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Abstract

In the cell nucleus, each chromosome is confined to a chromosome territory. This

spatial organization of chromosomes plays a crucial role in gene regulation and

genome stability. An additional level of organization has been discovered at the

chromosome scale: the spatial segregation into open and closed chromatins to

form two genome-wide compartments. Although considerable progress has been

made in our knowledge of chromatin organization, a fundamental issue remains the

understanding of its dynamics, especially in cancer. To address this issue, we

performed genome-wide mapping of chromatin interactions (Hi-C) over the time

after estrogen stimulation of breast cancer cells. To biologically interpret these

interactions, we integrated with estrogen receptor a (ERa) binding events, gene

expression and epigenetic marks. We show that gene-rich chromosomes as

well as areas of open and highly transcribed chromatins are rearranged to

greater spatial proximity, thus enabling genes to share transcriptional

machinery and regulatory elements. At a smaller scale, differentially

interacting loci are enriched for cancer proliferation and estrogen-related

genes. Moreover, these loci are correlated with higher ERa binding events

and gene expression. Taken together these results reveal the role of a

hormone - estrogen - on genome organization, and its effect on gene

regulation in cancer.
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Introduction

Each chromosome is confined to a specific chromosome territory (CT) in the cell

nucleus. This spatial organization of genome plays a crucial role in gene regulation

and genome stability [1–5]. Using high-throughput chromosome conformation

capture (Hi-C), Lieberman et al. confirmed the presence of CTs in human

genome but also revealed that, at the chromosome scale, the genome organization

is characterized by the spatial segregation of open and closed chromatins to form

two genome-wide compartments (named A and B) [6, 7]. Contrary to the second

compartment (B), the first compartment (A) is associated with the presence of

genes, high expression and accessible chromatin. Moreover the first compartment

is correlated with both activating and repressive chromatin marks. Similar

chromatin organization was observed in the Drosophila genome [8]. At the

megabase scale, chromatin organization is consistent with a fractal globule

polymer model [7]. The fractal globule polymer model is attractive as it enables

maximally dense packing while preserving the ability to easily fold and unfold any

genomic locus, an essential feature in gene expression regulation and cell cycle

[9, 10]. Using a deeper sequencing than Lieberman et al., Dixon et al. identified

topologically associating domains (TADs) showing the existence of highly self-

interacting regions bounded by narrow segments [5, 11]. These TADs represent a

pervasive structural feature of the genome organization. The domains are stable

across different cell types and highly conserved across species. The integration of

Hi-C data with numerous types of data (DNase-seq, ChIP-seq for transcription

factors and histone modifications) showed that interacting loci can be classified in

12 different profiles [12]. Moreover the high correlation of Hi-C data with the

binding of CCCTC-binding factor (CTCF) to the chromatin suggests that CTCF is

a major organizer of both the structure of chromosomal fiber within each

individual chromosome and of chromosome territories within the cell nucleus

[13].

Hi-C is a recent high-throughput chromosome conformation capture

technology for studying genome folding [7, 14]. Hi-C improves the previous

technologies 3C (chromosome conformation capture) [15], Circular

Chromosome Conformation capture (4C) [6, 16] and Chromosome

Conformation Capture Carbon Copy (5C) [17] by allowing unbiased genome-

wide analysis of chromatin interactions. More recently, Tethered Conformation

Capture (TCC) has been developed to improve signal-to-noise ratio by

performing ligations on solid substrates rather than in solution [18]. As an

alternative approach to Hi-C and TCC, the Chromatin Interaction Analysis by

Paired-End Tag Sequencing (ChIA-PET) combines 3C with immunoprecipitation

and is thus more suitable for the analysis of functional chromatin interaction

networks [19, 20].

The analysis of Hi-C data is complex, and many statistical and computational

methods have been recently developed to correct interaction heatmaps for several

biases such as GC-content and distance between reads [21–24], to identify
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chromatin compartments [7, 22], to visualize Hi-C networks [25] and to 3D

model chromosome folding [7, 8, 26, 27].

Although considerable progress has been made in our knowledge of global

chromatin organization, a fundamental issue remains the understanding of its

dynamics. There is a growing body of evidence that changes in transcriptional

activity of genes is associated with repositioning of chromosomal regions relative

to nuclear compartments and other genomic loci [2, 28, 29]. Moreover, several

contacts between different chromosomal loci have been documented, a

phenomenon called chromosome kissing [30]. Conversely, it has been shown that

global chromosome positions are transmitted through mitosis in mammalian cells

[31]. Another related issue is whether a molecule such as a hormone can stimulate

the dynamics of chromatin organization, since we know that hormones have

strong effects on gene activity. Current approaches to address these questions have

involved fluorescence microscopy such as FISH but present the drawback not to

provide a high resolution as Hi-C does.

To answer these issues, we selected a breast cancer cell, MCF-7, and utilized Hi-

C technology to capture chromatin organization before and after 17b-estradiol

(E2) treatment. MCF-7 cell is an established cell system to investigate genome-

wide estrogen mediated signaling pathways [32], their associated histone

modification mechanisms [33] and DNA methylation landscape [34]. We

previously reported gene expression regulation through DNA looping after E2

stimulation [35, 36], suggesting that chromatin interaction is a viable epigenetic

mechanism of MCF7 cell response to E2 stimulation. Moreover it has recently

been shown that for estrogen-repressed genes, estrogen treatment leads to

chromatin structure reconfiguration, thereby disrupting the originally transcrip-

tion-efficient chromatin structures [37]. Besides, from a more global point of

view, E2 is known to alter the large-scale chromatin structure [38]. In other cancer

cells - normal benign prostate epithelial cell lines (RWPE1) - it has been

demonstrated that an oncogenic transcription factor (ERG) can induce changes in

chromatin organization [39].

