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ESTIMATORS RELATED TO U-PROCESSES WITH APPLICATIONS
TO MULTIVARIATE MEDIANS: ASYMPTOTIC NORMALITY

By MIGUEL A. ARCONES,! ZHIQIANG CHEN? AND EVARIST GINES
University of Utah, William Paterson College and University of Connecticut

If a criterion function g(x1, . ..,xm;8) depends on m > 1 samples, then
a natural estimator of argmax P™g(xy,...,xm;0) is the argmax of a U-
process. It is observed that, under suitable conditions, these estimators are
asymptotically normal. This is then applied to prove asymptotic normality
of Liu’s simplicial median and of Oja’s medians in RY.

1. Introduction. If a criterion function g(x1,...,%,;6) depends onm > 1
samples, then a natural estimator of 0y = 6(P) = argmaxP™ g(xy,...,%;,;0) is
an arg max of the U-process

(n —m)!
U®) = === > g(Xi-, X 6),

il, ieey im S n
and distinct

say, 0, [here X; are i.i.d. (P)];0, is a generalization of an M-estimator in the
sense of Huber (1967). Relatively recent techniques for the study of rates of
convergence of M-estimators [Huber (1967), Pollard (1985), Kim and Pollard
(1990), Koléinskii (1992)], combined with U-process theory [Arcones and Giné
(1993)] give a general result on asymptotic normality of n1/2(, — 6,). We were
originally interested in such a result in order to prove that Liu’s empirical sim-
plicial median [Liu (1990)] is asymptotically normal, at least under regularity
and symmetry conditions. Oja’s spatial medians [Oja (1983)] fall as well into the
same pattern and therefore their asymptotic normality is also a consequence
of the general result on M-estimators based on U-processes.

In Section 2 we adapt arguments from Pollard (1985) to obtain asymptotic
normality of the arg max of a U-process over a class of functions {f,: 6 € 6}.
See Koléinskii (1992) for another approach to M-estimators and generaliza-
tions via convergence of processes. See also Oja (1984) on asymptotic normality
of estimators which are (approximate) zeros of systems of U-statistics, under
conditions similar to those of Huber (1967).

We follow Liu (1990) for the following definitions, with a slight variation.
Given a probability measure P on R?, the depth D(6) of a point § € R? is de-
fined as the probability that the simplex whose vertices are d + 1 independent
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observations from P contains 4, that is,
(1.1) D()(=D(P;0)) =P+ (6 € S(x1,...,%441)),

where S(xy,...,%5.1) is the open simplex of R? with vertices x1,...,%44+1. If
{X;}%2, are independent identically distributed random vectors in R? with
common law P, then, for each n € N, the (nth) empirical depth process is

12) D)= m— ¥ I(068(Xi...Xy,)), 6cB
(g 1) oo <hnss

The simplicial median 6, of P is defined as the argument of the supremum of
D(6)ifit exists and is unique, or as any point in {arg max D(6)} if this set consists
of more than one point. The (nth) empirical simplicial median is any random
variable §,, almost surely in the set {arg max D,(6)}. In fact, Liu’s definitions of
the depth function and the simplicial median of P, as well as of their empirical
counterparts, are in terms of closed simplices S(x1,...,%4+1). We will denote
by D(8), 6y, D,(6) and 6, the analogues of the above variables defined via closed
simplices. If P assigns mass zero to hyperplanes, then D(9) = D(#) and the two
definitions of simplicial median coincide; however, their empirical counterparts
are not the same although 6, and 6, are both consistent estimators of §, [Arcones
and Giné (1993)] and both have an appealing geometric meaning.

The empirical simplicial median is very similar to an M-estimator: the only
difference is that, since the criterion function is defined on the product of the
parameter space and d + 1 copies of the space where P lies (R?), the estimator
is naturally the maximizer of a U-process (as opposed to the usual sum of inde-
pendent random processes—an empirical process). Empirical process theory,
or at least techniques, have proved very useful for the asymptotic theory of M-
estimators [Huber (1967), Pollard (1985)] and therefore it is only natural that
U-processes should be valuable tools for proving asymptotic normality of the
empirical simplicial median. Arcones and Giné (1993) proved

(1.3) {n*(Da®) - D(6): 6 € R} —.. {Gp(6):0 € R}

in the space £*(R?), where Gp is a sample continuous Gaussian process, and
their proof also gives the analogous limit theorem for n1/2(D, — D). We will use
this fact as well as weak convergence of the normalized degenerate U-processes
in the Hoeffding decomposition of D,, together with the result from Section 2 to
prove that, under certain (perhaps too restrictive) conditions, namely, smooth-
ness and angular symmetry of P,

(14) n1/2(9n - 00) —*d N(07 F)7

for some covariance I' to be specified later. The same result is also proved for
68, when d > 3, but we only obtain that n1/26, = Op(1) for d = 2. This is done in
Section 3.
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Oja (1983) proposes the following family of multidimensional location param-
eters. Letting V(x,,...,x4,09) denote the volume of the simplex S(x1,...,x4,6)
(where, as above, x; and 6 are points in R?%) Oja’s a-median, 1 < o < oo, is
o = argmin PeV™(xy, ..., x4,0) if it exists and is unique, and the empirical
Oja’s a-median is any random variable 6, which minimizes the process

15  U®=ome Y Vi(X,...X,6), 6cRY
(d) < <ig<n

almost surely. In Section 4 we obtain the limit result (1.4) for Oja’s median in
some generality. Oja (1984) obtains the same result under less explicit condi-
tions, and Oja and Niinimaa (1985) explicitly compute the covariance of the
limit for full multivariate normals P.

