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er membrane receptors, ER �  is inserted into the membrane 
and removed via internalization after agonist stimulation. 
This trafficking is directly regulated by estradiol, which rap-
idly and transiently increases the levels of membrane ER � , 
and upon activation, increases internalization that finally 
leads to ER �  degradation. This autoregulation temporally 
limits membrane-initiated estradiol cell signaling. Thus, neu-
roprogesterone, the necessary signal for the LH surge, is re-
leased when circulating levels of estradiol peak on proestrus 
and activate progesterone receptors whose expression has 
been induced by the gradual rise of estradiol during follicu-
lar development.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Astrocytes are found in abundance throughout the 
central nervous system (CNS). The relative percentage of 
astrocytes varies by species with an increasing astrocyte-
to-neuron ratio with increasing brain size and complex-
ity  [1] . Initially astrocytes were named for their stellate 
appearance and distribution: protoplasmic in the grey 
matter, fibrous in the white matter and adult forms of ra-
dial glia (i.e. tanicytes of the median eminence, pituicytes 
of the posterior pituitary, Müller cells of the retina and 
Bergmann glia of the cerebellar cortex). Later, astrocytes 
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 Abstract 
 Astrocytes are the most abundant cells in the central ner-
vous system (CNS). It appears that astrocytes are as diverse 
as neurons, having different phenotypes in various regions 
throughout the brain and participating in intercellular com-
munication that involves signaling to neurons. It is not sur-
prising then that astrocytes in the hypothalamus have an ac-
tive role in the CNS regulation of reproduction. In addition 
to the traditional mechanism involving ensheathment of 
neurons and processes, astrocytes may have a critical role in 
regulating estrogen-positive feedback. Work in our labora-
tory has focused on the relationship between circulating es-
tradiol and progesterone synthesized de novo in the brain. 
We have demonstrated that circulating estradiol stimulates 
the synthesis of progesterone in adult hypothalamic astro-
cytes, and this neuroproges terone is critical for initiating the 
LH surge. Estradiol cell signaling is initiated at the cell mem-
brane and involves the transactivation of metabotropic glu-
tamate receptor type 1a (mGluR1a) leading to the release of 
intracellular stores of calcium. We used surface biotinylation 
to demonstrate that estrogen receptor- �  (ER � ) is present in 
the cell membrane and has an extracellular portion. Like oth-
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were typically identified by their expression of the inter-
mediate filament, glial fibrillary acidic protein (GFAP). 
Traditionally, astrocytes have been considered to provide 
the structural framework that organizes neurons and 
helps maintain the blood-brain barrier. Over the years, 
our view of astrocytes has evolved beyond a static role as 
the CNS stroma. Astrocytes are vital for the maintenance 
of local ionic concentration, neurotransmitter milieu, 
and regulation of electrical and chemical synaptic trans-
mission through dynamically changing ensheathment of 
neuronal somata and processes  [2] . One of the best-stud-
ied examples of the changing relationship between astro-
cytes and neurons is in the supraoptic nucleus of the hy-
pothalamus. Activation of oxytocin magnocellular neu-
rons leads to decreased astrocytic coverage allowing 
electrical coupling and synchronous firing that results in 
the pulsatile release of oxytocin  [3–9] . Similar effects of 
dynamic astrocytic ensheathment have been reported in 
the arcuate nucleus and median eminence of the hypo-
thalamus in response to fluctuations of sex steroid hor-
mones  [10, 11] . These changes in astrocytic coverage ap-
pear to coincide with an increase in dendritic spines and 
their synapses  [12–14] .

  It has become clear that astrocytes express a wide di-
versity of phenotypes. As with neurons, astrocytes ap-
pear to have different phenotypes throughout the brain 
 [10, 15–21] , including differential expression of receptors 
for extracellular signaling molecules such as estradiol, 
ATP, glutamate, melanocortin, and norepinephrine  [22–
30] . This variation of receptors allows astrocytes to sense 
and respond to appropriate extracellular signals in spe-
cific brain regions leading to the modulation of calcium 
and other signaling pathways  [22, 31, 32] .