In this study, we show that time-series Hi-C data analysis is a promising

methodology for better understanding global dynamics of chromatin and its link

with gene regulation. Beside augmenting the number of long-range interactions,

E2 induces a dynamic mechanism of global chromatin reorganization. To

interpret this global chromatin reorganization, we compare Hi-C data with ERa

binding, gene expression and multiple epigenetic marks. More specifically, gene-

rich chromosomes as well as areas of open and highly transcribed chromatins are

rearranged to greater spatial proximity. This phenomenon then allows genes to

share transcriptional machinery and regulatory elements. At a smaller scale, loci

that are differentially interacting show enrichment for cancer proliferation and

E2-related genes. In addition, these loci are involved with higher ERa binding

events and gene expression. Based on these results, our study demonstrates the

role of a hormone - estrogen - on global genome organization and its link with

gene regulantion in cancer.
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Materials and Methods

Hi-C experiment

An ER-positive breast cancer cell line - MCF-7 - was obtained from the American

Type Culture Collection and maintained in phenol red-free medium. After

48 hours of hormone deprivation in 5% charcoal-dextran stripped serum media

(no phenol red), cells were stimulated with 70 nM estrogen (E2) in different time

periods (0, 0.5, 1, 4, 24 hours). To check for synchronization of cells, we assessed

expression of TFF1 using RT-qPCR data in three different batches of cells (Figure

S1 in File S1).

For each time point, there are two biological replicate samples and two lanes

per sample (i.e. 4 lanes per time point). Each biological replicate was then

subjected to genome-wide chromosome conformation capture (Hi-C) as

previously described [7]. Briefly, cells were fixed with 1% formaldehyde.

Chromatin was digested with HindIII (NEB, Ipswich, MA). DNA ends of digested

chromatin were marked by biotin-14-dCTP (Invitrogen, Carlsbad, CA) following

blunt-end ligation with T4 DNA ligase in diluted condition. Ligated DNA was

then de-crosslinked and purified by phenol extraction procedures. Biotin-14-

dCTP at non-ligated DNA ends was removed with exonuclease activity of T4

DNA polymerase. Ligated DNA was then applied to paired-end sequencing by

using the Illumina sequencing technology platform (Genome Analyzer IIx,

Illumina).

Sample preparation for paired-end sequencing was performed following the

manufacturer’s instructions. Briefly, ligated DNA (5 mg) was sheared to a size of

300–500 basepairs by a nebulizer supplied with the Illumina paired-end sample

preparation kit. Fragmented DNA was end-paired using T4 DNA polymerase and

Klenow polymerase with T4 polynucleotide kinase to phosphorylate the 59 ends. A

39 overhang was created using a 39-59 exonuclease-deficient Klenow fragment, and

then subjected to immunoprecipitation by Dynabeads MyOne Streptavin C1

Beads (Invitrogen) in DNA LoBind tubes (Eppendorf, Westbury, NY) with

ligation of Illumina paired-end adaptor oligonucleotides. The ligation mixtures

were electrophoresed on E-gel SizeSelect 2% pre-cast agarose gels (Invitrogen) to

collect 250-bp fragments. Size-selected DNA fragments were enriched with

Illumina paired-end primers by a 15-cycle PCR reaction. DNA samples (20 nM

per sample), quantified by an Agilent Bioanalyzer, were loaded onto the paired-

end flowcell of Genome Analyzer IIx (GAIIx) in the supplied cluster station

according to the manufacturer’s protocol. Clusters of PCR colonies were then

sequenced on GAIIx with 51-bp per read.

Hi-C data preprocessing

From the Hi-C experiment, reads were preprocessed in five steps to calculate the

interaction matrices. Steps (i), (ii) and (iv) were done using Mirny’s lab library

[22] following their standard protocol (http://mirnylab.bitbucket.org/hiclib/

index.html). The five preprocessing steps are the following: (i) the raw sequences
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of both ends of Hi-C molecules are first mapped separately to the human genome

reference hg19 using the Bowtie2 aligning software; (ii) after alignment, the

Mirny’s lab pipeline discards read pairs with two unmapped sides and removes

read pairs corresponding to repeated instances of the same DNA molecule (which

may result from PCR amplification). The pipeline then analyzes the position and

direction of each mappable read from each read pair to separate molecular

byproducts from informative double-sided (DS) reads; (iii) finally, all translocated

and amplified regions [40] are removed from the Hi-C data in order to deal with

structural variations. Next the number Nt of short-range interactions (v10 kb),

as well as the number of long-range interactions (w10 kb), are calculated for each

time point t; (iv) then reads of the different lanes at a specific time point are

merged and filtered at the bin level, for different resolutions (500 kb, 1 Mb, 2 Mb

and 4 Mb). DS reads are assigned to a genome-versus-genome heatmap and

single-sided (SS) reads to a genome-wide vector. Iterative correction is next done

on data for each time point to remove all types of biases; (v) interaction matrices

at time t are normalized by a factor N0h=Nt.

The number of reads obtained after Hi-C data preprocessing is summarized in

Table S1a in File S1 (lane level), Table S1b in File S1 (replicate level) and Table S1c

in File S1 (time point level). The Tables S1a and S1b in File S1 show that

interaction counts are similar across lanes and across replicates, respectively. High

correlations between replicate heatmaps were observed (r50.83, r50.93, r50.94,

r50.95, r50.92, for 0 h, 0.5 h, 1 h, 4 h and 24 h, respectively; correlations were

calculated for intrachromosomal interactions only). After all filterings, there were

13835097, 15759919, 13222156, 14763310 and 11193041 interactions for the time

points 0, 0:5, 1, 4 and 24 hours, respectively.

All Hi-C data are available at GEO (http://www.ncbi.nlm.nih.gov/geo/) using

accession number GSE51687.

