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Clinical trials and animal studies have revealed that loss of circulating estrogen induces rapid changes in whole body metabolism,
fat distribution, and insulin action. 	e metabolic e
ects of estrogen are mediated primarily by its receptor, estrogen receptor-�;
however, the detailed understanding of its mechanisms is incomplete. Recent investigations suggest that estrogen receptor-� elicits
themetabolic e
ects of estrogen by genomic, nongenomic, andmitochondrialmechanisms that regulate insulin signaling, substrate
oxidation, and energetics.	is paper reviews clinical and experimental studies on themechanisms of estrogen and the current state
of knowledge regarding physiological and pathobiological in�uences of estrogen on metabolism.

1. Introduction

Estrogens are important participants inmetabolic regulation.
Loss of the main circulating estrogen, 17�-estradiol (E2), due
to either natural or surgical menopause has e
ects that go
beyond reproductive health. E2-de
ciency and impairment
of its cellular action lead to an abrupt reduction in metabolic
rate, shi� to increased central adiposity, dyslipidemia, and
progression of metabolic syndrome (MetS). Together these
changes increase the risk of nonalcoholic steatohepatitis, type
2 diabetes, and cardiovascular disease and its complications
[1]. With increasing life expectancies, women now spend
three to 
ve decades of their life in E2-de
ciency and
experience health challenges from which E2 had previously
provided protection. However, postmenopausal replacement
of E2 has been controversial, primarily because of the risk
of oncogenicity and the adverse outcomes on cardiovascular
disease (CVD) seen in the Women’s Health Initiative (WHI)
trials [2]. Yet womenwho take hormone replacement therapy
(HRT) seem to enjoy the metabolic bene
ts of E2; they are
more energetic, have better glucose metabolism, do not have
hot �ashes, can better control their weight, and bene
t from

improved bone density, all to the extent that they decide that
these bene
ts outweigh the risks [3]. 	e mechanisms by
which E2 regulates metabolism and glucose homeostasis are
not well understood. A deeper understanding of mechanisms
underlying E2 metabolism might better inform decisions on
the design of E2 receptor modulators that would optimize
metabolic bene
ts for disease prevention and treatment with-
out the associated reproductive, oncogenic, or CVD risks.
	ere is a growing awareness of the role of E2 in metabolism
via its regulation of mitochondrial function. 	is review
comprehensively presents and discusses the mechanisms
by which E2 regulates mitochondrial function and insulin
action.

2. Clinical Studies Document Increased Risk of
MetS and Diabetes after Loss of E2

Large clinical studies have revealed a robust protective role of
E2 againstMetS and diabetes. In a population-based prospec-
tive cohort study, diabetes risk was reduced by 62% in women
with current HRT use compared with individuals who never
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used HRT [4]. Similar other large-scale trials have shown
bene
ts of HRT on diabetes in postmenopausal women
[5, 6]. Weight gain, with its associated predisposition to
diabetes, commonly occurs with menopause and is primarily
attributable to aging. However, beyond the weight gain itself,
changes in body composition that are classically associated
with insulin resistance, such as increase in visceral adiposity,
have been independently linked to the menopausal transi-
tion [7]. Despite the relationship between menopause and
weight/body composition changes, a randomized double-
blind, placebo-controlled trial of E2+progestin replacement
in women with coronary heart disease reported stabilization
of fasting glucose levels and 35% reduction in incidence of
diabetes with no changes in weight and waist circumference
[5]. HRT also improved glucose control in women with
preexisting diabetes [7], and E2 given in a moderate dose
(0.625mg) increased insulin sensitivity; however, higher
doses (1.25mg) or progestins cotreatment attenuated this
bene
t [8]. Taken together, clinical studies have con
rmed
the protective e
ects of E2 on MetS and diabetes, but these
studies need to be followed by studies in animal models to
identify mechanisms underlying the above discrepancies and
patient-group selective e
ects.