We refer, for example, to Giné and Zinn (1986) or to Dudley (1984) for the
definitions of convergence in law in [°°(¥) of processes indexed by classes F
of measurable functions, as well as for the associated asymptotic equicontinu-
ity condition; of Vapnik—Cervonenkis subgraph classes of functions (previously
called VC-graph classes); of P-Donsker classes ¥ [also denoted by F ¢ CLT'(P)];
and of Ly(P)-entropy and L2(P) -entropy with bracketing, denoted, respectively,
by log No(e, ¥, P) and log N, (e, F, P). See, for example, Arcones and Giné (1993)
for notation on U-statlstlcs but, for the reader’s convenience, we recall the defi-
nition of the projection operators 7, and Hoeffding’s decomposition. Let (S, 8, P)
be a probability space, and let X;: SN — S be the coordinate functions [which,
of course, are i.i.d. (P)]. If f: 8™ — S is a P™-integrable function, then the
U-statistic based on f and the sample {X;} is

_ !
UL () = n!m)' S f(Xa. X)), neN

i1y ey im S0
and distinet

There is no loss of generality in assuming f symmetric in its arguments, and
we will assume this in all that follows. The Hoeffding projections 7, of f,k < m,
are defined as

mef (a1, .. xp) (=nf flx1, .., x3)) = (8, — P) -+ - (85, — P)P™Ef,

where, as usual Qf = [fdQ and §, is point mass at x € S. Then Hoeffding’s
decomposition is just

Un(F)(=US™(F)) = P™f +m(Py — PY(P™f) +Z( ) UL,

=2
where P, is the empirical measure, that is, P, = (1/n)%?_,6x,.
2. The argmax of a U-process. In this section we use the framework set

up in the last few lines. Let & = {f3: 8 € ©} be a measurable class of functions
on S™ indexed by a set © of R? containing a neighborhood of the origin, and
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assume each f; is P™-integrable and symmetric in its arguments. Here is the
extension of Pollard’s theorem to M-estimators based on criterion functions of
several variables; we sketch its proof, which completely follows the proof of
Theorem 8 in Pollard (1985), in order to clarify the crucial Remark 2.2. See
Pollard (1985) for the details.

THEOREM 2.1. Assume that the following hold:

(i) U@®) := P™fy,0 € O, has a unique maximum, attained at § = 0, and
admits the development

(2.1) U®6) = U(0) — 16A6" +0(|6[%)

near zero, where A is a symmetric, (strictly) positive definite d x d matrix.
(i) For2 <k <mand forall € > 0,

(2.2) 61im lim sup Pr{ sup |nU,(m(fo — fo))] > 6} =0.

0 n—oo 181 <&

(iii) There exists a measurable function A:S — R® satisfying EA(X) = 0 and
E|A|? < oo, and such that the functions defined by r(x,0) = 0 for x € R% and

m1fo(x) — mifo(x) — 6 - Alx)

r(x,0) = ] ,  6ce\{0},xeR?
satisfy
(2.3) lim lim supPr{ sup [nY2P,r(-,6)| > 6} =0,
§=0 n—oo lo|<é
forall e > 0.
(iv) Let {6,} be a sequence of random variables such that
(2.4) 6, — 0 in probability
and
(2.5) n< sup U,(0) — Un(en)> — 0 in probability.
oo
Then
n1/20n —*d Z,

where Z is N(0,T) and T = m?A~Ycov A(X)A~L. [In (iii), r can be replaced by
r, obtained from r by setting the denominator equal to |6 v n=1/2]

PrOOF (Sketch). First we indicate how to show that the sequence {n'/24,}
is stochastically bounded. By (2.1), there exist ¢ > 0 and ¢ > 0 such that
U(0) — U(6) > c|8|?, for all |6] < e. So, since #, — 0 in probability, (2.1) and (2.5)
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give, using Hoeffding’s expansion,
cn|f,|? < n(U) — U6,)) +op(1)
<nP™—U, + U)(fo — fa,) +o0p(1)
,'l_ A(X) r't_ r(Xi)e )
— mn1/20n_ Zl-nll/z i +mn1/210n|21_1nl/2 n

'”‘i (’;Z)Un (Wk(fen —fo)) +o0p(1).
k=2

So, by (2.2) and (2.3), n|6,|2 < €,nY/2|6,| + (,, where {, — 0 in probability and
the sequence {¢,} is stochastically bounded. Hence, {n1/24,} is stochastically
bounded. [Note that the same conclusion obtains if r is replaced by r, in condi-
tion (iii).]