Genetic and epigenetic information

For H3K4Me2 binding data, we used ChIP-seq results from MCF-7 cells which

were not stimulated with E2 [41]. We also downloaded several tracks from UCSC

genome browser (http://genome.ucsc.edu/): DNaseI hypersensitivity [42, 43],

CTCF binding sites [42], DNA methylation [44] and gene location. All these data

are from MCF-7 cells which were not stimulated with E2, since the data are mostly

static in response to E2 after only 24 h [45–47]. For gene expression, we used

time-series MCF-7 data after E2 stimulation from [48]. Time points 0, 1, 4 and 24

h are shared between Hi-C and gene expression data. For RNA polymerase II

binding, we analyzed ChIP-seq data at time points 0 and 4 h from [49]. For

estrogen receptor a ChIP-seq, we used time series MCF-7 data after E2

stimulation [50]. Shared time points with Hi-C data are 0 and 1 h. All data were

mapped to human genome reference hg19.
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Shannon entropy calculation

Shannon entropy is calculated as:

H(X)~{

Xn

i~1

Xn

j~1

fi j log fi j, ð1Þ

where X is the upper (or lower) triangular matrix of interaction frequency

(normalized by dividing the matrix by the sum of all the matrix cells), i and j

represents the row and column indices of X, and n the number of rows (or

colums) of the matrix X. Each X cell value fi j is the interaction frequency between

the two bins i and j.

The interpretation of entropy is very simple. In statistics, it is used to evaluate

the dispersion of a distribution. For Hi-C data analysis, the higher the entropy the

higher is the spatial dispersion of interactions.

Chromosome territories

Chromosomes which are close to each other are likely to interact more. To

evaluate proximity, we consider the normalized frequency of interactions between

two chromosomes a and b:

Fab~
fab

fa fb
, ð2Þ

with fab the frequency of interactions between the two chromosomes a and b, fa
and fb the marginal frequencies of interactions for the chromosomes a and b,

respectively. For a chromosome, the marginal frequency is the sum of frequencies

of interactions between the chromosome and all the other chromosomes.

Scaling coefficient estimation

To estimate the scaling coefficient, we first calculate the genome-wide average

intrachromosomal interaction frequency I(s) for each distance s. Then, for the

interval ½500 kb, 7 Mb�, the log-log regression between I(s) and s is calculated.

From the log-log regression, the scaling coefficient is extracted. The calculation is

carried out for each time point independently and with a 500 kb binning.

3D chromosome modeling

For 3D chromosome modeling, we use the recent program BACH [27] (http://

www.people.fas.harvard.edu junliu/BACH/). The program uses a Bayesian

probabilistic approach which assumes that local genomic region (i.e., a

topological domain) of interest exhibits a consensus 3D chromosomal structure in

a cell population. BACH relies on an efficient Markov chain Monte Carlo

(MCMC) method to infer the underlying consensus 3D chromosomal structure.
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Compartment inference using PCA

We use principal component analysis to infer chromatin compartments [7]. First

the matrix of intrachromosomal interactions is used to compute the matrix of

correlations. A resolution of 1 Mb provides enough power for estimating

correlations. We calculate Pearson correlation for each pair of rows (or columns)

of the matrix of intrachromosomal interactions. Then principal component

analysis is applied to this correlation matrix. The first principal component (PC1)

reveals the compartmentalization of chromatin. Positions with positive PC1

values belong to the first compartment while positions with negative PC1 values

belong to the second compartment. To ensure that, over the time points, the PC1

axis is not flipped (positive values being negative values and vice versa), PC1 is

constrained to be positively correlated with GC-content.

To calculate correlations between chromatin compartmentalization (princi-

pal components) and genetic and epigenetic tracks, we proceed in the following

way. We first bin at 1 Mb scale the track values. Then, in order to remove the

confounding effect of gene density when calculating the correlation with a

track, we regress out the gene counts before calculating correlations. We next

calculate the Pearson correlation between the principal component and the

track.

Gene annotation and functional enrichment

To detect differentially interacting loci, we use the Wilcoxon test for paired

samples to compare each interaction correlation matrix row between the time

point t (0:5, 1, 4 or 24 h) and the time point 0 h. Within the loci, active genes were

mapped (using UCSC genome browser gene positions, and H3K4Me2 and DNaseI

HS marks). Then DAVID program (http://david.abcc.ncifcrf.gov/) determines

functional enrichment clusters of gene ontology terms.

Estrogen receptor alpha (ERa) binding events are mapped within a window of

250 kb around gene transcription start sites. Enrichment is assessed using an exact

binomial test comparing counts of differentially versus non-differentially

interacting genes which are bound by ERa. ERa ChIA-PET interaction events are

mapped in the same manner and exact binomial test is used to compare counts of

differentially versus non-differentially interacting genes which are ERa bound and

are reported interacting with ChIA-PET. Microarray data are used to compare

expression of differentially versus non-differentially interacting genes using

Student’s t-test. RNA polymerase II binding events are mapped within a window

of 10 kb around gene transcription start sites. Enrichment is assessed using an

exact binomial test comparing counts of differentially versus non-differentially

interacting genes which are occupied by RNA polymerase II.

Interacting loci network

To visualize networks of interacting loci, we used the CytoHiC plug-in of

Cytoscape (http://www.cl.cam.ac.uk/ ys388/CytoHiC/) [25]. Interacting loci were
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annotated using gene positions and ERa binding sites to visualize networks of

interacting genes and networks of ERa bound interactions, respectively. Network

centralization coefficient is computed using Cytoscape.

Expression analysis of estrogen-responsive genes

After 48 hours of hormone deprivation in 5% charcoal-dextran stripped serum

media without phenol red, MCF-7 cells were stimulated with either 10 nM or

70 nM estrogen (E2) in different time periods (0, 0.5, 1, 4, 24 hours) and then

subjected to expression analysis by reverse transcription-quantitative PCR (RT-

qPCR). Total RNA (2 mg) was reversely transcribed to cDNA with oligo-dT

(SuperScript III; Invitrogen). RT-qPCR was performed by using SYBR Green dye

chemistry (Applied Biosystems) on a StepOnePlus Real-Time PCR System

apparatus (Applied Biosystems). Gene expression was measured by the DDCt

method using b-actin as the internal control. Expression for the three genes

CTSD, GREB1 and TFF1 are presented in Figure S2 in File S1. We observed that

70 nM of E2 stimulation has similar effect as 10 nM does (dosage most

commonly used).

Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR)

After 48 hours of hormone deprivation in 5% charcoal-dextran stripped serum

media without phenol red, MCF-7 cells were stimulated with either 10 nM or

70 nM estrogen (E2) in different time periods (0, 0.5, 1, 4, 24 hours) and then

subjected to chromatin immunoprecipitation analysis. Immunoprecipitated DNA

from treated MCF-7 cells was prepared according to the ChIP protocol published

by Young and coworkers [51]. Briefly, treated cells were fixed with 1%

formaldehyde at room temperature for 10 min. The resultant DNA-protein

complexes were sheared with a Bioruptor (Diagenode, Sparta, NJ) to an average of

450 bp as verified on a 1.5% agarose gel, followed by immunoprecipitation using

the Dynabeads Protein G (100.04D; Invitrogen) coated with antibodies specific for

ERa (Santa Cruz). Pull-down DNA was subjected to quantitative PCR analysis

using the SYBR Green-based detection method on a StepOnePlus Real-Time PCR

System apparatus (Applied Biosystems). Quantitative values measured by a

standard curve (50 to 0.08 ng, 5-fold dilution, R2.0.99) of input DNA amplified

with the same primer set. Results are presented as the mean of triplicates with

standard derivation. ERa binding for the three estrogen-responsive genes CTSD,

GREB1 and TFF1, and for one control gene GAPDH, are presented in Figure S3 in

File S1. We observed that 70 nM of E2 stimulation has similar effect as 10 nM

does (dosage most commonly used).

Chromosome conformation capture-quantitative PCR (3C-qPCR)

Charcoal-stripped MCF-7 cells stimulated with E2 (70 nM) were collected at

different time-points of treatment (0, 0.5, 1, 4, and 24 hours). Treated cells were

then subjected to 3C-qPCR analyses as previously described [52]. Briefly, fixed
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chromatin by 1% formaldehyde was digested using HindIII, and then ligated by

T4 DNA ligase in a diluted condition. Ligated DNA was then de-crosslinked and

purified by classical phenol extraction procedures. Real-time PCR was performed

on a StepOnePlus Real-Time PCR System apparatus (Applied Biosystems) using

the TaqMan technology (QuantiTect Probe PCR Master Mix, Qiagen). We used a

59FAM-39BHQ1 oligonucleotidic probe (Invitrogen). To rule out the possibility

of false-negative looping occurrence caused by unsuccessful 3C assay, we pooled

two human bacterial artificial clones (BAC), mapping the interested regions as the

positive control of the 3C-qPCR assays. These BACs were also used to examine the

primer efficiency. For data analysis, the Ct obtained for each chimerical ligation

fragment was processed using parameters of a standard curve (slope and

intercept) from BAC to obtain quantification values that were normalized to a

GAPDH loading control.

Interphase Fluorescence In Situ Hybridization (FISH)

E2-treated (70 nM) MCF-7 cells were fixed by Carnoy’s fixative and then

subjected to Interphase Fluorescence In Situ hybridization (FISH). The probe

mapped to THRAP1 (or MED13) and the associated interacting ERa binding site

localized at 20q13 (20q13 DERE) were prepared from BACs (Invitrogen; RP11-

561K8 for THRAP1 and RP11-357P20 for DERE). The BAC clones were

purified using a large-construct DNA kit (Qiagen) and labeled by nick

translation using the Nick Translation kit (Vysis, Downer Groves, IL) following

the manufacturer’s recommendations. Briefly, 1 mg of the BAC clone was

conjugated with either SpectrumGreen- or SpectrumRed-labeled dUTP,

coprecipitated with 10X (v/v) human Cot-1 (Invitrogen), and dissolved in

Hybridization Buffer (Sigma). The reaction was carried out for 8 h at 15 C̊ and

stopped by heating the sample to 70 C̊ for 10 min. For interphase FISH, fixed

cells were treated with 0.005% pepsin for digestion, following 0.5 h treatment

of 1.9N HCl at room temperature for cell denaturation. Hybridization was

performed overnight at 37 C̊ with pre-hybridized labeled probes (150 ng per

sample) and slides were washed in following solution: 2X SSC (37 C̊ for

30 min), 2X SSC (room temperature for 30 min), and 1X SSC (room

temperature for 30 min). Nuclei counterstained with DAPI (0.1 mg/mL) were

placed on a polished concave slide with Vectashield Mounting Medium (Vector

Laboratories, Burlingame CA).

Images were captured by Olympus IX83 fluorescence microscope and analyzed

with CellSens Dimension Imaging System. CellSens Dimension Imaging System

(Olympus) was used to analyze colocalization of DERE and THRAP1 spots in

100 cells per treatment. There are around 40-50 copies of DERE and 10-12

copies of THRAP1. Colocalization between the two loci was defined based on

pixel overlap.
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Results

Hormone effects on the global distribution of interactions

We report the analysis of Hi-C data from MCF-7 breast cancer cells: before (0)

and after 0:5, 1, 4 and 24 h of E2 stimulation. We first focus on long-range

interactions (w10 kb) obtained before binning and iterative correction. After E2

stimulation, an increase in the number of all interactions (intra- and

interchromosomal) was observed peaking at 4 h (z57%) and then declining by

24 h to a value lower than the baseline ({20%, Figure S4a in File S1). Similar

trends are observed using 3C-qPCR, for two randomly choosen pairs of regions

(Figure S4b in File S1). Although it has been previously shown using another

genome-wide technique (ChIA-PET) that E2 drives chromatin interactions in

MCF7 cells [19], our results further demonstrate a more pronounced effect of E2

specifically on long-range interactions which are known to play a role in

regulating gene expression.

