in the car and white noise

conditions. Finally, the performance of the SMPR estimator

was significantly better than the other estimators in the street

and babble noise conditions.

C. Spectrograms

Figs. 8 and 9 show sample spectrograms of speech processed

by the various estimators. The sample sentence was corrupted

by babble at 10 dB SNR. The IdRM output clearly resembles

the clean signal. Residual noise is evident in the spectrogram

showing the MMSE-SP output (Fig. 8). This residual noise

is reduced considerably in the MMSE-SPZC output speech

(Fig. 9). The MAP estimators greatly reduced the residual noise

even further. A smaller amount of distortion was introduced

with the MAP-processed speech. The SMPR speech contained

more residual noise than the MAP estimator. Finally, the SMPO

output speech had less speech distortion and low noise dis-

tortion. Informal listening tests confirmed that SMPO yielded

the highest quality, consistent with the PESQ data shown in

Table V.

VII. CONCLUSION

Statistical estimators of the magnitude-squared spec-

trum were derived based on the assumption that the mag-

nitude-squared spectrum of the noisy speech signal can be

computed as the sum of the clean signal and noise mag-

nitude-squared spectrum. Aside from the two traditional

estimators, based on MAP and MMSE principles, two ad-

ditional soft masking methods were derived incorporating

SNR uncertainty. Overall, when compared to the conventional

MMSE spectral power estimators [6], [7], the proposed MAP
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TABLE VI
PERFORMANCE COMPARISON, IN TERMS OF MSE, BETWEEN THE VARIOUS ESTIMATORS TESTED USING THE MCRA NOISE ESTIMATOR

TABLE VII
PERFORMANCE COMPARISON, IN TERMS OF PESQ SCORES, BETWEEN THE VARIOUS ESTIMATORS TESTED USING THE MCRA NOISE ESTIMATOR

estimators that incorporated SNR uncertainty yielded signif-

icantly better speech quality. The main contribution of this

paper is the finding that the gain function of the MAP estimator

of the magnitude-squared spectrum is identical to that of the

ideal binary mask. This finding is important as it suggests

that the MAP estimator of the magnitude-squared spectrum

has the potential of improving speech intelligibility, given the

past success of the ideal binary mask in improving, and in

most cases, restoring speech intelligibility at extremely low

SNR levels [23], [24], [36]. The challenge remaining is to find

techniques that can estimate the local SNR reliably from the

noisy observations.

APPENDIX A

In this Appendix, we derive the convergence of the MMSE

gain function, given in (19), in the case that or

equivalently when . When , we have

(45)

When , and . To avoid the sin-

gularity, we use the Taylor series expansion of the exponential

term

(46)

In doing so, we get

(47)
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Fig. 8. Wideband spectrograms of (a) the clean sentence, b) the sentence corrupted by babble noise at 10 dB SNR, (c) the sentence processed by IdBM [25], (d)
the sentence processed by IdRM [43], and (e) the sentence processed by the MMSE-SP estimator [7]. The sentence (“Hurdle the pit with the aid of a long pole”)
was taken from the NOIZEUS database.

Fig. 9. Wideband spectrograms of (a) the sentence processed by the MAP-BM estimator (24), (b) the sentence processed by the MMSE-SPZC estimator (19),
(c) the sentence processed by the MAP estimator (21), (d) the sentence processed by the SMPR estimator (� � � dB) (29), and (e) the sentence processed by the
SMPO estimator (� � � dB) (32). The sentence was the same as in Fig. 8 and was corrupted by babble noise at 10 dB SNR.

APPENDIX B

In this Appendix, we derive the a priori distribution of the

instantaneous SNR, .

Let and be independently and identically dis-

tributed Gaussian random variables, with and

. Let and denote the sum of their squares

(48)

If , then is known to be

F-distributed [31, p. 208]

(49)

where denotes the Gamma function. In our case,

, and and . We can

then express the instantaneous SNR, , as

(50)
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From that, we can obtain the probability density of as

(51)

where is the step function and is the a priori SNR.
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