  A variety of transmitters increase free cytosolic calci-
um ([Ca 2+ ] i ) through the release of intracellular calcium 
stores in astrocytes. In distinction to neurons, however, 
astrocytes are able to propagate Ca 2+  waves over long dis-
tances since they are coupled through gap junctions  [33–
39] . Calcium waves activate glial synaptic mechanisms to 
trigger the release of glial transmitters (e.g. glutamate, 
serine, ATP and taurine), which has been termed ‘glio-
transmission’  [9, 40–43] . Thus, by responding to neu-
rotransmitters and releasing their own gliotransmitters, 
astrocytes engage in a dynamic bidirectional cross talk 
with neurons and participate in the intercellular signal-
ing of the CNS  [9, 44] .

  It is not surprising then that astrocytes have an active 
role in CNS regulation of reproductive physiology. Simi-
lar to the other types of glial-neuronal interaction, astro-
cytes help regulate the function of gonadotropin-releas-

ing hormone (GnRH) neurons, including modulation of 
synaptic input  [14, 45–49]  and access of GnRH terminals 
to the hypothalamo-hypophyseal portal capillaries in 
the median eminence  [50–52] . In addition, astrocytes se-
crete a number of factors that stimulate GnRH release, 
including TGF- � , TGF- � , IGF-1, progesterone and 
3 � ,5 � -tetrahydro-progesterone (3 � , 5 � -THP) [ 52–55 , 
reviewed in  11, 56 ]. We have been interested in studying 
how circulating estradiol regulates the activity of astro-
cytes that are involved in the central control of reproduc-
tion.

  Astrocytes and Reproduction in Females 

 The Luteinizing Hormone Surge 
 The central event in female reproduction is the surge 

release of LH from anterior pituitary gonadotropes. These 
cells are controlled by a network of GnRH neurons that 
project to the median eminence where they make a neu-
rohemal contact with portal capillaries serving the ante-
rior pituitary. The resulting surge release of LH induces 
ovulation and subsequent luteinization of the ruptured 
ovarian follicles. The hormonal event that triggers in-
creased GnRH activity to signal the surge release of LH 
is estrogen-positive feedback. This is a well-known but 
somewhat ill-defined process through which increasing 
levels of circulating estradiol, derived from developing 
follicles, act on the hypothalamus to induce the surge re-
lease of GnRH. This is dependent upon high levels of es-
tradiol and progesterone, which activate their respective 
cognate receptors to stimulate the GnRH network [ 57–61 , 
reviewed in  43, 62 ].

  Since GnRH neurons do not express ER � , estradiol 
must activate a CNS network of astrocytes and neurons, 
which then indirectly stimulate GnRH neurons and the 
surge release of LH. A large number of peptide and non-
peptide transmitters have been implicated in this process, 
but they do not appear critical [ 63 , reviewed in  64 ]. The 
exception may be kisspeptin, a neuropeptide that has 
been suggested as the proximal neuronal signal for GnRH 
release  [65–67] . Indeed, kisspeptin-containing neurons 
express ER � ,  progesterone receptor (PR), and the G pro-
tein-coupled receptor (GPCR) GPR54, a receptor shown 
to be essential for normal GnRH secretion  [65, 68, 69] .

  While progesterone has been demonstrated to be nec-
essary for the LH surge, its source has been debated. A 
telling experiment showed that in ovariectomized and 
adrenalectomized (ovx/adx) rats, estradiol priming with-
out exogenous progesterone induced a physiological LH 
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surge  [61, 70] . However, the LH surge was blocked if pro-
gesterone synthesis was disrupted with trilostane, a 3 � -
hydroxysteroid dehydrogenase inhibitor, in ovx/adx rats. 
When progesterone was given back to the estradiol-
primed, trilostane-treated ovx/adx rats, the LH surge was 
restored. These results are congruent with a critical role 
for progesterone in the LH surge  [71–74] , and suggested 
that in ovx/adx rats progesterone synthesis continued – 
most likely in the CNS. This was verified by measuring 
an estradiol-induced increase of hypothalamic progester-
one in the face of low to undetectable circulating levels of 
progesterone. Since the early 1980s, it has been accepted 
that the brain is a steroidogenic organ [reviewed in  75, 76 ] 
and that astrocytes may be the most active steroidogenic 
cells in the CNS  [77, 78] .