We then binned for several resolutions (500 kb, 1 Mb, 2 Mb and 4 Mb) and

iteratively corrected heatmaps for removing biases [22]. In the following, all

results are based on this data preprocessing. We then used a simple and global

measure - the entropy - to summarize the spatial dispersion of the distribution:

the higher the entropy the higher is the spatial distribution. As shown in Figure

S4c in File S1, the heatmap shows a global increase of entropy at 4 h (z12%)

followed by a decrease at 24 h ({10%). Surprisingly, this trend is essentially

similar for both intra- and interchromosomal interactions, as well as for all

individual chromosomes, implying that E2, not only increases the number of

long-range interactions, but also leads to a global spatial reorganization of

interactions over the time. At 4 h, interactions were more widely distributed over

the genome, and conversely at 24 h. At the same time we observe that the average

distance between interacting positions decreased from 48 Mb to 33 Mb at 4 h and

then increased to 43 Mb at 24 h (Figure S4d in File S1). Based on these results, we

conclude that E2 induces interactions which are more spatially spread-out

although located between closer positions. To better understand the above global

changes in interaction distribution, we tested several possibilities, including

dynamic of chromosome territories, polymer behavior and/or chromatin

compartmentalization.

Chromosome territories

Interchromosomal interaction frequencies between pairs of chromosomes show

that E2 has an effect on chromosome territories (Figure S5a in File S1). After E2

stimulation, especially at 0:5 and 1 h, higher interaction frequencies are observed

between small, gene-rich chromosomes (chromosomes 16, 17, 19, 20, 21, and 22),

compared to the other chromosomes. This higher colocalization of small, gene-

rich chromosomes provides opportunities for potentially functional interactions

and facilitates sharing of subnuclear sites enriched in RNA polymerase II and

other components of the transcription and RNA-processing machinery [5].
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Hu et al. observed colocalization between E2 induced genes TFF1 (chromosome

21) and GREB1 (chromosome 2) [53], whereas Kocanova et al. did not [54].

Analysis of our Hi-C data shows that, at 4 h, there is a higher frequency of

interactions between the two loci (10 Mb window) surrounding the two genes

(Figure S5b in File S1).

Polymer behavior

We then studied the effect of E2 on the polymer behavior of chromosomes. For

this purpose, we calculated the scaling coefficient of intrachromosomal

interaction frequency I(s) with the distance s between two positions. This is done

by computing a log-log regression for distances between 500 kb and 7 Mb, which

correspond to the known size of open and closed chromatin. The analysis of our

time-series data revealed that E2 influences the scaling coefficient which starts

from {0:841 before E2 treatment, gradually increases to {1:038 at 1 h and 4 h

post-E2 and then decreases to {0:936 at 24 h (Figure 1a; scaling averaged over all

chromosomes). Following the recent strings and binders switch (SBS) model [55],

this scaling coefficient increase at 1 h and 4 h reflects transient change from a

more compact model to the fractal model, known to facilitate gene expression

regulation.

To better understand the effects of E2 on chromosome folding, we modeled the

3D polymer structure of chromatin with the recent BACH program [27]. We

illustrate with chromosome 6, but similar results are observed with all

chromosomes. Figure 1b displays the effect of E2 on the chromosome folding for

each time point. After E2 stimulation, we report a change in chromatin folding.

The chromosome is less compact at 1 h and 4 h. This observation of lower

compactness confirms previous microscopic studies showing that there is an

increase of chromosome territories after E2 stimulation [54]. At the same time, we

do not observe significant change in nuclear volume (Figure S6 in File S1). Less

compact chromosomes (i.e. chromosomes occupying a larger volume) within the

same size nucleus might explain the reduced distance between interacting regions

(lower average distance, Figure S4d in File S1).

Chromatin compartmentalization

It has been previously shown that at the megabase scale chromatin segregates into

two spatial compartments A and B corresponding respectively to open and closed

chromatin [7]. We assessed if this compartmentalization of chromatin evolves

after E2 stimulation in MCF-7 cells. For this purpose, we followed a similar

methodology as in [7]. We used 1 Mb binning to estimate intrachromosomal

interaction matrices with sufficient power and utilized these interaction matrices

to calculate correlation matrices. These matrices reveal that, after E2 stimulation,

interactions are more organized into blocks until 4 h. We illustrate with

chromosome 6 (Figure S7a in File S1). Then correlation matrices were used as

input for principal component analysis (PCA) to infer spatial chromatin
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compartments. The first component of the PCA indicates the compartment for

each chromosome position. Positive values define one compartment, negative

values define the other. PCA shows that E2 treatment results in a gradual increase

of compartmentalization until 4 h, followed by a decline by 24 h post-E2 (Figure

S7b in File S1).

To interpret the chromatin compartments, we calculated Pearson correlations

between the compartment status and genetic and epigenetic features of the

genome over the time (Figure 2). The biological meaning of the correlation is

straightforward: assessing spatial closeness of chromatin positions sharing a

similar genetic or epigenetic pattern. At baseline, correlations with features are

low (between 0 and 0:1) and significantly increase after E2 treatment, reaching a

maximum at 1 h and 4 h (between 0:15 and 0:5, except for gene expression). At 24

h, correlations were similar to baseline values. These results are confirmed by 3D

modeling of chromatin (Figure S8 in File S1). Chromatin folding reveals that gene

concentration, H3K4Me2, DNA methylation, CTCF, DNaseI HS, RNA poly-

merase II and ERa binding, colocalize with compartment A. Absence of

colocalization with microarray gene expression data is not surprising given the

noisy nature of such data and the scale of analysis (1 Mb). From these results, we

conclude that E2 induces a higher spatial compartmentalization of active and

repressive marked, gene rich, highly organized, expressed, and open chromatin

regions.