Now let A, = mP, A and let B be a nondegenerate matrix such that BAB? = I.
Since n'/2|A,| = Op(1) by the central limit theorem, using the hypotheses (i)—
(iii) on U, = U,, — U + U and developing as above, we obtain

n(Un(80A7Y) = Up(0)) = 30,4 1AL +0p(D).
Similarly, since n1/26, = Op(1) by the above computation, we also have
1 (Un(B) — Un(0) = — 106, A6 + 6, AL + 0p(1).

Since, by (2.5), nU,(A,A™1) < nU,(8,) + op(1), the last two developments give
n|A,B! — 6,B~12 — 0 in probability, and the result follows. O

REMARK 2.2. A close look at the previous proof shows that the full strength
of condition (2.3) is not needed in Theorem 2.1 but rather only

(2.3") n"Y%> " r(X;,6,) - 0 in probability
i=1

and

2.3") n~Y2> " r(X;,V,) - 0 in probability,

i=1

where V,, = A,A"! + 6, for some sequence of random variables 6, such that
n'/2§, — 0 in probability. Therefore, condition (iii) in Theorem 2.1 can be re-
placed by:

(iii’) There is a class of functions 7(x,6),x € R?,6 € O, satisfying condition

(2.3) and such that
2.6) n/2P,(r(-,0,) —7(-,6,)) — 0 in probability,
' nt/2P,(r(-,V,) —=7(-,V,)) — 0 in probability,

fori <n,neN.
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Note also that if the quantities in (2.6) are Op(1) instead of 0p(1), then we can
still conclude n1/26, = Op(1) by the first part of the proof of Theorem 2.1. It
is conceivable that the class of functions r does not satisfy (2.3) but that there
exists a class 7 satisfying (2.3) and (2.6). This remark is used in our treatment
of Liu’s median.

REMARK 2.3. The usual way to verify condition (2.2) is to show that the
processes {n*/2U,(mfy): |6] < &} converge in law to Radon measures in [>°({4: |6
< 6}) for some § > 0 and that P™(f; — f;)> — 0 as § — O since these two
conditions imply an asymptotic equicontinuity property even stronger than
(2.2) [Arcones (1994); see also (1.7) and its paragraph in Arcones and Giné
(1993)]. Likewise, to verify (2.8) for r (or for r) it suffices to check that the set of
functions {7(-,6):|0| < 6} (or {r(-,0):16] < é}) is P-Donsker for some § > 0 and
that P72(-,6) — O[Pr?(-,0) — 0] as § — 0 [e.g., Giné and Zinn (1986), Theorem
1.1.3].

REMARK 2.4, Infactthe above theorem follows as a corollary to the following
statement, which has a similar proof. Let U(8) = U(f,) be a linear function of fy
(not necessarily an integral) and let, for each n € N, U,,(8) = U, (fp) be a statistic
linear in f,, satisfying the following:

(1) U(0) > U(6) for all 6,
(i) U(9) = U(0) — 36A6" + o(|0|?) near 0, with A as in Theorem 2.1;

N [nV2U, — U)fo —fo— 6 )
(iii) }gn hyfll»solip Pr{ |Sluspé T2 > 5} =0

for some function A:S™ — R? such that P™|A|? < oo, and for all € > 0.
Suppose {6, } is a sequence of random variables such that the following hold:

@iv) 6, — 0;
(v) n(supy ¢ g Un(6) — Ur(6,)) — 0 in probability.

Then
n'/2(6, — A,A') - 0 in probability,
where A, = (U, — UXA).

3. The empirical simplicial median. We begin with some notation. Let
P be a Borel probability measure on R¢ with a smooth density f (smoothness
conditions to be specified later). Let f; and f;; denote the first and second partial
derivatives of f. For 0 € ©,x = (x1,...,%) € R**,k € N(onlyk =d andk =d+1
are used in what follows), we define the joint density

Or(x,0) =f(x1+6)-- - f(xp +6)

and let ¢} (x, 0) and ¢}/ (x, 0) denote, respectively, the first and second derivatives
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of ¢, with respect to 6 at § = 0, that is,

9%
86,

L " (P
(X,O)-J—l,--wd>’ d)k(x’o)_<80i39j(X70)>i,j=1 d

.....