3. Biochemical Mechanisms of E2 Signaling

E2 mediates its e
ects via 3 receptors—E2 receptor � (ER�),
E2 receptor � (ER�), and the newly described G protein-
coupled E2 receptor 1 (GPER). Variations in the action of E2
depend upon the relative distribution and abundance of the
ERs across di
erent tissues and within intracellular locations.
ER� is the primary ER in most reproductive tissues as well as
insulin-sensitive tissues. 	e ERs have structural similarities
with other members of the nuclear receptor family [9]. 	e
N-terminal A/B domain contains an activation function1
(AF1), which is ligand-independent and has promoter- and
cell-speci
c activity.	e DNA-binding domain resides in the
C-domain whereas the nuclear localization signal is in the
D-domain. 	e C-terminal E-domain is the ligand-binding
domain, which contains a ligand-dependent AF2. 	e func-
tion of the F-domain remains unde
ned (see Figure 1) [9].

In the classical E2 signaling pathway, two ERs dimerize
when stimulated by E2 binding and then translocate to the
nucleus, bind to E2 response elements (ERE), and elicit
a transcriptional response (see Figure 2). 	e nonclassical
E2 signaling pathway operates independently of ER-ERE
binding and involves protein-protein interactions that elicit
genomic and nongenomic e
ects. For instance, the ERs may
cross talk with the transcription factors AP1 and SP1 to
indirectly regulate transcription. Although ER� and ER�
haveDNA- and ligand-binding domain homology, they di
er
especially in their N- and C-terminal sequences. 	ere is
some evidence that ER�may have less nuclear transcriptional
activity than ER� [10]. 	e nongenomic e
ects involve inter-
action of the membrane-localized ER with adaptor proteins
such as c-Src and downstream rapid signaling via mitogen-
activated protein kinase (MAPK), G-proteins, protein kinase
B (PKB)/PI3K, and protein kinase C (PKC). Moreover, E2
also signals nongenomically via GPER. 	is signaling is

rapid and triggers the release of intracellular Ca+2, cAMP
production, or c-Src activation with subsequent activation
of MAPK or calcium calmodulin-dependent kinases [11, 12].
	e extent towhich E2 regulates energy homeostasis via these
nonclassical ER signaling pathways remains unclear. Using
gene knock-in mice that express mutant (E207A/G208A)
ER� that can only signal through the noncanonical pathway,
Park et al. found that nonclassical ER� signalingmediates the
major e
ects of E2 on energy balance [13].

	e activity of estrogen also depends on its bioavailability
which is primarily determined by the sex hormone-binding
globulin (SHBG). SHBG transports and regulates activities
of androgens and estrogen by regulating plasma distribution
and access of these hormones to their target tissues [14].
However, several single nucleotide polymorphisms (SNP)
have been described in SHBG, some of which are associated
with the MetS. For instance, a common SNP (rs6259) retards
the plasma clearance of SHBG and is negatively associated
with type 2 diabetes [15].

4. Relationship of E2 and Insulin

A�er menopause most women face a dramatic increase
in central obesity, insulin resistance, and dyslipidemia, all
factors associated with theMetS [16]. Likewise ER� knockout
mice are obese and insulin resistant and have decreased
energy expenditure, decreased locomotion, abnormal glu-
cose homeostasis, hyperleptinemia, and hyperinsulinemia
[17–19]. ER� activation with speci
c agonists reverses high
fat diet- (HFD-) induced insulin resistance [20], whereas
ER� knockout mice display improved insulin sensitivity and
glucose tolerance [21], suggesting that ER� plays a primary
role in insulin-glucose homeostasis. 	ese 
ndings are con-
sistent with human studies in which estrogen-de
cient men
and women with Cyp19 aromatase de
ciency and a male
patient with ER� de
ciency exhibited insulin resistance,
impaired glucose metabolism, and hyperinsulinemia [22].
E2 treatment reversed the insulin resistance only in the
aromatase de
cient patients [23].