Interacting loci analysis

We next investigated the function of E2-induced differential interactions between

genomic loci. For this purpose, we first assessed functional enrichments to draw a

global picture. Differentially interacting loci were calculated for any time point t

(0:5, 1, 4 or 24 h) against time point 0 h, using the Wilcoxon test for paired

samples with a resolution of 500 kb. Active genes were mapped within the

interacting loci. Then DAVID program was used to determine clusters of enriched

gene ontology (GO) terms. The 100 most differentially interacting loci were

analyzed for each time point (0:5, 1, 4 or 24 h). From these differentially

interacting loci, 183, 293, 353 and 210 genes were mapped at 0.5, 1, 4 and 24 h,

respectively (Table 1). This reveals a key result: regions richer in genes are more

differentially interacting due to E2 induction, reaching a peak at 4 h. Moreover

functional enrichment analysis shows that most enriched GO terms are known to

be affected by estrogen and/or related to cancer progression. As a good example,

the term ‘‘apoptosis’’ which represents a key component of cancer proliferation is

reported from 0:5 h until 4 h. Except ‘‘apoptosis’’ and few others, most terms

change over the time. They reflect the dynamics of functional chromatin

conformations after E2 stimulation. For instance, terms such as ‘‘contractile

Figure 1. Influence of E2 on the polymer behaviour and folding of chromosomes. a) Power law dependency between intrachromosomal interaction

frequency I(s) and distance s. Interval ½500kb,7Mb�, 500 kb binning. b) 3D modeling of chromosome 6.

doi:10.1371/journal.pone.0113354.g001

Estrogen Induces Global Reorganization of Chromatin Structure

PLOS ONE | DOI:10.1371/journal.pone.0113354 December 3, 2014 13 / 24



fiber’’, ‘‘G protein signalling’’, ‘‘skeletal system development’’ and ‘‘cell adhesion’’

are only enriched at 0:5 h. An interesting enriched term is ‘‘citrullination’’

observed from 1 to 4 h. The differentially interacting locus contains the PAD gene

family (PAD1, PAD2, PAD3, PAD4 and PAD6). It has recently been reported that

ERa interacts with PAD2 and that PAD2-mediated citrullination leads to local

chromatin decondensation and transcriptional activation of target genes [56].

Other interesting GO terms found at 1 and 4 h are ‘‘nucleosome’’, ‘‘chromatin

organization’’ and ‘‘chromatin remodeling’’. They are crucial processes enabling

ERa to bind to estrogen responsive elements (EREs) [57]. At 24 h after E2

stimulation, most GO terms are new and reflect late gene response. Among those

terms, regulation of cell growth represents a major mechanism for cancer

proliferation. It is also worth mentioning the term ‘‘response to steroid hormone

stimulus’’, since it supports the biological relevance of our E2-induced chromatin

interactions analysis.

We further assessed the link between differential interaction loci genes and ERa

binding, and gene expression. Of the 293 differentially interacting loci genes at

1 h, 213 were bound by ERa which represents a significant enrichment (binomial

enrichment p-value 5 2|10
{7, Figure 3a). Among these 213 differentially

interacting and ERa bound loci genes, 113 were reported using ChIA-PET

(binomial enrichment p-value 5 10
{3, Figure 3a). These results indicate that

most differentially interacting loci genes involves ERa binding. Besides, validation

with ChIA-PET results reveals that combining Hi-C data with ERa binding

represents an efficient approach to identify biologically relevant interactions.

Regarding gene regulation, microarray data show no differences of expression

between differentially interacting loci genes and non-differentially interacting loci

genes at 1 h (p-value 50.736) and 4 h (p-value 50.093), and slight differences at

24 h (p-value 50.044) (Figure 3b). As for compartmentalization analysis

(previous subsection), these negative results are not conclusive given the noisy

nature of microarray data and the scale of analysis (500 kb). We then explored the

correlation between differentially interacting loci genes and RNA polymerase II

occupancy, more accurate to detect differences in the trancriptional process.

Figure 2. Influence of E2 on the compartmentalization of genetic and epigenetic regions. Correlation

(absolute value) between compartmentalization and genetic and epigenetic marks, for the chromosome 6. For

a better visualization, row values have been scaled (Z-score).

doi:10.1371/journal.pone.0113354.g002
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Enrichment analysis points out a signicantly higher RNA polymerase II occupancy

in differentially interacting loci genes compared to non-differentially interacting

Table 1. Functional enrichment clusters of differentially interacting genes after E2 stimulation.

Time point Number of genes Annotation cluster Enrichment score

0.5 h 183 Neurotransmitter transport 1.85

Stem cell differentiation 1.73

Contractile fiber 1.28

Apoptosis 1.27

Amino acid transport 1.21

G protein signalling 1.2

Isopeptide bond 1.15

Immune system development 1.09

Lumen 0.91

Skeletal system development, cell adhesion 0.87

1 h 293 Citrullination 3.83

Nucleosome and chromatin organization 1.87

Chromatin remodeling 1.33

Peroxisome 1.23

Induction of apoptosis 1.08

Regulation of GTPase activity 1.04

Protein transport and localization 1.04

EGF-like domain 1.03

Regulation of kinase activity 0.97

WW domain 0.94

4 h 275 Citrullination 5.02

Nucleosome and chromatin organization 1.84

F-box domain 1.64

Tetraspanin 1.25

Proteolysis 1.01

Apoptosis 0.95

Protein transport and localization 0.91

RNA transport 0.9

Cell cycle and cytoskeleton 0.87

Ribosome 0.79

24 h 138 Neurotransmitter transport 1.58

GTPase binding 1.48

HEAT repeat domain 1.23

Regulation of cell growth 1.23

Lumen 1.19

GTPase activity 1.02

WD repeat domain 1

PDZ domain 0.93

Neuron differentiation 0.8

Response to steroid hormone stimulus 0.77

doi:10.1371/journal.pone.0113354.t001
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loci genes (p-value 5 1|10
{5, Figure 3c). Taken together these results show that

differentially interacting loci genes are enriched for ERa binding events and are

correlated with transcriptional process.