6,(x, 0) = <

Note that these partial derivatives are sums of products of f(z,),f;(z;) and
fijz¢). The following vector and matrix will appear in the statement of the
next theorem:

3.1 AG)(= M) = / 1(0 € 5(x,2)) ¢)(x, 0)dx
(Rd)¢
and
(3.2) A(=4y) = —/( I1(0 € Sx)) ¢y, 1(x,0)dx.
RAYd+ 1)

From this point on, whenever the domain of integration is the whole space, it
will be omitted. If x # 0, we let v(x) = x/|x| and (x) = | x| be its polar coordinates.
The angular density ag of P about § € R? is defined as

ap(y) = / Frrt=ldr, oy et
[4]

where fo(x) = f(x + 6); P is defined to be angularly symmetric about a point
6 € R? if the random vector (X — 6)/|X — 0| is symmetric, where L(X) = P. If P
is angularly symmetric about 6, then ag(y) = ag(—v),vy € S~ 1,

We will make the following assumptions on P:

(P1) P is angularly symmetric about zero and has a density f with f(0)#£0;
(P2) f is twice differentiable with continuous second partial derivatives and
there exist § > 0 and & € L1(R%, )\) such that

(3.3) Ifi(x)] < h(x), |S|up |fiflx+0)| <h(x), i,j<d;
91< 6

(P3) P has angular densities ay(y) bounded uniformly in v € S?-1and 6] <6
for some 6 > 0;
(P4) det As#0.

As mentioned in the Introduction, Liu [(1990), Theorem 4] observes that if
P is angularly symmetric about 6, and has a positive density at 8, then 6§, is
its unique simplicial median. It also follows from the proof of her theorem that
for such P’s we have

(3.4) Pr{6, € S(X1,...,Xa,%)} =277,

for x # 6y, a fact that we use below. [Liu’s results apply because if P is absolutely
continuous, then Pr{# € 8S(Xy,...,Xy4,1)} = 0 and therefore it is irrelevant
whether open or closed simplices are used in the definition of the simplicial
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depth of P; the difference is in the empirical simplicial depth.] There is no loss
of generality in assuming 6y = 0, and we do so in all that follows. We are now
ready to prove asymptotic normality of the empirical simplicial median.

THEOREM 3.1. Let P be a Borel probability measure on R? with the properties
(P1)—(P4). Let 6,,,n € N, be a sequence of empirical simplicial medians (defined
by open simplices) corresponding to a random sample X;,i € N, from P. Then

(3.5) n1/26, =4 N(0,(d + 1A~ (Covp(A)A™Y).

Proor. We apply Theorem 2.1 as modified by Remark 2.2, with U(8) = D(8)
and U,(9) = D,(9), and with 6, as an empirical simplicial median. Condition
(2.5) for 8, holds by definition, and condition (2.3), that is, consistency of §,, is
proved in Arcones and Giné [(1993), Theorem 6.9 and comments following it].
So, condition (iv) in Theorem 2.1 holds. We now verify the expansion (2.1) of
D(6) at zero, that is, (i) in Theorem 2.1. We note that condition (P2) implies that
the functions f and f; are continuous and, moreover,

(3.3) sup |fi(x+0)| < h(x), sup |f(x+9)| < h(x), 1 <d,
191<6 18] <6

for some A integrable. Note also that D() has gradient zero at zero: this follows
from Liu [(1990), Remark C], or by the following computation using (3.4) [(3.3)
is also used in order to justify differentiation under the integral sign]:

| _ i( / I(0 € S) parr(x, 9>dx>
oc0 O

2,
—d+1) / 1(0 € SGO)f(xp) - Flxaf(Faa )y - g

6=0

=27%d + 1)/fj(x)dx =0.

Then, (3.3) and (3.3’) provide sufficient integrability to give, for 6 in a neighbor-
hood of zero,

D(®) - D(0) = / 1(0 € S() [$ae1(%, 6) — das1(x,0)] dx

= —10A¢" + 16 [ / 1{0 € X)) [¢}, 1(x,n0) — ], 1(x, 0)]dx] ¢
= —10A60" +0(|0%),

where 0 < 7 < 1 depends on § and x. Since D has a maximum at zero, the
above equation and (P4) show that the matrix A is strictly positive definite and
therefore, (2.1) holds for D.

Next we check condition (ii) of Theorem 2.1. Arcones and Giné [(1993), Corol-
lary 6.7] show that the collection of sets {{x € (R%)¢*+1: § € S(x)}: 6 € R?} is an
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image admissible Suslin Vapnik—Cervonenkis class and therefore, by Arcones
and Giné [(1993), Corollary 5.7], the sequences of processes {n*/2U, (m.f5): 6 €
R?},k =1,...,d+1, converge in law in [°°(R%). So, according to Theorem 2.1 and
Remark 2.3, in order to prove condition (2.2) it suffices to check the continuity
of § — fyin Ly at 6 = 0. For x = (xy,...,x4) fixed, different and different from
6, the set Cy(x) = {x: 6 € S(x, x)} is a pyramidal convex cone with vertex ¢ and
edges 8 — A(x; — ), A > 0; hence its boundary is contained in the union of at most
d hyperplanes. So, P 9Cy(x) = 0 for almost every x. Since I¢, x)(x) — Ic,x)(x) as
6 — 0 except for x € 9Cy(x), we obtain that, by bounded convergence,

2
[ (160 € S6x30.0) =10 € S 52, )] frz Dz =0 as,
as # — 0. Applying bounded convergence once more, we get
2
PA1[I(0 € Sxy, .. %a0)) —1(0 € SCa, ... a+1)] =0

as g — 0.

