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Abstract

The nuclear receptor family comprises ligand-dependent and orphan receptors. To the latter group belong
the estrogen receptor-related receptors (ERRs) for which conflicting results have been published
concerning the nature (constitutive or liganded) of their transcriptional activities. ERRs interfere in various
ways, positively and negatively, with estrogen signaling. Moreover recent data analyzing ERR expression
in human breast tumors have proposed ERR� and ERR� as prognostic markers of these cancers. The
identification of modulators (positive or negative) of ERR activities would therefore be highly useful in
our understanding of estrogen-related pathologies. The purpose of this review is to summarize our
knowledge of the nature of ERR activities and progresses in identifying synthetic ERR modulators.
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On nuclear receptors (NRs) in general
and orphan receptors in particular

According to a commonly used definition, NRs are
described as ligand-dependent transcription factors
(Laudet & Gronemeyer 2002). With very few
exceptions, all NR proteins share a similar
organization in modular domains, two of which
are remarkably conserved between members of
the family and across evolution. These are (i) the
DNA-binding domain (DBD), localized in the
middle of the primary structure and which
mediates specific interaction with the target DNA
sequences and (ii) the ligand-binding domain
(LBD), in the C-terminal part, which is responsible
for ligand recognition, dimerization, interaction
with coactivators and ligand-dependent transcrip-
tional activation. Three-dimensional (3D) structure
determination has demonstrated that ligand entry
into the binding pocket of the LBD evokes a
conformational change allowing the recruitment of
coactivator proteins that directly or indirectly
modify chromatin and induce target gene expres-
sion. Several coactivators have been described that

interact with NRs, the most common being the
three widely expressed p160 family members,
SRC-1, GRIP1/TIF/SRC-2 and pCIP/AIB1/
SRC-3 (reviewed in McKenna et al. 1999).
A ligand-independent transactivation domain can
be found in the non-conserved N-terminal
part (A/B domain) of certain, but not all, NRs,
such as the estrogen receptor (ER) � (Laudet &
Gronemeyer 2002).

Receptors for classic ligands such as steroid
hormones, thyroid hormones, retinoic acids or
vitamin D were identified on the basis of their
capacity to transduce a previously known hormonal
signal. Besides them, the NR superfamily also
comprises a number of so-called orphan receptors
that were isolated on the basis of their sequence
similarity and identical domain organization to
other NRs (Giguère 1999). Since no ligand has
been identified that regulates them, the orphan
receptors do not fulfill the above-mentioned
definition. One of the remaining questions
concerning orphan receptors is how their transcrip-
tional activities are regulated. In other words, do
they respond to a natural ligand which remains
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to be identified, or do they act in a ligand-
independent manner?

This question has been at least partially answered
for a number of orphan receptors. For instance,
certain oxysterols (catabolites of cholesterol) have
been shown to act as ligands for LXRs, and to
modulate (positively in rodent, negatively and
indirectly in humans) the expression of an enzyme
(Cyp7a) that catalyzes their degradation, thereby
acting in a feed-forward mechanism (reviewed in
Repa & Mangelsdorf 2000, Goodwin et al. 2003).
The LXRs can therefore be considered as
ligand-dependent receptors. On the contrary 3D
structure determination of Rev-erb� has demon-
strated that the putative ligand-binding pocket was
actually packed with amino acid side-chains
rendering the entry of a ligand very unlikely
(Renaud et al. 2000). Rev-erb�, which is in fact a
transcriptional repressor, is therefore considered
as a non-liganded, constitutively acting receptor.
However, it should be remembered that a
constitutive activity does not exclude the existence
of a ligand, as exemplified by CAR. Indeed, the
activity of this receptor, originally described as
constitutive, can be down-regulated by androstane
metabolites (Forman et al. 1998), but also further
activated by phenobarbital (Tzameli et al. 2000).