E2 may regulate insulin action directly via actions on
insulin-sensitive tissues or indirectly by regulating factors like
oxidative stress, which contribute to insulin resistance. In
skeletal muscle, ER� is thought to have a positive e
ect on
insulin signaling and GLUT4 expression whereas ER� may
be prodiabetogenic and cause reduced GLUT4 expression
[24, 25]. Our group showed altered ER� expression primarily
in the adipose tissue of ovariectomized (OVX) mice treated
withHFD [26]. But in vivo stimulation of ER�with its agonist
PPT increased insulin-stimulated glucose uptake in slow- and
fast-twitch skeletal muscles along with activation of signaling
intermediates whereas activation of ER� with DPN did not
alter insulin action [27]. 	e role of ERs in liver has been
studied in liver-speci
c ER� knockoutmice fed aHFD.	ese
mice have decreased insulin sensitivity during a hyperin-
sulinemic euglycemic clamp and insulin failed to suppress
endogenous glucose production, indicative of hepatic insulin
resistance [28]. Hepatic lipotoxicity and impaired gluconeo-
genesis have been described in OVX mice and one study
indicated that changes in gluconeogenesis may be unrelated
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Figure 1: Domain structure of ER� and ER�. NTD: N-terminal domain, DBD: DNA-binding domain, and LBD: ligand-binding domain.
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to E2-de
ciency in OVX mice [29]. E2 may also mediate its
protective e
ects on insulin action via reduction of in�am-
mation [30]. Hematopoietic or myeloid-speci
c ER� exerts
important e
ects on global insulin action and MetS [31].
E
ects of E2 inmetabolism are also centrally controlled at the
level of the hypothalamus regulating appetite [32], and thus
obesity due to increased appetite in E2-de
ciency contributes
to reduced insulin sensitivity. Yonezawa et al. compared
HFD-OVX mice receiving subcutaneous versus intracere-
broventricular E2 to delineate the contribution of central ver-
sus peripheral e
ects of E2 on metabolism and insulin action
[33]. While both treatments improved insulin sensitivity, the
authors found that subcutaneous E2 decreased expression of
TNF�, lipoprotein lipase, and fatty acid synthase, whereas
intracerebroventricular E2 upregulated energy expenditure
via activation of brown adipose tissue thermogenesis and
suppression of hepatic gluconeogenesis. E2 also regulates
pancreatic � cell function likely through an ER�mechanism.
ER� knockout mice have increased susceptibility to oxidative
stress, precipitating beta cell apoptosis and insulin-de
cient
diabetes [34]. 	e protective e
ects of E2 on � cells are pri-
marily nongenomic and likely independent of ERs since 17�-
estradiol also mimicked these e
ects [35]. Taken together,
E2 in�uences glucose homeostasis through multiple organ
systems with organ-speci
c e
ects acting primarily via ER�.

One developing theory of insulin resistance is that
chronic oxidative stress activates kinases such as JNK and
IKK�, which inhibit activation of the insulin signaling inter-
mediates [36, 37]. E2 suppresses oxidative stress likely via
both nongenomic and genomic actions [38], by activating
pathways that prevent generation of reactive oxygen species
(ROS) and increasing e�cient scavenging of ROS. It is also
likely that some of the e
ects of loss of E2 on insulin action are
due to the increased adiposity associated with E2-de
ciency.
Both ER�- andGPER-de
cientmice have increased adiposity
and insulin resistance [39].

Treatment with physiological levels of E2 restores insulin
sensitivity and glucose tolerance in HFD-fed OVX mice, an
e
ect that was abolished in ER�-de
cient mice [40]. In ob/ob
mice, systemic treatment with the ER�-selective ligand PPT
improved glucose tolerance and insulin sensitivity [20], reit-
erating the role of ER� in glucose homeostasis. However, only
early onset E2 treatment rescued the ovariectomy-induced
oxidative stress, reduced brain glucose uptake, and decreased
GLUT1 and 3 expression and metabolomics pro
le changes
[38]. Indeed, one interpretation of the results fromWHI trials
is that HRT was ine
ective or possibly detrimental to women
when it was started in established postmenopausal women
whereas it was bene
cial to newly menopausal women [41].
A likely explanation of this observation is that the ratio of
ER�/ER� changes over time with ovariectomy, altering the
e
ect of delayed E2 treatment. Alternatively, the detrimental
e
ects of ovariectomy and possibly from other factors like
diet and age are so extensive that delayed E2 treatment has
minimal e
ects. Hence, E2 treatmentmaymore likely prevent
rather than reverse preexisting damage.