It remains only to prove condition (iii’) of Remark 2.2. Let A(x) be as given in
(3.1). Then the same computation showing that Grad|D(6)|y-o = 0 gives PA = 0.
Also, P|A|? < oo since A is bounded. Let

(3.6) g(x,0) := PU(0 € S(x1,...,%4,%)), xeR? 0eO.
Then,

g(x,6) —g(x,0)—0-Alx)  D(®) —D(0)

r(x,6) =
6] 6]

for 640

(and 0 for 4 = 0). It can be checked that r does not satisfy (2.3), but we will show
that, letting ;

g(x,0) —glx—8,0)—0- Alx)

;'\(x, 8) = 3 9 0’
o 7

and 7(x, 0) = 0, the class of functions

(3.7) {H(x,0) =(x,0) — P(x,0):0 € ©}

satisfies (iii") in Remark 2.2. These functions satisfy (2.6) because the identi-
ties g(X; — 6,,0) = g(X;,0) and g(X; — V,,,0) = g(X;,0) hold a.s. To see that
these identities hold a.s. (for a permissible definition of V,,), we note that X; #0
a.s. and that the random set {argmaxD,} is open and does not contain any
X;,i < n, as is easy to see; hence also X; — 6, #0 a.s., and the first identity
follows from (3.4); for the second, take §, in the definition of V,, = A,A"! + 6,
as 6, =0if A,A 14 X, for alli <n,and §, =min{n 1A |X; - X;|:1 <i#j<n}
otherwise. These observations are the reason why we work first with open sim-
plices and why we take P to be angularly symmetric. So, it suffices to prove
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that the functions in (3.7) satisfy condition (2.3). For this we will use empirical
process theory, as indicated in Remark 2.3.
We have

Fx,0) = ELO 860020 Mx=0) 0\, g AGx)
(3.8) 16l 16|
i=71(x, 0) +Talx, 9),
and will prove that (2.3) holds for 7; — P7;,i = 1,2. Note that
p— — - /
ba(x, 0) ¢d(X,00) 6 - ¢y, 0)} dx

71z, 0) = /I(O € S(x,x — 9)) {

By (P2) and Taylor’s formula in R?, there is a ¢ < oo such that, if g denotes
f.fior fij,i,j <d, then Sup|g| < s lg(x + 0)| < ch(x). Therefore, also by Taylor’s
formula,

/ sup
19 <
So, letting C§(x) denote the translation by 6 of Cy(x) that is, the set of points x
in RY such that 0 € S(x,x — #), we obtain

d
ba(x,0) — ¢>d(X90) 0920 1y < (c / h(x)dx> § := K.

(3.9) sup [n'/2(P, — P/ry(-,0)| <K sup [nY/2(P, — P)(C§(x))].
0] < 6

The family of sets {C§(x): x € (R%)¢,4 € R?} is a Vapnik—Cervonenkis image
admissible Suslin class and therefore is P-Donsker for all P in R?. [It is VC
because each of these sets is a convex cone with d edges, hence the intersection
of d half-spaces—see 9.2.1 and 9.2.3 Dudley (1984)—and it is image admissible
Suslin because the evaluation map (x,4,x) — Icg(x)(x) is jointly measurable—
Dudley (1984). Section 10.3; and therefore it is Donsker by, e.g., Dudley (1984),
Section 11]. In particular,

11m supPr{ sup [nY/2(P,, — P)(C§(x))| > M} =

M— oo n

which, combined with (3.9), gives

(3.10) hm lim sup Pr{ sup |n1/2(P —Pyry(- 9)] > 5} 0,
n—oo 161 <é
for all £ > 0, that is, (2.3) for 7;.
We do not know how to apply Vapnik—Cervonenkis theory for 75 unless f and
f; are all Riemann integrable. However, we can use Ossiander’s (1987) central
limit theorem for empirical processes satisfying a bracketing entropy condition,
with essentially the same computations needed to prove that

(3.11) E7XX,0°% -0 ast — 0,
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a condition that is also required. In (3.11) and in all that follows, X will denote
a random vector with law P. Let é be as in hypotheses (P2) and (P3). We want
to prove that the class of functions Rs := {Fo(-,6): 0 < |8| < 6} is P-Donsker and
that (3.11) holds. Then 7, — P7, will satisfy (2.3) by Remark 2.3, concluding the
proof of the theorem by Theorem 2.1 and Remark 2.2. According to Ossiander’s
theorem, R is P-Donsker if

(3.12) / [log ND(e, R5, P)] 2 de < oo,

0
Inequality (3.11) will become proved on the way to proving (3.12). In order to
prove (3.12) it suffices to find, for each 0 < ¢ < §, a partition A;(g),..., Ay ()
of {#: 0 < |9] < 6} and P-square integrable functions A, ..., h, ) with

(3.13) nle) < 5_1

and such that

(3.14) E sup (Fa(X,0) — B(X))? < cge™,
0eAje)

for some c;,v; € (0,00). If this is the case, Ny(e, Rs, P) is bounded by a power
of 1/¢ and therefore the integral in (3.12) is finite. For the rest of this proof, ¢
will denote a finite positive constant independent of ¢ that may vary from line
to line. We begin by showing that A;(¢) can be taken to be a neighborhood of
zero, and g; = 0. This automatically gives (3.11). We have, letting, as usual,