  Work in our laboratory has focused on the relation-
ship between circulating estradiol and neuroprogester-
one, progesterone synthesized de novo in the brain. To 
demonstrate the importance of hypothalamic progester-
one, a P450 side-chain cleavage (P450scc) enzyme inhib-
itor, aminoglutethimide (AGT), was infused into the 
third ventricle on the morning of proestrus to block hy-
pothalamic steroidogenesis in gonadally intact rats with 
normal estrous cycles. Central AGT prevented the LH 
surge and ovulation, but did not disrupt peripheral ste-
roidogenesis  [78] . In AGT-treated rats, hypothalamic lev-
els of neuroprogesterone were significantly reduced 
compared to vehicle treated rats – who continued to cycle 
as assessed by vaginal cytology. Moreover, the AGT-
treated rats did not transition from proestrus to estrus, 
which requires the LH surge. When the AGT was me-
tabolized after several days, the rats ovulated and re-
sumed their estrous cycle. These results suggested a se-
quence of events in which peripheral estradiol (of ovar-
ian origin) stimulates neuroprogesterone synthesis  [79, 
80] . In the intact rat, as follicles develop in the ovary, cir-
culating levels of estradiol increase and induce PRs in 
hypothalamic neurons, including kisspeptin neurons 
that lie along the rostral third ventricle  [81] . When estra-
diol peaks during proestrus, it induces progesterone syn-
thesis in hypothalamic astrocytes. This hypothalamic 
neuroprogesterone then acts as a trigger: stimulating es-
trogen-induced PRs, activating kisspeptin neurons that 
excite GnRH neurons, and initiating the LH surge  [81, 
82] . Based on such ob servations of neuroprogesterone 
action, progesterone synthesized in the brain, like other 
neurosteroids, is a fourth-generation transmitter. Such 
fourth-generation transmitters are a family of diverse 
molecules that are regulated at the level of synthesis rath-
er than release. Other examples include nitric oxide, car-

bon monoxide, prostaglandins and endocannabinoids 
 [78] .

  Astrocytes and Neuroprogesterone 
 Neurons, oligodendrocytes and astrocytes are all ca-

pable of steroidogenesis  [77] . However, the most probable 
source of neuroprogesterone is from astrocytes [ 32, 55 , 
reviewed in  43 ]. Both whole hypothalamus in vivo and 
hypothalamic astrocyte cultures from postpubertal fe-
male rats express the enzymes and associated proteins 
needed for progesterone synthesis: P450scc, 3 � -hy-
droxysteroid dehydrogenase (3 � -HSD), steroid acute 
regulatory protein (StAR), and sterol carrier protein-2 
(SCP-2)  [32, 59] . Estradiol has been shown to stimulate 
progesterone synthesis in hypothalamic astrocytes and 
whole hypothalamus, which corresponded with an in-
creased expression of 3 � -HSD mRNA and enzyme ac-
tivity [reviewed in  83 ]. Interestingly, estradiol did not 
 increase hypothalamic progesterone levels in acyclic 
 female rats with persistent estrus suggesting that 
 reproductive aging may be the result of a lack of estro-
gen-induced neuroprogesterone synthesis  [83] . Further-
more, no increase in hypothalamic progesterone was 
measured in male rats, consistent with the inability of 
male rodents to display an estrogen-positive feedback 
surge of LH  [61] .