It seems clear that E2 exerts positive regulation on insulin
action. However, this relationship is not reconciled under
conditions of high E2 levels such as polycystic ovarian

disease, obesity, or pregnancy—all characterized by insulin
resistance. Obese postmenopausal women have higher serum
E2 levels than lean postmenopausal women [42]. Indeed,
supraphysiological doses of estradiol suppressed basal and
insulin-stimulated glucose oxidation in human myocytes,
whereas low concentrations of E2 increased glucose uptake
[43]. 	is paradoxical relationship begs to question “Is
there a di
erence in the ovary-derived circulating E2 and
extragonadal-derived E2, which is thought to have paracrine
function (reviewed in [44]) in adipose, breast, brain, muscle,
and bone tissue?” Also, why does the adipose tissue in
particular secrete E2 and what is the trigger? It is likely that
in�ammation in obesity induces expression of aromatase,
which increases E2 production to suppress the in�ammation
in a paracrine manner. Moreover, the protective e
ects of
E2 that have been consistently observed in clinical studies
against cardiometabolic risks are absent in women with type
1 diabetes even though they have normal E2 levels [45, 46].
Perhaps, E2 treatment for metabolic disorders should be
targeted toward those with insulin resistance and MetS with
personalized consideration to dose and comorbidities.

Women tend to accrue fat primarily in the subcutaneous
regions whereas men tend to have visceral adiposity which
is positively correlated with risk for CVD and MetS. A�er
menopause, adiposity shi�s from subcutaneous to the vis-
ceral area, and subsequently the incidence of CVD and MetS
in women increases. Two main mechanisms have been sug-
gested to explain the shi� in fat distribution withmenopause.
(1) In�uence of E2 on adrenergic receptors alters the lipid
storage characteristics of the fat depots. E2 can shi� the
balance between lipolytic �1-2 receptors and antilipolytic �2
adrenergic receptors between the subcutaneous and visceral
depots [47]. (2) Altered distribution of ER� and ER� in
adipose depots allows E2 to modulate distribution of fat
between the depots. Males have lower ER� in their visceral
depots and are therefore primed to store more fat viscerally
[48]. Mice with a global de
ciency of ER� have primarily
visceral adiposity. A�er ovariectomy, E2 can reverse visceral
adiposity in wild type and ER� knockout mice, but not in
ER�mice, suggesting that the lipolytic e
ect of E2 is primarily
mediated by ER�. Also, mice with adipocyte-speci
c deletion
of ER� have increased adiposity speci
cally in the visceral
depot [49].	us a higher ER�/ER� ratio in the visceral depot
may limit the accumulation of fat in premenopausal women.
Another theory suggests that, a�er menopause, the adipose
tissue becomes the primary source of E2, and it is likely that
the process of conversion of E2-precursors to E2 by aromatase
may occur mainly in the visceral depot [48]. 	is depot may
thus increase in an e
ort to replenish at least some of the E2-
de
ciency in menopause.

If E2 is so crucial to metabolism, does it have any signifi-
cance in males?	emale hormone testosterone may regulate
much of the metabolism in males, but HFD-fed liver-speci
c
ER� knockout male mice have greater impairment of hepatic
insulin sensitivity and increased liver triglycerides and dia-
cylglycerides than the wild type �oxed controls [28]. Further,
the E2-testosterone balance may be crucial in metabolic
regulation since progressive testosterone predominance, par-
ticularly bioavailable testosterone (ratio of testosterone to
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sex hormone-binding globulin) in women without HRT or
preexisting diabetes and MetS, was independently associated
with increased visceral fat and risk of MetS a�er menopause
[50, 51].

5. E2 Is an Important Regulator of
Mitochondrial Function

Menopausal women o�en su
er from low energy levels,
muscle weakness, tiredness, reduced exercise capacity, and
susceptibility to weight gain. Many of these symptoms may
result from energy depletion due to mitochondrial dysfunc-
tion. Recent molecular studies have shown that E2 plays
a regulatory role in mitochondrial function (Figure 2). E2
appears to modulate various aspects of mitochondrial func-
tion, including ATP production, generation of mitochondrial
membrane potential, mitochondrial biogenesis, and regula-
tion of calcium concentrations [52, 53]; however understand-
ing the mechanisms underlying these mitochondrial e
ects,
especially in humans, is incomplete. ERs might regulate
mitochondrial function through either the classical genomic
pathway or nongenomic mechanisms. Recent evidence also
suggests that ERs may be localized to the mitochondria and
elicit their e
ects directly. ER� is essential for most of the E2-
mediated increase inmitochondrial respiratory chain (MRC)
proteins and antioxidant proteins involved in defense against
oxidative stress [54, 55]. ER�, however, can downregulate the
mRNA expression of nuclear-encoded subunits of the MRC
complexes in the vasculature [54]. E2 may also in�uence
mitochondrial function by altering mitochondrial ROS for-
mation [56] and is thought to induce antioxidant responses
[57]. Stimulatory e
ects of E2 or ER activators have been seen
on mitochondrial biogenesis regulators, Nrf1/2, TFAM, and
PGC1� [58]. Indeed, PGC1� is required for ER�’s cardiopro-
tective e
ects following trauma-hemorrhage, reiterating the
mechanism of ER action via mitochondrial biogenesis [59].