X= (xl, . ,xd),

E sup 72(X,6) < E sup |A(X — ) — A(X)?
ol<e Bl <e

<Esup 3 [/ 1(0 € Stx, X — 6) — 10 € S(x, X)|

|9|<61 1

2
x | filay)] flxa) - - .f(xd)dx],

< dz( /h(x)dx> Z/ sup [I(0 € S(x,x — ) —I(0 € S(x,x))|

18] < e
X |filx)| floxa) - flxg)f (x) dx dx
<K sup / sup |[I(0 € S(x,x — 0)) —I(0 € S(x,x)) |f(x)dx

x #0and Jx|>e |0]<e
distinct
+KP{|x| < ¢}
<K sup P:(8Cy(x) +K'eq,
*; # Ognd {( 0 )6]}

distinet
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where K = d%(c [ h(x)dx)?, and K’ = K(supy, <. f(x))Vol{|x| < 1}, and where,
for any set F, Fj = {y:inf, ¢ r |x —y| < €}. Since 9C(x) is contained in the union
of at most d hyperplanes and f is continuous (hence bounded on {|x| < 1}),
we have

P{(9Co(),, N {lx| < 1}} <ee

for some ¢ < 0o0. On the other hand, (9Cy(x));) N {|x| > 1} is contained in a cone
of vertex zero whose intersection with the sphere 8¢~ 1 has area O(¢). Since the
angular density aq(~) of P is bounded [(P3)] it follows that

P{(@Co(x))s] N {|x| > 1}} < ce.

So, we conclude that

(3.15) E sup 74X, 0) < ce.
|6l <e

To construct the “brackets” away from zero, given 0 < ¢ < % A6, we fix |0] > e,
let &’ be any point such that |¢#'| < § and |# — ¢'| < €2 and decompose 7o(x, 6') —
7o(x,0) as
Fo(x,0") — Falx,0) = (i - i) (Alx —0') — A(x)) + 9

’ ’ '] 16l 6]
Since A is bounded, the first term is dominated by a constant times ¢. The
second term can be analyzed as we just have done for § = 0 on account of (P3).
The conclusion is

(Alx - 6) — Alx — 6)).

(3.16) E sup [Fa(X,0) — 7(X,0)]% < ce2.
0110 —0'|<e2,10'|< 6§

From (3.15) and (3.16) we conclude that we can take A1 (¢) to be the neighborhood
of zero of radius €,hg = 0,4,(¢),j > 2, to be balls of radius 2 around points
9j,6 < '0J| < 6, and hj(x) = ?2(x, gj); with Vg = 1lin (314) and vy = 2d in (315)
[since the number of A; needed to cover the region {|6] < §}\A(¢) is of the order
of e724]. So, the integral in (3.12) is finite and therefore, by Ossiander’s theorem,
Rs is P-Donsker; also, by (3.15), (3.11) holds. Then Remark 2.3 gives that the
functions 7, satisfy (2.3). Hence, by (3.8) and (3.10), so do the functions 7, and
the conclusion of the theorem follows from Theorem 2.1 and Remark 2.2. [It is
worth mentioning that Remark 2.2 is basic in this proof: as is easily verified,
the functions ‘

(g(x,0) - glx — 6,0))/(16] vn=*2)

do not satisfy condition (2.3); hence, by the above, neither do the r,’s.] O

REMARK 3.2 (Relaxing the smoothness conditions in R?). Although many
densities satisfy the hypotheses (P1)-(P4), such as, for example, nondegenerate
multivariate normals, they are quite restrictive, particularly condition (P2). For
densities in the plane these hypotheses can be somewhat relaxed using Green’s
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theorem (o, in R?, using the divergence theorem). [See Kim and Pollard (1990),
where they treat similar problems.] Here we only state a set of weaker condi-
tions under which asymptotic normality of the empirical simplicial median still
holds, but omit the proof (a sketch of which can be obtained from the authors).

(Replacing hypotheses). The hypotheses (P1) and (P4) are kept, and (P2) and
(P3) are replaced by the following:

(P2) (@) f is differentiable and its partial derivatives are continuous and
(Lebesgue) integrable; (ii) there is a § > 0 such that, for |6], |n| < §/2, there
exists h(¢,x) such that [h(0,x)dx < 00,8upjg < /2 fo k0, ruusdr < oo
and |f(0 + 1+ rw)|,|f;(0 + n+rw)| < h(6,ru) for all u = (u;,uy) € S and
J=1,2; (i) | f(x)] and |fi(x)], ] = 1,2, are o(|x| 1) as |x| — oo;

(P3) ay(£) is continuous in (0, £).

ExampLE 3.3. Computing the covariance of the limit in Theorem 3.1 can
become quite involved. If P is N(0,I) in R?, the computations are straightfor-
ward, and we have

2\ 2 &
A(x) = <F> m fOI’x#»O7
and
3
A= EI'

Then Cov A(X) = (1/7%)I and it follows that n'/26, is asymptotically N(O,
4/m)I).