In spite of the examples quoted above, there are
some orphan receptors for which the existence of a
ligand is still an open question. Although they were
the first orphan receptors to be identified, this is
the case for the estrogen-receptor related receptors
(ERRs), to which this review is dedicated.
Furthermore, even if a receptor is recognized as
constitutively active, it could still be (at least
theoretically) possible to modulate its activity using
a synthetic agonist or antagonist. In this respect,
recent data have identified synthetic antagonists of
the ERRs. Given the wide variety of develop-
mental, physiological and metabolic processes
controlled by NRs, finding a way to modulate the
activity of these transcription factors is an issue of
considerable importance.

On ERRs

ERR� and � were isolated in 1988 by mean of
a low-stringency screen with the DBD of ER�
(Giguère et al. 1988). More recently, a third
member of the subfamily (ERR�) has been

identified (Hong et al. 1999). ERRs are present
throughout evolution, with a unique homologue
existing in the invertebrates Drosophila, amphioxus
and tunicates (Dehal et al. 2002, B Horard & J-M
Vanacker, unpublished observations). In terms
of sequence, ERRs are fairly similar to the ERs
(Fig. 1), particularly in the DBD regions (over
60% sequence identity between human ERR� and
ER�). The lower conservation level of the LBDs
(less than 35%) is apparently consistent with the
incapacity of ERRs to bind estradiol (E2) (Giguère
et al. 1988, Yang et al. 1996). However, in silico
superimposition of the ligand-binding pocket of
ERR� on that of ER� has revealed a greater level
of local sequence identity, suggesting that structur-
ally close ligands could be bound by both receptors
(Chen et al. 2001).

In the past years, numerous interconnections
between the ERRs and estrogen signaling have
been documented, and these are thoroughly
discussed in a recently published review (Giguère
2002) (see Fig. 2 for summary). For instance, ERRs
and ERs share common transcriptional target
genes, such as lactoferrin, osteopontin and pS2, on
which they can either synergize or compete with
one another (Yang et al. 1996, Vanacker et al.
1999a, Lu et al. 2001, Kraus et al. 2002).
Furthermore, Yang et al. (1996) found that human
ERR� interacts with human ER� at least in vitro
through protein–protein contacts. Moreover, the
aromatase gene, encoding the enzyme catalyzing
the conversion of androgens to estrogens, is a
transcriptional target of ERR� (Yang et al. 1998).
Altogether, these finding have raised the possibility
that the ERRs (at least ERR�) might directly and
indirectly modulate the estrogenic response.

Little is known about the in vivo functions of the
ERRs. It has been proposed that ERR� plays a
role in bone formation. Indeed this receptor is
expressed in ossification zones of the mouse embryo
(Bonnelye et al. 1997a) and up-regulates the
expression of the osteopontin gene (Vanacker et al.
1998) coding for an extracellular matrix protein
involved in bone remodeling. More recently,
Bonnelye et al. (2001) have found that ERR� plays
a role in in vitro osteoprogenitor cell proliferation
and differentiation. Both ERR� and ERR� are also
highly expressed in muscle, heart and adipose
tissues (Bonnelye et al. 1997b, Hong et al. 1999,
Heard et al. 2000). In adipose tissues, ERR� has
been suggested to participate in the control of
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energy expenditure through the regulation of the
expression of the MCAD (medium-chain acyl
dehydrogenase) gene (Sladek et al. 1997, Vega &
Kelly 1997). In the central nervous system, both
ERR� and ERR� possess a complex pattern of
expression (Bonnelye et al. 1997b, Hermans-
Borgmeyer et al. 2000, Lorke et al. 2000) but no
function has yet been attributed to the receptors.
ERR� is mainly expressed during early mouse
development (Pettersson et al. 1996) where it is
necessary for proper trophoblastic cell proliferation
and differentiation as demonstrated by the placen-
tation defects observed in mice lacking ERR� (Luo
et al. 1997).

A natural ligand for ERRs?