Rats with normal estrous cycles have enhanced mito-
chondrial respiration compared with OVX rats [60], and,
in MCF-7 cells, mitochondrial oxygen consumption was
increased 4–6 days a�er E2 treatment, following increased
expression of the MRC components [58]. E2 might have
little e
ect on mitochondrial ATP production under basal
conditions; however, the e
ect may be robust in stressed con-
ditions such as ischemia, toxins, oxidative stress, or HF [52].
Further, aging in combinationwith E2-de
ciency exacerbates
mitochondrial dysfunction inmenopausal women.Quantita-
tive proteomic analyses identi
ed reduction inmitochondrial
proteins primarily associated with MRC complexes which
was unique to aged-OVX hearts [61].

	e mechanism for the genomic action of E2 on mito-
chondrial function appears to occur via transcription by
nuclear translocation of dimerized, E2-bound ERs or via
transcriptional activation of mitochondrial genes by ERs
localized within the mitochondria [62]. 	ere is controversy
regarding the presence of ERs in the mitochondria, but the
consensus is that both ERs reside in the mitochondria at least
transitionally [63–65].	e precise function of mitochondrial
ERs and the stimuli that induce mitochondrial translocation
are not clear. 	e ERs may elicit transcription via binding

to an ERE-like element in the mitochondrial genome. Using
electrophoresis mobility assays, Chen et al. [66] reported
that ER-containing mitochondrial extracts bound to putative
mitochondrial EREs (mtEREs) such that the binding was
enhancedwith E2 and absent in ER�-de
cient cells.	ey also
showed that the mtERE-bound mitochondrial protein from
the mitochondrial extracts is ER� and not ER�. 	ese data
suggest that mitochondrial ER�may interact withmtEREs to
directly induce E2-dependent transcription. Another insight
into the potential mechanism came from the work of Sanchez
et al. [67] who showed that E2 stimulated the relocation of
ER� to mitochondria where it interacts with hydroxysteroid
(17-�) dehydrogenase 10 (HSD17B10 or HSD10), a multi-
functional protein involved in steroid metabolism that is
also a core subunit of the mitochondrial RNaseP complex
responsible for the cleavage of mitochondrial polycistronic
transcripts. 	is interaction results in processing of mito-
chondrial transcripts such that mature RNAs are available for
translation. But HSD10 also inactivates E2 to a weaker form,
estrone; thus the signi
cance of this interaction requires
further investigation.

Nuclear genomic regulation of mitochondrial gene
expression by E2 is thought to be mediated by ER-ERE-
mediated activation of the transcription factor Nrf1 [58],
which in turn activates transcription of nuclear-encoded
genes such asmitochondrial transcriptional factor A (TFAM)
which regulate the mitochondrial genome. Knockdown of
Nrf1 blocked E2-induced mitochondrial biogenesis as well
as activity. Nrf1 has an ERE in its promoter region, which
binds both ER� and ER� in vitro. However, small interfering
RNA to both ERs revealed that ER�mediates the E2-induced
transcription of Nrf1 [58]. New evidence suggests that GPER
also regulates mitochondrial function by preventing opening
of the mitochondrial permeability transition pore, mediated
by a nongenomic mechanism via Erk activation [68]. Activa-
tion of GPER with its agonist, G1, protects the heart against
ischemia reperfusion-injury by protecting the mitochondrial
function. Further research is warranted to understand the
mitochondrial mechanism of E2 in detail, but its role in
mitochondrial dynamics is undeniable.