Interacting loci network

Interacting gene networks were built using CytoHiC with a resolution of 500 kb

[25]. We first investigated interacting genes involved in ERa binding events to

better understand the role of ERa-mediated E2 effect on functional chromatin

interactions and conformation. The integration of ERa bound genes with Hi-C

data reveals E2 effect on the network of interactions (Figure 4a). After E2

stimulation, the network shows a less centralized configuration: network

Figure 3. Link between differential interaction and ERa binding and gene transcription. a) Enrichment analysis of differentially interacting genes with

ERa binding and comparison with ChIA-PET results. b) Expression of differentially versus non-differentially interacting genes. c) Enrichment analysis of

differentially interacting genes with RNA polymerase II occupancy.

doi:10.1371/journal.pone.0113354.g003
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centralization coefficient is reduced from 0.449 (0 h) to 0.238 (1 h). At 1 h, the

genes belonging to the same chromosome (sharing same colors in the graph) are

Figure 4. Influence of E2 on the network of interacting genes. a) Networks of ERa bound interacting genes. Each color represents a different

chromosome. The red circle highlights a cluster of nodes belonging to the same chromosome. The blue frame highlights a hub connecting different

chromosomes. b) Networks of interacting genes belonging to the GO term ‘‘regulation of cell death’’ (GO:0010941). Blue nodes denote low expression, while

red nodes represent high expression. Blue frames are zooms inside the networks. For the sake of graphical display, only interacting nodes are shown in both

Figures 4a and 4b. Straight lines are interchromosomal interactions, dashed lines are interchromosomal interactions. c) Expression of genes TGFBR2,

EGR1, DAXX and BCL2L1.

doi:10.1371/journal.pone.0113354.g004
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more closely connected. For instance genes from chromosome 4 (blue nodes

encircled in red) are clustered. Moreover some nodes connect genes belonging to

different chromosomes. For example, the EXOC2 and DUSP22 genes from

chromosome 6 (light blue nodes framed in blue) connect a group of genes from

chromosome 6 (yellow nodes) to the DQ601567 gene from chromosome 5, and to

the DQ574804 and DQ575686 genes from chromosome 17. This change of

interacting gene network configuration reveals the role of ERa as a chromatin

interaction organizer. After E2 stimulation, ERa enables higher interactions

among genes of the same chromosome, while maintaining interchromosomal

interactions through hub nodes connecting chromosomes.

We then sought to assess whether E2 induces changes in interacting networks of

genes involved in a known E2-related biological process such as ‘‘regulation of cell

death’’ (GO:0010941). E2 is a potent inhibitor of apoptosis and it regulates the

expression of several apoptotic proteins [58]. Figure 4b displays the interacting

gene networks. Before E2, we observe that ERa gene interacts with two tumor

suppressor genes (EGR1 and TGFBR2). However after E2 stimulation, these genes

don’t interact anymore with ERa and their expressions are inhibited (Figure 4c).

This finding is consistent with a recently proposed mechanism wherein E2-

mediated repression of genes is due to chromatin structure reconfiguration,

thereby disrupting the originally transcription-efficient chromatin structures [37].

At 4 h after E2 stimulation, ERa gene interacts with two apoptotic genes DAXX

[59] and BCL2L1 [60]. The interactions of apoptotic genes with ERa is associated

with changes of expressions. DAXX expression is induced, while the opposite

trend is reported for BCL2L1 (Figure 4c). These observations suggest that E2-

responsive genes are not only regulated through ERa protein but also by

interacting with ERa gene (such as with its promoter), and this can be a pathway

to regulate cancer proliferation.

Analysis of 17q23 and 20q13 loci

Two densely mapped distant estrogen responsive elements (DEREs) located in

17q23 and 20q13 loci have been recently shown to be involved in frequent

amplification in MCF-7 cells. These DEREs remotely control the transcription of

target genes present on different chromosomes through chromatin proximity

[36]. However an important issue remains to know if these loci interact with each

other for a better coregulation of target genes, and the sharing of transcriptional

machinery. To tackle this issue, we investigated interactions between the two loci

using Hi-C data (Figure 5a). The heatmaps show an increase of interaction

frequencies at 1 h (z28%), followed by a decrease until 24 h ({43%). This result

is supported by interphase FISH analysis between THRAP1 (located in 17q23) and

DERE from 20q13 (Figure 5b). After E2 stimulation, there is a dramatic increase

of colocalization events of the two loci at 1 h (57/100 colocalization events,

compared to 6/100 colocalization events at 0 h). For addressing the specificity of

DERE-THRAP1 colocalization, a control gene, GAPDH, was used. No

colocalization events were found at 1 h between DERE and GAPDH or between
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DERE and THRAP1 (Figure S9 in File S1). Similar interaction results between

THRAP1 and 20q13 DERE were reported using 3C-qPCR analysis [36]. Besides

functional interplay of the two loci, their interactions provide an explanation for

the observed high number of fusion events between the two loci (23:6% of all

fusions over the genome) [36], since spatial proximity influences chromosomal

rearrangements [61]. The interaction analysis suggests that E2-induced proximity

between the two loci might be a potential mechanism by which fusion events arise

in ER-positive breast cancer cells.

Figure 5. Influence of E2 on the spatial proximity between the 17q23 and 20q13 loci. a) Hi-C interaction heatmap. b) Interphase FISH analysis of

THRAP1 [chr17:60019966-60142643] and 20q13 DERE [chr20:54155758-54155858].

doi:10.1371/journal.pone.0113354.g005

Estrogen Induces Global Reorganization of Chromatin Structure

PLOS ONE | DOI:10.1371/journal.pone.0113354 December 3, 2014 19 / 24



Conclusion

Our work shows that time-series Hi-C data analysis is a promising methodology

for studying the global dynamic of chromatin and its impact on gene regulation.

Our results reveal a dramatic structural effect of a hormone on genome folding,

meaning that not only chromatin can be locally modified through loop

formations but also the whole genome organization can be rearranged in a

relatively short amount of time.