ERRs bind as homodimers to at least two types
of target DNA sequence, the estrogen response
element (ERE: AGGTCAnnnTGACCT) and an
extended half site originally characterized as
SF1 (steroidogenic factor 1, another orphan

NR) response element (SFRE: TCAAGGTCA)
(Pettersson et al. 1996, Bonnelye et al. 1997a,
Johnston et al. 1997, Hong et al. 1999, Vanacker
et al. 1999b, Hentschke et al. 2002a). Transcriptional
activation through each of these sites occurs in an
apparent ligand-independent manner as no ex-
ternal compound needs to be added to the culture
medium. However, at least in the case of ERR�,
these transcriptional activities are exerted in a
cell-specific manner (Bonnelye et al. 1997b). This
could indicate the requirement for a ligand present
in the permissive cells and not in the restrictive
ones. In support of this hypothesis, rat osteosar-
coma ROS 17·2/8 cells cultured for 2 weeks with
charcoal-treated serum (i.e. depleted of lipophilic
compounds including hormones) do not support
ERR-driven transcriptional activation in contrast
to cells cultured in normal medium (Vanacker et al.
1999b). However, since the normal medium could
promote ligand-unrelated events (e.g. activating
phosphorylation cascades), identification of the
active compound will be necessary in order to
conclude that a ligand exists.

Figure 1 The ER/ERR subfamily A schematic representation of the two mouse ERs and the three mouse ERRs is
displayed. Percentage of sequence identity within the DBD and the LBD is indicated.
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Alternatively the cell-dependent transcriptional
activities of the ERRs could also reflect the
presence or absence of a specific transcriptional
coactivator. In this respect, ERRs have recently
been shown to interact with members of the PGC-1
coactivator family (Hentschke et al. 2002b, Huss
et al. 2002, Ichida et al. 2002, Schreiber et al. 2003),
the expression of which is restricted to certain
tissues and cells (Puigserver et al. 1998, reviewed in
Knutti & Kralli 2001). Orphan ERRs can also be
coactivated by the widely expressed members of the

p160 family, at least in transient transfection assays
(Hong et al. 1999, Xie et al. 1999, Zhang & Teng
2000). Whether this is also true in vivo remains to
be investigated. In vitro experiments have demon-
strated that interactions between ERR proteins and
coactivators do not require the addition of any
external compound. Since, in the case of classic
receptors, this type of interaction is ligand-
dependent, this suggests that ERRs are constitutive
transcription factors. Nevertheless it cannot be
formally excluded that a ligand is present and

Figure 2 Interconnections between ER and ERRs. Interplay between ER
and ERR includes physical contacts and transcriptional regulation of
common target genes. Examples of such are the pS2 gene, osteopontin and
lactoferrin, on which a perfect SFRE and an imperfect ERE (ERE*) have
been identified. ERR can act as a transcriptional regulator per se or compete
with ER for common binding sites. ERR also regulates the expression of
the aromatase gene, whose product converts C19 (androgens) to C18
(estrogens) steroids such as estradiol-17�, the most active natural
ER ligand.
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incorporated when the ERRs are translated in vitro
or in bacteria. In this respect, the presence of
certain fatty acids in the ligand-binding pocket of
bacterially synthesized RAR (retinoic acid receptor)
has been demonstrated by 3D structure determi-
nation (Bourguet et al. 2000). As a consequence,
RAR is locked in an active conformation by the
fatty acid moiety, which acts as a ligand. On the
contrary, 3D structure determination of the LBD of
ERR� has shown that this domain spontaneously
(i.e. without any fortuitous ligand) adopted an
active conformation (Greschik et al. 2002). These
experiments have revealed the existence of a
hydrophobic pocket that is, to date, the smallest
one identified in NRs (roughly half the volume of
that of ER�). As a consequence, putative agonist
ligands that could further stabilize ERR� in an
active conformation should be smaller that half the
size of E2. However, the reduced size of the
hydrophobic cavity does not seem to be the major
determinant of ERR�’s constitutive activity.
Mutants displaying an enlarged putative ligand-
binding pocket (i.e. in which protruding amino acid
side-chains were removed) are still transcriptionally
active in a ligand-independent manner. Note-
worthy, some of these mutants bind E2 but are not
regulated by this hormone. Altogether this suggests
that the overall LBD structure contributes to the
spontaneous active conformation.