Impaired mitochondrial function in conditions of
impaired E2 signaling may be responsible, at least in part, for
insulin resistance. Mitochondrial dysfunction is associated
with reduced or partial fatty acid oxidation, which can
lead to activation of stress kinases that can inhibit insulin
signaling [69, 70]. Skeletal muscle of OVX mice shows lower
use of palmitoylcarnitine and glycerol-phosphate substrates,
decreased PGC1� expression, reduced mitochondrial con-
tent, and increased compensatory extramitochondrial ATP
synthesis during exercise, most of which could be reverted
by E2 treatment [71]. 	us impaired lipid use with E2-
de
ciency in skeletal muscle may lead to accumulation of
intramyocellular fat, which has been implicated in insulin
resistance (reviewed in [72]). 	ere is also evidence that
expression of the adipokine, adiponectin, and its receptor,
AR1, is induced by estrogen in conjunction with mitochon-
drial biogenesis [73] and that adiponectin positively in�uen-
ces insulin sensitivity.
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6. Clinical Significance and
Therapeutic Potential

Clearly, metabolic e
ects of E2 are undeniable and there
is an eminent need of therapeutics to protect menopausal
at risk women from MetS, diabetes, and their associated
comorbidities.	ere is debate over the question as towhether
we should treat a natural phenomenon of the body such
as menopause. Combined with increased duration of post-
menopausal life, reduced exercise, a surfeit of food avail-
ability, and increasingly unhealthy food habits, E2-de
ciency
makes women more prone to MetS and its associated com-
plications. However, treating E2-de
ciency is not as easy as
simply replacing E2 in menopausal women, since E2 and
ER agonists are linked with aggressive cancers. Furthermore
the therapeutic index is narrow since supraphysiological
levels of E2 are as detrimental as E2-de
ciency, and thus
a targeted treatment strategy would be necessary. E2 com-
pounds directed speci
cally to act inmetabolic tissues such as
skeletal muscle, liver, heart, adipose tissue, and pancreas with
sparing of tissues linked with E2-sensitive cancers such as
the ovaries, uteri, and breasts are considered potential viable
treatments. Tissue selective E2 complexes (TSECs) are a com-
bination of the selective receptor modulator bazedoxifene
with conjugated E2 and have been shown to provide tissue-
speci
c bene
ts of E2 such as reducing hot �ashes, vulvar-
vaginal atrophy, and menopausal osteoporosis in women
[74] and improved CVD risk and MetS while surpassing the
endometrium and breast in animal models [75, 76]. TSEC
removed the requirement of progestin to protect the uteri
and breasts, which has been contraindicative inWHI trials as
being responsible for some of the results of increased CVD
risk. While TSECs are still under clinical trials for use for
MetS, newer, more innovative, e�cient, and tissue-speci
c
E2 receptor agonists are being investigated. For instance, E2
conjugated preparation with glucagon-like peptide-1 (GLP-
1) resulted in superior e�cacy over either hormone alone to
reverse obesity, hyperglycemia, and dyslipidemia in mice and
prevented reproductive endocrine toxicity and oncogenic-
ity [77]. Such therapeutics holds the promise of relieving
menopausal women from their E2-de
ciency symptoms and
preventing debilitating MetS. Even then, treatment with E2
and its conjugated versionswill have to be administered in the
form of personalized treatments especially for risky under-
lying conditions like preexisting tumors, type 1 diabetes,
and preexisting heart conditions. 	us, some of the pressing
questions remain: which patient population can safely bene
t
from E2 therapy, what new agents of HRT can be used to
optimize the bene
ts and eliminate the risks of E2 therapy,
and will there be ER�-speci
c, tissue-speci
c treatments and
can these be used as a preventive in younger women or as
treatment in older women with established CVD?

7. Conclusion

Taken together, the e
ect of E2 on diabetes is a combination
of many factors, including direct e
ects on insulin signaling
in insulin-sensitive tissue, e
ects on pancreatic beta cells reg-
ulating insulin release, its role in adipose tissue metabolism

and energy expenditure, its e
ects in hepatic glucose produc-
tion and on the hypothalamus to regulate food intake, and
its e
ects on energetics and metabolism. It is very clear that
E2 has tremendous potential as a therapeutic against diabetes
and its associated complications, but it has to be administered
in a safer form and personalized to individual needs.
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Gustafsson, “Participation of ER� and ER� in glucose home-
ostasis in skeletal muscle and white adipose tissue,” American
Journal of Physiology—Endocrinology and Metabolism, vol. 297,
no. 1, pp. E124–E133, 2009.

[25] R. P. A. Barros, U. F.Machado,M.Warner, and J.-Å. Gustafsson,
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