  Parallel studies in vitro showed that estradiol rapidly 
increased [Ca 2+ ] i  flux in astrocytes through a phospholi-
pase C (PLC)/inositol triphosphate (IP 3 ) receptor-medi-
ated pathway  [22] . This effect was stereospecific, repro-
duced with E-6-BSA and blocked with ICI 182,780, indi-
cating that estradiol is signaling via a classical ER 
associated with the cell membrane. Further evidence for 
classical ER-mediated membrane signaling is supported 
by astrocytic expression of ER �  and ER �  in both the cy-
toplasmic and membrane fractions. In subsequent exper-
iments, physiological levels of estradiol or E-6-BSA in-
creased [Ca 2+ ] i  flux through membrane ER activation 
 [43] . Since calcium is a general signal in astrocytes, we 
needed to determined whether the increase in [Ca 2+ ] i  flux 
was the intracellular signal through which estradiol acted 
to rapidly increase progesterone synthesis. To this end, 
thapsigargin, a Ca 2+ -ATPase inhibitor that mobilizes IP 3  
receptor-sensitive calcium stores, was used  [32] . Thapsi-
gargin was as effective as estradiol at facilitating proges-
terone synthesis in astrocytes, indicating that de novo 
progesterone synthesis in astrocytes is dependent on the 
estradiol-induced [Ca 2+ ] i  flux.

  A great deal of evidence now exists that the same ER 
proteins that interact with the estrogen response element 
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(ERE) on DNA in the nucleus is also trafficked to and as-
sociated with the cell membrane. In addition to the clas-
sic ER �  and ER � , several other estrogen-binding proteins 
have been proposed including ER-X, GPR30 and a STX-
activated protein [reviewed in  84 ]. To date, we have con-
centrated on ER �  and ER �  because: (1) transfection of 
ER-negative cells with ER �  or ER �  mRNA produce cog-
nate proteins in the membrane fraction that are function-
al  [85] ; (2) Western blots with ER-specific antibodies 
demonstrate both full-length and splice variants of the 
ER in the membrane fraction of neurons and astrocytes 
 [22, 86, 87] ; (3) the binding affinity (K D ) for the mem-
brane ER and nuclear ER is similar, but there are fewer 
ERs on the membrane (B MAX )  [88] , and (4) ER �  and ER �  
proteins are trafficked and attached to the membrane 
through palmitoylation and in association with calveolin 
proteins  [89–93] .

  Membrane-initiated estradiol signaling can activate 
a number of GPCR associated pathways, including 
[Ca 2+ ] i  f lux, cAMP, DAG, IP 3 , protein kinase C (PKC), 
PKA, MAPK/ERK and phosphorylation of cAMP   re-
sponse element-binding protein (CREB)  [94–96 , re-
viewed in  97] . ER �  and ER �  activate intracellular sig-
naling cascades by interacting with bona fide membrane 
receptors such as growth factor tyrosine kinase recep-
tors or metabotropic glutamate receptors (mGluRs) to 
initiate cell signaling [ 98–104 , reviewed in  75, 79 ]. In the 

CNS, membrane ERs interaction with mGluRs has been 
reported in many different brain regions [reviewed 
in  79 ]. The mGluRs are glutamate-binding proteins 
grouped  according to sequence homology and second 
messenger linkage: mGluR1 and mGluR5, coupled to 
Gq, are group I mGluRs; mGluR2 and mGluR3, activat-
ing Gi/Go signaling, are group II mGluRs; and mGluR4, 
mGluR6, mGluR7 and mGluR8, also Gi/Go coupled, 
comprise group III mGluRs. Co-immunoprecipitation 
demonstrated the probable physiological interaction of 
ERs and mGluRs in both neurons and astrocytes ( fig. 1 ) 
 [99, 100, 105] .

  While the details of the transactivation of mGluRs by 
ERs have not been elucidated, the downstream actions of 
estradiol-initiated transactivation of mGluR2/3 leads to 
inhibition of Ca 2+  influx through the L-type voltage-gat-
ed calcium channel (VGCC)  [35, 98, 106, 107] , while ER �  
transactivation of the mGluR1a activates the PLC path-
way, increasing [Ca 2+ ] i  flux, activating PKC, and phos-
phorylating CREB  [98, 100, 105] . In terms of reproduc-
tion, ER �  interacts with mGluR1a to initiate lordosis be-
havior though activation of a novel PKC and increases 
neuroprogesterone synthesis, which is a necessary step 
for estrogen positive feedback  [100, 108] . Membrane-ini-
tiated activation of cell  signaling can be blocked with the 
specific ER antagonist ICI 182,780 or the selective mGlu-
R1a antagonist LY367385. Activating the mGluR1a with 