Crystallographic structures of ERR� and ERR�
have not been determined. The close sequence
proximity of ERR� and ERR� suggests identical
transcriptional properties for both receptors (i.e.
ligand-independence). ERR�’s LBD is more
divergent. Computer-assisted modeling has been
performed for this receptor using its similarity to
ER� (Chen et al. 2001). A striking difference is the
presence of a phenylalanine side-chain across the
binding pocket of ERR� where an alanine is found
in ER�. The phenylalanine residue is thought to
lock the LBD in an active conformation, since
mutating this residue to an alanine results in a
dominant negative mutant. This finding has also
led to the conclusion that no steroid ligand (E2 in
particular) could enter the binding pocket. How-
ever, ligands can adapt to the particular constraints
of a given ligand-binding pocket. This is, for
instance, the case for 9-cis retinoic acid that adopts
different conformations when bound to RAR�
or retinoid X receptor � (Egea et al. 2000).
Furthermore, the above-mentioned phenylalanine

residue is not conserved throughout evolution: the
single amphioxus ERR and the zebrafish ERR
versions bear an alanine at the equivalent position
(P-L Bardet, B Horard & J-M Vanacker, unpub-
lished observations). These receptors act as bona fide
transcription activating factors and in spite of a
greater proximity to ER�’s LBD, these ERR
orthologs are still not activated by E2.

What could be the nature of an eventual
endogenous agonist ligand of ERRs, in particular
of ERR�, for which the question is more open that
for ERR�/�? The expression of aromatase, which
converts C19- to C18-steroids, is stimulated by
ERR�. It could be that this up-regulation is
necessary to clear the cells from an unwelcome
compound by enhancing its degradation. By
analogy with the rodent LXR, whose potentially
toxic ligands promote their own degradation by
activating the expression of a catabolic enzyme
(reviewed in Repa & Mangelsdorf 2000), one can
imagine that a substrate (or precursor thereof) of
the aromatase could act as an ERR� ligand, a
hypothesis which remains to be tested.

Synthetic ligands for ERRs

Reports have been published identifying synthetic
modulators of the activities of the ERRs. Strikingly,
all these compounds are more or less connected to
estrogen signaling and repress ERRs’ transcrip-
tional activities. They can be thus considered as
antagonists (if ERRs possess natural ligands) or
inverse agonists (if ERRs’ transcriptional activities
are truly constitutive). Two organic pesticides,
toxaphene and chlordane, are indeed endocrine
disrupters that can display weak estrogen-like
activities. Both these molecules have been shown to
down-modulate the transcriptional activities of
ERR�, probably by impairing its interactions with
coactivators such as GRIP1 (Yang & Chen 1999).

Diethylstilbestrol (DES)

DES, a synthetic estrogen, was widely used
between the 1940s and the 1970s to prevent
spontaneous abortion in women. However, patients
exposed in utero to high doses of DES have a range
of gynecological troubles, including a higher
incidence of vaginal cancers and malformations of
the reproductive tract. These phenotypes closely
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resemble those observed in null mouse models of
some Wnt gene family members (Miller & Sassoon
1998, Parr & McMahon 1998). These data raised
the proposition that disruption of developmental
gene expression accounts for the DES syndrome.
On this line, it was effectively shown that DES
represses the expression of Wnt7a when adminis-
tered perinatally (Miller et al. 1998). DES is a
potent estrogen agonist, it can therefore be
intuitively thought to act through ER and mimic
the broad spectrum of E2 action. This view has
recently been challenged by the finding that DES
also represses the molecular activities of ERRs (Fig.
3), such as interaction with a coactivator fragment
and reporter gene transactivation (Tremblay et al.

2001). Furthermore, administration of DES to
pregnant mice partially phenocopies the absence of
ERR�, resulting in an absence of labyrinth and
spongiotrophoblast layers and an increase in the
giant cell layer. However, it should be noted that
the DES concentration necessary to achieve a
half-maximal inhibition of ERR activities (1–10 µM
range, depending on the assay) is elevated
compared with its ER-activating potential (nano-
molar) (Kuiper et al. 1997). In another study, DES
was independently confirmed to bind to all three
ERRs but did not modify any of the receptors’
transcriptional effects in cell-based assays (Coward
et al. 2001), which could reflect cell-specific
differences in the action of this compound.