REMARK 3.4 (Closed simplices). For closed simplices, we can prove the fol-
lowing (which is not satisfactory for d = 2): Under the hypotheses of Theorem
3.1,if ,,n € N, is a sequence of empirical simplicial medians defined via closed
simplices, then the limit (3.5) also holds for {n'/24,} for d > 3 and this sequence
is stochastically bounded for d = 2. The proof only differs from the one for open
simplices in the argument allowing the replacement of r by 7. In this case, the
part of condition (2.6) relative to V,, is proved as above, but the part of (2.6)
relative to 6, requires a different argument as follows: with g defined using
closed simplices we have, as above, g(X;,0) = g(X; — 0,,,0) = 2-¢ if X; # 0 (which
happens a.s.) and X; # 6, (which may not happen a.s.), whereas g(X; — 9,,0) = 1
if X; = 0,,. Since g(x — 6,0) = g(x, 0) a.s., we can ignore centerings in the proof of
(2.6) and must therefore show that

n'/23 " (g(X;,0) - g(X; — 8,,0)) /|0a| = 0p(1)
i=1

ifd > 3and Op(1)ford = 2. However, this quantityisa.s.0if 0,# X;,i = 1,...,n,
and its absolute value is a.s. dominated by (n1/2 min; < , |X;|)~! otherwise (the
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X’s being a.s. different, at most one summand is not zero). Now,

Pr{(n"?min %) " > e} =1~ [1 —Pr(|X| < _1->] <1- {1 B c(d,f)] |

enl/? cdnd/2

for some constant c(d, f). This tends to zero for all ¢ > 0 asn — oo ifd > 2 but
not if d = 2, in which case we still have, however, that the sup over n tends to
zero as € — oo. Now, the theorem for closed simplices follows as above. It would
be surprising if n1/26, did not converge for d = 2, but we do not know how to
prove this at present.

4. Oja’s medians. We have defined V(x) = V(x;,...,x4,6),%;,0 € R?, in
the Introduction. Note that

V(x,6) = |det(x; — 0)].

[In all that follows, we write det(x; — ) to mean det(x; — 6,...,x4 — ) in the
canonical basis of R%.] In this section we let fo(x) = Ve(x;0) for some 1 < o < o0
fixed, and then

U(6) = P%,(x), Un(e)=—rlz— S fo( X X).
(d)i1<'“<idsn

In the proof of asymptotic normality of Oja’s medians, smoothness of the distri-
bution only plays a role in the limited expansion at 6, of U(8). We will assume
in the next theorem that this expansion holds and then will discuss the smooth-
ness conditions in a proposition below. As usual, there is no loss of generality
in assuming QOja’s median of P, §;, to be 0.

THEOREM 4.1. Suppose the following hold.:

1) EIX|?* < oo;
(ii) U(8) has a unique minimum at 6 = 0;
(iii) the distribution P of X is not supported by any subspace of R® of dimension
d-1;
(iv) U(9) = U(0) + 0A6 + o(|0]?) near zero, with A positive definite;
(v) Pr{det(X;) =0} = 0.

Then if 6, are random variables that almost surely minimize U,(8),n € N,
the sequence

{n1/29n}:o= 1

converges in distribution to a normal law.

PROOF. First we observe that

(4.1) lim U(6) = co.

[6] = o0
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For simplicity of notation and since the general case is similar, we restrict the
proof of (4.1) to the two-dimensional case. Since P is not concentrated on a line,
there are three disjoint balls By, By and B; such that P(B;) = o; > 0. Using
these three balls, we can divide the space into three parts C;,Cs and C3 such
thatifx, € B;,x9 € B;,0 € Cy,1,j,k all different, and if |6] is large, then fp(x1,x5)
is large. So, if 6 € Cs3, E(fo(X1,Xo)Ix, ¢ B, x, ¢ B,)? is large if |6] is large, and the
same happens for all possible combinations of x1,x,0 and B and C. Relation
(4.1) follows.

Since for n large we have that P,(B;) > 27 1o; > 0, the last argument shows
that there is a finite M such that

(4.2) lim inf infM U,8)>U0)+1 a.s.

n—oo 6>

We fix this M and consider the set G of graphs of F := {f,: 16| < M},

G = {(x,8): fo(x) > ¢ >0,]6] <M}
= {(x, £): (det(x; — 0))> — £/ > 0, > 0,]6] < M}.