To better understand the impact of E2 on genome organization, chromosome

territories, polymer-like behavior and chromatin compartmentalization were

studied. Analysis of interchromosomal interactions reveals that small gene-rich

chromosomes (chromosomes 16-17 and 19–22) tend to interact more with each

other after E2 stimulation. At the chromosome level, E2 affects the polymer-like

behavior of chromatin from a more compact to a fractal model, thus facilitating

gene regulation. Three dimension modeling shows a higher organization of

chromatin compartmentalization where linear positions are in closer spatial

proximity.

To biologically interpret this global change of genome organization, Hi-C data

were integrated with ERa binding, gene expression and multiple epigenetic marks.

For some chromosomes, such as chromosome 6, E2 induces a higher spatial

compartmentalization of active and repressive marked, gene rich, highly

organized and open chromatin regions. At a smaller scale, we observe that

differential chromatin interactions are mostly localized in gene-rich regions after

E2 stimulation. Moreover, most interacting genes are enriched for gene ontology

terms known to be affected by estrogen and/or related to cancer progression. ERa

binding is significantly associated with a large part of these interacting genes.

Regarding expression, differential interactions appear to be correlated with

regulation of gene transcription. Network analysis show that E2 induces

interactions between ERa gene and apoptotic genes, which can be a pathway for

E2 to regulate cancer cell proliferation through promoter-promoter interactions.

In addition, analysis of interactions between DEREs located in 17q23 and 20q13

loci reveals their E2-induced spatial proximity and suggests coregulation of target

genes over the genome. This E2-induced spatial proximity also provides an

explanation for the observed high number of fusion events between the two loci.

Hi-C interactions were validated using other techniques. For instance, Hi-C

interactions between 17q23 and 20q13 at 1 and 4 h were confirmed by spatial

proximity using FISH analysis. Similar interaction results between the two loci

were reported using 3C-qPCR analysis [36]. In addition, a large number of our

integrated Hi-C analysis results were also found by ChIA-PET. This demonstrates

that combination of Hi-C data with ERa binding events represents an efficient

approach to identify biologically relevant interactions. It is also worth noting that

our Hi-C results make precise the large scale chromatin organization change

previously observed using microscopy [38].

These results are promising but there is still much to be done. Although the

recent strings and binders switch model can explain the observed changes in
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polymer-like behavior of chromatin, it is not clear what it is the biological

mechanism behind these changes. Regarding the functional relevance of

interactions, our work only pointed out correlations between differential

interactions, ERa binding events and expression, but molecular functional studies

will be required to reveal causality relations. Finally this work provides a global 2

1 Mb - view of genome organization change after E2 stimulation and its role in

gene expression regulation. To be able to focus at a smaller scale, further studies

should increase the number of reads. This would help assess the potential effect of

E2 on the topogically associating domains. Moreover, local changes through loop

formation have also an important role in the regulation of expression of ER-

dependent genes. For these ER-dependent genes, chromatin interactions play as

the initiating step for bringing transcription complex binding onto the target

genes, leading to expression alteration. This explains why ER-dependent gene

expression remains high even at 24 hr after E2 stimulation (Figures S1 and S2 in

File S1). Our ongoing study using 3C-ChIP-qPCR assay further supports this

statement by showing that de novo loop formation occurs first, following

recruitment of repressive histone marks binding onto the looping event for

suppressing expression of the examined target gene.

Supporting Information

File S1. Figures S1-S9 and Table S1.

doi:10.1371/journal.pone.0113354.s001 (PDF)

Author Contributions

Conceived and designed the experiments: LL TH KN YL CS. Performed the

experiments: P-YH. Analyzed the data: RM. Contributed reagents/materials/

analysis tools: P-YH. Wrote the paper: RM P-YH. Preprocessed data: LJ PK HL.

References

1. Meaburn KJ, Misteli T (2007) Chromosome territories. Cell Biology 445: 379–381.

2. Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the

nuclear space: regulation of gene expression in three dimensions. Nature Reviews Genetics 8: 104–115.

3. Sexton T, Schober H, Fraser P, Gasser SM (2007) Gene regulation through nuclear organization.

Nature Structural & Molecular Biology 14: 1049–1055.

4. Fudenberg G, Getz G, Meyerson M, Mirny LA (2011) High order chromatin architecture shapes the

landscape of chromosomal alterations in cancer. Nature Biotechnology 29: 1109–1113.

5. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of

genomes: interpreting chromatin interaction data. Nature Reviews Genetics 14: 390–403.

6. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, et al. (2006) Nuclear organization of active

and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature

Genetics 38: 1348–1354.

Estrogen Induces Global Reorganization of Chromatin Structure

PLOS ONE | DOI:10.1371/journal.pone.0113354 December 3, 2014 21 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113354.s001


7. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. (2009)

Comprehensive mapping of long-range interactions reveals folding principles of the human genome.

Science 326: 289–293.

8. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, et al. (2012) Three-dimensional folding

and functional organization principles of the Drosophila genome. Cell 148: 458–472.

9. Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome

Research 19: 37–51.

10. Fudenberg G, Mirny LA (2012) Higher-order chromatin structure: Bridging physics and biology. Current

Opinion in Genetics & Development 22: 1–10.

11. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, et al. (2012) Topological domains in mammalian genomes

identified by analysis of chromatin interactions. Nature 485: 376–380.

12. Lan X, Witt H, Katsumura K, Ye Z, Wang Q, et al. (2012) Integration of Hi-C and ChIP-seq data reveals

distinct types of chromatin linkages. Nucleic Acids Research 40: 7690–7704.

13. Botta M, Haider S, Leung IX, Lio P, Mozziconacci J (2010) Intra- and inter-chromosomal interactions

correlate with CTCF binding genome wide. Molecular Systems Biology 6: 426.

14. van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, et al. (2010) Hi-C: a method

to study the three-dimensional architecture of genomes. Journal of Visualized Experiments 39: 1869.

15. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:

1306–1311.
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