Figure 3 Contrasting effects of SERMs on ERs and ERRs. 4-OHT activates ER� in the
uterus and bone, but acts as an estrogen antagonist in breast. 4-OHT also deactivates
ERR�. DES is a potent ER agonist and inhibits ERR�’s transcriptional activities.
RE: response element. References are given in the text.

B HORARD AND J-M VANACKER · ERRs: orphan receptors desperately seeking ligand354

www.endocrinology.orgJournal of Molecular Endocrinology (2003) 31, 349–357

Downloaded from Bioscientifica.com at 08/23/2022 11:11:56AM
via free access

http://www.endocrinology.org


Tamoxifen (TAM) and its derivative 4-OH tamoxifen
(4-OHT)

Coward et al. (2001) also show that TAM and its
derivative 4-OHT disrupt the interactions between
ERR� or ERR� and a SRC-1-originating peptide
in vitro. TAM is a selective ER modulator (SERM),
and as such displays estrogenic or antiestrogenic
actions according to the target tissue (see Cosman
& Lindsay 1999, Lonard & Smith 2002 for
reviews). In particular, TAM acts as an estrogen
antagonist in the mammary gland and is clinically
used for the treatment of breast cancer. In
cell-based assays, only 4-OHT, but not TAM, acts
as an antagonist and only vis-à-vis ERR� (Coward
et al. 2001). 3D structure analysis of ERR� predicts
that 4-OHT could be fitted into its ligand-
binding cavity only if one assumes an antagonist
conformation of the LBD (Greschik et al. 2002).
Again a micromolar range is necessary to obtain
half-maximal inhibition in transcriptional assay
(Coward et al. 2001) whereas nanomolar concen-
trations deactivate ER� (Kuiper et al. 1997). This
micromolar concentration could still be pharmaco-
logically relevant given the doses administered in
breast cancer treatment. Along this line, a recent
publication has documented a correlation of
expression between ER� and ERR� in breast
cancer patients (Ariazi et al. 2002). Although
performed on a low number of samples, this study
proposed ERR� as a favorable prognostic factor for
breast tumor outcome. Altogether this could also
suggest that some of the antitumor effects of TAM
might be mediated by ERR�. This hypothesis is to
be tested, as it remains to be investigated whether
ER and ERR� share target genes that can be
regulated by 4-OHT. It will be also of the utmost
importance to define the role of ERR� in cellular
proliferation in the context of breast cancer.

Conclusion

Orphan ERRs have been suggested to interfere
with estrogen signaling at various levels. It could
therefore be expected that compounds displaying
estrogen agonist or antagonist activities should also
regulate ERR transcriptional activities. Inverse
agonists of ERR�/� have been identified. Although
the in vivo effects of DES and 4-OHT on ERR�/�
remain to be documented, these discoveries, taken
together with the availability of ERR�’s 3D

structure, offer promising perspectives in the
pharmacology of these receptors. In contrast, no
ERR�-interacting molecule has been identified to
date that is relevant in cell-based assays (Coward
et al. 2001). Expression of this receptor in human
breast tumor was recently shown to be inversely
correlated to estrogen responsiveness (Ariazi et al.
2002). In contrast to ERR�, ERR� has thus been
proposed as an unfavorable breast tumor marker
which may activate estrogen-responsive targets in
an estrogen-independent manner (as has been
shown for the pS2 gene). Estrogen-unresponsive
breast tumors often appear as relapse after a period
of remission following 4-OHT treatment. These
tumors represent a crucial problem, since per
definition no antiestrogen-based treatment can be
efficient. Confirming the expression of ERR� in
these tumors, together with determining its effects
on cell proliferation, could therefore lead to the
proposal of ERR� as a new therapeutic target to
design treatments against estrogen-independent
tumors. This single example illustrates the impor-
tance of finding a regulator of the activity of ERR�.
In other words, ERR� needs to meet a ligand, be it
natural or synthetic.
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