ER

ER�

ER�

Caveolin

CAV1

CAV3

mGluR

mGluR

mGluR1

mGluR5

mGluR2

mGluR3

G�

Gq

Gq

Gi/o

Gi/o

17�E
OH

ER

G�

OH

Caveolin

2nd messenger signaling

  Fig. 1.  ER activation of mGluR signaling through interactions with caveolin proteins.  a  Model framework of 
estradiol-induced activation of mGluRs via caveolin-based caveolae.  b  Summary of previous findings demon-
strating ER activation of group I (mGluR1/5) and group II (mGluR2/3) metabotropic glutamate receptors is 
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(S)-3,5-dihydroxyphenylglycine (DHPG) without estra-
diol mimicked the steroid-induced [Ca 2+ ] i  flux  [100] .

  ER �  in the Membrane 
 Evidence that reproduction is dependent on ER � , in-

cluding the membrane ER � , is very strong  [60, 61, 109, 
110 , but see  111 ]. Membrane impermeable estradiol con-
structs (e.g. E-6-BSA) and studies showing ER �  protein 
in the membrane fraction of native or transfected cells 
indicate an ER �  association with the membrane  [35, 85, 
99, 105, 106, 112–118] . Since ER �  does not have the typi-
cal structure of a classic membrane protein, this associa-
tion has remained unresolved. It is not clear whether ER �  
is anchored to the inner leaflet of the membrane or an 
integral membrane protein with an exposed extracellular 
portion. A method that has been useful in identifying in-
tegral membrane proteins is surface biotinylation. Pro-
teins that have an extracellular portion are labeled with 
biotin, subsequently concentrated using an avidin col-
umn, eluted and characterized by Western blotting  [119] .

  Using this technique, membrane ERs were labeled 
with the membrane-impermeable biotin reagent in pri-
mary cultures of hypothalamic neurons and astrocytes 
( fig. 2 )  [86, 87, 120] . These studies demonstrated surface 
bio tinylated ER � -immunoreactive proteins, indicating 
that a portion of the ER �  is exposed on the cell surface 
and implying that ER �  is a membrane protein. Together 
with the functional E-6-BSA studies that showed activa-
tion of PKC and [Ca 2+ ] i  flux, these results suggest that the 
exposed portion of the ER �  contained the ligand-binding 
site. Interestingly, while both groups identified a lower 
molecular weight (MW) form (50–55 kDa), as the major 
ER � -immunoreactive protein in the membrane, only our 
group detected a 66-kDa protein that was assumed to be 
the full-length ER �  ( fig. 2 ). 

  To determine whether these proteins were derived 
from the ER �  gene, astrocytes from wild-type and ER � -
disrupted (ERKO) mice were surface biotinylated  [87] . As 
in the experiments conducted with rat astrocytes, both 
52- and 66-kDa ER �  proteins were detected in wild-type 
mouse astrocytes. However, ERKO astrocytes had nei-
ther the 52- nor the 66-kDa proteins, indicating that both 
proteins were derived from the ER �  gene. It is likely that 
the 66-kDa protein is the full-length ER � , but the iden-
tity of the 52-kDa protein has not been resolved. The 52-
kDa protein may potentially be an alternatively spliced 
form of ER � . Numerous alternatively spliced forms of 
ER �  mRNA have been identified in a variety of estrogen-
sensitive tissues, including the brain  [88, 121–126] . Some 
of these alternatively spliced mRNAs are translated into 