With 6 = (6, ..., 09), we have that

d
det(x; — 0) = cox) + Y _ 6¢;(x),
j=1
for certain polynomials c;(x),j = 0,...,d (these are polynomials in the coor-
dinates of x1,...,x4). Then the set of functions (det(x; — 6))2 — t2/* 6 € R,
is contained in a finite-dimensional vector space of functions in the variables
X1,...,%q,t. This implies, by Dudley [(1984). Theorem 9.2.1], that ¥ is a VC-
subgraph class of functions. Also, observing that the monomials of the polyno-
mials ¢; have degree at most 1 in the coordinates of each vector x;, condition (i)
implies that the envelope of this class is square integrable (for P9). So, the law
of large numbers for U-processes [Arcones and Giné (1993)] gives

(4.3 sup |U,(0)—U(®) — 0 as.
ol <M

By the dominated convergence theorem, U() is a continuous function. Hence,
by (4.1) and condition (ii),

(4.4) sup U(9) > U(0),
[0l 26

for each 6 > 0. Relations (4.1)—(4.4) yield, for example, by the argument in the
proof of Theorem 6.9 in Arcones and Giné (1993),

8, — 0 in probability

(in fact, a.s.). This gives condition (2.4) of Theorem 2.1.
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By Corollary 5.7 in Arcones and Giné (1993), for 1 < k < d, the processes
{n*/2U,(m1f5): 6] < M}, converge in law in £°(|¢| < M), and moreover, by
dominated convergence,

Jim B~ =0

Hence, (2.2) in Theorem 2.1 holds [by, e.g., (1.7) in Arcones and Giné (1993)].
So, only condition (iii) of Theorem 2.1 remains to be verified.
Let

A(x) = aleg(x)|* ! (signco(x)) (c1(x), . . ., ca(x)),
and let
fo(x) —fo(X) -6 Alx)
10 '

The functions ry and A of Theorem 2.1 will be rg(x) = m15(Rg)(x) and A(x) =
m18(A)x), respectively, where sf(xq,...,xq5) = (A1, f (o1, - - - » Xo(ay) 15 the
symmetrization of f(o runs over all the permutations of 1,...,d). By a previous
argument, the class of functions

Ry(x) =

{Ro(x,0):0 € R}

is a VC-subgraph class. Using ||x|* — |y|*] < 2%~ |x — y|%, we have

d
Z()U)cj

Jj=1

[e3

d

— -1 1 .

+ 101 aleo* 71D 16 lej;
j=1

Ro| < [6]712% 1

hence, for all 6, |Ry| < 2°~1(0]*~ (2% ,¢2)*/2 + aleo|* ™ (T 1¢1)'/2, a function
in Ly(P9) for 6 bounded. So, Corollary 5.7 in Arcones and Giné (1993) shows
that

{nY2(U, — P))(Ry): |0] < 6}

converges weakly to a Gaussian process for every é > 0. Condition (v) implies
that det(X; — ) is a.s. differentiable at 0; hence Ry — 0 a.s. as § — 0, and, by
dominated convergence,

GlimOER,z,(Xl, o, Xg)=0.
Therefore, it follows from Arcones and Giné [(1993), Corollary 4.2] that

5lim limsup sup |n'/%(P, — P)(n1s(Re))| = 0.

=0 nooo o)<
This implies that rg(x) and A(x) verify condition (iii) of Theorem 2.1. The result
now follows from this theorem. [In fact, if we use the more general result stated

in Remark 3.4 instead of Theorem 2.1, then there is no need to invoke Corollary
4.2 of Arcones and Giné (1993)]. O
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REMARK 4.2. (a) Condition (iii) in Theorem 4.1 is very natural: if the law of
X lives in a proper subspace of R, then U(§) = 0 for all 0 in the subspace. (b)
condition (v) is not very restrictive; for instance, if the law of X gives mass zero
to every proper subspace, then condition (v) holds. (¢) If @ = 2k for some positive
integer, then U(6) is a polynomial in ¢; hence it is automatically differentiable
and therefore condition (v) is not needed to prove limg_,oERg =0.Soifx is
even, the following conditions suffice for asymptotic normality of Oja’s median:

(i) EIX|?* < oo

(ii) U(H) attains its minimum at only one point 8g;
(iii) the distribution of X does not live in a proper subspace of R%;
(iv) the matrix of second derivatives of U at 6, is nondegenerate.

Condition (iv) of Theorem 4.1 requires some smoothness of the law of X if
o is not even. Here we give a set of sufficient conditions in the case o = 1,
which seems to be the most interesting, and is also the least smooth. In the
next proposition, f’ and f” denote, respectively, the vector of partial derivatives
and the matrix of second partial derivatives of f. The proof, which is standard,
is omitted.

PROPOSITION 4.3. If the following hold:

(i) P has a density f(x) which is twice differentiable and its second partial
derivatives are continuous;

(i)
/|x|f(x)dx < oo,/|x||f'(x)|dx < 00, / x| [IF(x)]|dx < oo

and, for some 6 > 0 and some function g such that [ |x|g(x)dx < o,

sup || f"(x+6) — f"(x)| < glx);
0]< 6
then
U6)=U0)+6U(0)+6-A-6" +0(|6]),

where A = 1 [ |det(x;)|4/j(x,0) dx.

It is obvious that full multivariate normal laws satisfy the hypotheses of
Theorem 4.1 and Proposition 4.3; the covariance of the limiting normal distri-
bution of Oja’s median in this case can be found in Oja and Niinimaa (1985).
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