proteins  [88, 121, 127–130] . Based on the MW of the pre-
dominant membrane ER � , the most probable splice vari-
ant is the exon 7-deleted form (ER �  � 7), with a predicted 
MW of 52 kDa. The resulting protein, however, is trun-
cated and missing the COOH-terminal end of the full-
length ER � , which includes part of the ligand-binding 
domain  [88, 122, 131, 132] . Both NH 2 -terminal-directed, 
H-184, and COOH-terminal directed, MC-20, antibodies 
recognized the 52-kDa protein, and E-6-BSA stimulated 
cell signaling indicating that it is unlikely to be the trun-
cated ER �  � 7 product  [87] . Another possible splice vari-
ant, ER �  � 4, has an apparent MW of 54 kDa. This splice 
variant is missing exon 4 of the full-length ER � , which 
codes for the DNA-binding domain and the hinge region, 
but retains the COOH-terminal amino acid sequence 
recognized by MC-20. In addition to our studies, other 
groups have also identified ER �  splice variants using spe-
cific antibodies directed against both the NH 2 - and 
COOH-terminal ER �  domains  [88, 122, 131, 132] , but 
mass spectrometry studies (MALDI-TOF) focusing on 
identifying the membrane ER �  have not been successful 
 [93, 133] .

  Regardless of the identity of the ER �  splice variant, it 
is important to note that the full-length ER �  was demon-
strated in the membrane since it is probably the ER �  
needed for signaling. A previous study identified both 
full-length 66- and 55-kDa ER �  in an endothelial cell line 
from the hypothalamus, but only the full-length ER � -
bound estradiol and increased [Ca 2+ ] i  flux  [88] . Based on 
co-immunoprecipitation with mGluR1a, membrane-ini-
tiated estrogen signaling in astrocytes is mediated by the 
66-kDa ER �   [100] . No lower MW ER �  variants co-im-
munoprecipitated with mGluR1a. Currently, the identity 
of the 52-kDa ER �  is unknown and will require further 
experimentation to understand its function. Interesting-
ly, GPR30, a putative G protein-coupled membrane ER, 
was not detected in surface-biotinylated fractions from 
astrocytes ( fig. 2 )  [87] , confirming previous results sug-
gesting that GPR30 may not be present on the cell mem-
brane  [120, 134, 135] .

  ER Trafficking to and from the Cell Membrane 
 If ER �  is a membrane receptor, its levels would be 

modulated at the cell surface. Membrane receptor popu-
lations are dynamic: inserted into and removed from the 
membrane. In addition, membrane receptors are mas-
sively internalized following agonist binding. To ascer-
tain if ER �  was trafficked to and/or internalized from the 
membrane, astrocyte cultures were exposed to estradiol 
for increasing intervals and then surface biotinylated. Es-



 Micevych   /Bondar   /Kuo    Neuroendocrinology 2010;91:211–222 216

tradiol treatment modulated the 52- and 66-kDa ER �  
proteins in parallel. In untreated astrocytes, levels of ER �  
in the membrane were low, but 5 min of estradiol treat-
ment significantly increased the amount of ER �  traf-
ficked to the membrane and peak levels were reached af-
ter 30 min of estradiol exposure. Levels remained elevat-
ed with up to 2 h of estradiol exposure, but decreased to 

below basal concentration by 24 h, where they remained 
for the duration of the experiment ( fig. 3 )  [87] . This tran-
sient increase of membrane ER �  was dependent on estra-
diol as demonstrated by inhibition of trafficking with the 
ER antagonist ICI 182,780.

  Estradiol not only increased trafficking of ER �  to the 
membrane, but also internalization ( fig. 3 )  [87] . In this 
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  Fig. 2.  Postpubertal hypothalamic astro-
cytes were incubated with vehicle (0 min) 
or in the presence of 1 n M  estradiol (E 2 ) for 
5, 30 min, 1, 2, 24 and 48 h. Astrocytes 
were then surface biotinylated, excess bio-
tin removed, and the labeled proteins sep-
arated and detected with ER � , GPR30 and 
LIM domain kinase 1 (LIMK1) antibodies. 
 a  Two ER � -immunoreactive (ER � -i) ER 
bands were identified: 66 and 52 kDa. The 
cytoplasmic protein LIMK1 and the puta-
tive membrane ER GPR30 were not labeled 
with surface biotinylation.  b  Estradiol 
treatment (1 n M ) increased both the 66- 
and 52-kDa ER � -i. In the first lane, cells 
were not surface biotinylated (no biotin), 
thus no biotinylated ER � -i was labeled. 
Detection of the 66-kDA ER �  required a 
2-hour exposure compared with a 1- to 
2-min exposure for the 52-kDa ER � -i. 
 c  Quantification of the 66- and 52-kDa 
ER � -i was calculated by comparing the 
optical density of the ER � -i bands with 
that of the  � -actin bands. Both 66- and 52-
kDa ER � -i are regulated in parallel by E 2  
treatment, but the amount of 66-kDa ER �  
was much less at each time point. Data are 
mean  8  SEM (n = 4).  * ,  +  Statistical differ-
ences at the p  !  0.05 level compared with 0 
min for each molecular weight  species. 
From Bondar et al.  [87] . 
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experiment, astrocytes were surface biotinylated, treated 
with estradiol and then incubated with glutathione to re-
move the biotin from the cell surface. Any remaining bi-
otinylated ER �  must have been internalized and thus, 
protected from the glutathione. The time course of inter-
nalization, a marker for membrane receptor activation 
[reviewed in  136 ], mimicked the pattern of membrane 
ER �  insertion: estradiol increased the amount of inter-
nalized ER �  at 5 min and remained elevated after 2 h. By 

24 h, the amount of internalized ER �  was below prestim-
ulation levels. These observations of receptor internaliza-
tion complement studies using a membrane-imperme-
able E-6-BSA-FITC [�-estradiol-6-(O-carboxymethyl) 
oxime-bovine serum albumin conjugated with fluores-
cein isothiocyanate] construct, which binds to and labels 
membrane ERs  [84, 114] . When cells are allowed to inter-
act for a period of time ( 6 5 min) with the E-6-BSA-FITC, 
the fluorescent marker is seen within intracellular vesi-
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  Fig. 3.         a  Estradiol (E                             2 ) treatment transiently increases membrane 
ER � -i in postpubertal hypothalamic astrocytes. Basal levels of 
ER � -i were observed prior to E 2  treatment (0 min). These levels 
were rapidly increased (5 min time point) (   *  p    !  0.05), with a max-
imum at 30 min ( *  p  !  0.05) and a slight depression after 1 h 
( *  p  !  0.05), and remained elevated at 2 h with 1 n M  E 2  stimulation 
( *  p  !  0.05). After 24–48 h of E 2  treatment, ER � -i returned to 
basal levels (p  1  0.05). GPR30 was not surface biotinylated despite 
incubating the astrocytes with estradiol for up to 48 h.  b  To track 
internalization, astrocytes were biotinylated, treated with estra-
diol (1 n M ), and then biotin stripped from the cell surface with 
glutathione. Under these conditions, ER � -i is biotinylated, but af-
ter glutathione treatment, the only biotinylated receptors remain-

ing are those that were internalized. The time course of internal-
ization matched the time course of the estradiol-induced traffick-
ing to the membrane. In the first lane, the biotin was not removed 
by glutathione (nonstripped). The amount of internalized ER � -i, 
with varying estradiol (1 n M ) treatment, began increasing at 5 min 
( *  p  !  0.05) and reached its maximum at 30 min to 1 h ( *  p  !  0.05). 
After 2 h of estradiol incubation, the level of internalized ER �  de-
creased compared with the maximum but was still statistically 
significant from the 0 min time point ( *  p  !  0.05). At the 24–48 h 
time points, internalized ER � -i levels reached basal levels compa-
rable to 0 min (p  1  0.05). All the data are mean  8  SEM (n = 4). 
 *  Statistical differences at the p  !  0.05 level compared with 0 min 
for each experiment. From Bondar et al.  [87] . 
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cles thought to be early endosomes, which is suggestive of 
internalization and is a morphological equivalent of the 
surface biotinylation experiments ( fig. 4 ).

  Proximal events in membrane-initiated cell signaling 
involve an ER � -mGluR1a interaction. The available evi-
dence suggests that the ER and the mGluR are inserted 
together into the cell membrane as a complex  [89] . To 

confirm this, we tested whether estradiol regulated ER �  
and mGluR1a trafficking in astrocytes. Indeed, ER �  and 
the mGluR1a were trafficked to the cell membrane and 
internalized in tandem  [87] . The rapidity of the estradiol-
induced insertion into the cell membrane suggests a de-
livery mechanism consisting of exocytic vesicles loaded 
with the ER � -mGluR1a complex. In support of this, es-

a b

c

  Fig. 4.  E-6-BSA-FITC is internalized in 
primary cultures of adult hypothalamic 
astrocytes.  a  Experiment in which binding 
of the membrane-impermeable E-6-BSA-
FITC complex to membrane ER induces 
internalization. Estradiol-bound ERs are 
internalized and transported to endo-
somes in which the highly acidic environ-
ment  facilitates the disassociation of the 
ligand from its receptor.  b, c  Confocal im-
ages of primary hypothalamic astrocytes 
grown on glass coverslips and treated with 
100  � g/ml E-6-BSA-FITC for 5 min (   b ) 
and 30 min ( c ) at 37   °   C, then fixed with 4% 
paraformaldehyde. Arrows indicate bind-
ing of the E-6-BSA-FITC to ER on the cell 
membrane (           b ) and the internalized com-
plex ( c ).                                                                                     
  Fig. 5.  Schematic diagram illustrating es-
tradiol-mediated ER     �  trafficking at the 
membrane. ER     � -mGluR1a (blue-orange) 
complexes are inserted into the membrane 
of an exocytotic vesicle ( a ). These are as-
sociated through interactions with calveo-
lin as depicted in figure 1. Estradiol (red 
spheres) induces vesicle docking with 
the membrane and insertion of the ER     �  
-mGluR1a complex into the membrane 
( b ). Colors refer to the online version on -
ly. Exposed to the extracellular space, es-
tradiol binds to ER     �  ( c ), transactivating 
mGluR1a and initiating cell signaling. Es-
tradiol-activated ER     � -mGluR1a complex-
es are then internalized via a clathrin-me-
diated process ( d ) and fuse with early en-
dosomes ( e ) where the estradiol is released 
from ER     � . The ER     � -mGluR1a complex 
can then be recycled to the membrane or 
degraded. Initially, there appears to be a 
recycling of the ER     � -mGluR1a complex, 
but with continued stimulation, the pro-
cess shifts toward degradation ( fig. 2, 3 ).                                                                                                               

a

b

c
d

e

f

4

5
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tradiol induces exocytosis of ER � -immunoreactive vesi-
cles in hippocampal neurons and pituitary cells  [137] . 
Trafficking of ER �  to the membrane requires palmi-
toylation and association with calveolin proteins  [91, 92] . 
Calveolin proteins determine the association of ER �  and 
ER �  with specific mGluRs ( fig. 1 )  [75, 89] . For example, 
ER �  interaction with either mGluR1 or mGluR2/3 is de-
pendent upon either caveolin 1 or caveolin 3, respectively 
[reviewed in  75 ]. Disrupting calveolin synthesis prevent-
ed insertion into the membrane. Similarly, antagonizing 
mGluR1a with LY 367385 or ER �  with ICI 182,780 pre-
vented trafficking of both the mGluR1a and ER � .

  In summary, these results indicate that astrocytes 
have an important function within the CNS network that 
regulates reproduction. These cells express a functional 
membrane ER �  that associates with mGluR1a to activate 
GPCR cell signaling pathways. Circulating estradiol reg-
ulates the levels of membrane ER �  on the astrocyte mem-
brane thereby modulating its own membrane-initiated 
cell signaling  [87] . In the context of estrogen-positive 

feedback, rising estradiol levels increase the concentra-
tion of membrane ER �  and mGluR1a in hypothalamic 
astrocytes ( fig. 5 ). The ER � -mGluR1a complex is activat-
ed by spiking estradiol levels on the morning of proes-
trus, releasing intracellular calcium stores that stimulate 
neuroprogesterone synthesis. The transient increase of 
neuroprogesterone stimulates local estradiol-induced 
PRs initiating the LH surge. Rapid estradiol signaling and 
progesterone synthesis are constrained by the internal-
ization and eventual degradation of ER � , preventing con-
tinuous signaling. Thus, membrane-initiated estradiol 
signaling in astrocytes is an important step in the regula-
tion of reproduction.
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