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Abstract

Hypertension (HTN) is a primary risk factor for cardiovascular (CV) events, target organ damage (TOD), premature

death and disability worldwide. The pathophysiology of HTN is complex and influenced by many factors including

biological sex. Studies show that the prevalence of HTN is higher among adults aged 60 and over, highlighting the

increase of HTN after menopause in women. Estrogen (E2) plays an important role in the development of systemic

HTN and TOD, exerting several modulatory effects. The influence of E2 leads to alterations in mechanisms

regulating the sympathetic nervous system, renin-angiotensin-aldosterone system, body mass, oxidative stress,

endothelial function and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic

factors, ultimately resulting in cardiac, vascular and renal damage in HTN. In the present article, we discuss the role

of E2 in mechanisms accounting for the development of HTN and TOD in a sex-specific manner. The identification

of targets with therapeutic potential would contribute to the development of more efficient treatments according

to individual needs.
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Background
Hypertension (HTN) is a multifactorial condition affect-

ing around 1.13 billion people worldwide, with an esti-

mated increase of 15–20% by 2025, reaching close to 1.5

billion [1, 2]. HTN is a primary risk factor for cardiovas-

cular (CV) events, target organ damage (TOD), and pre-

mature death and disability worldwide [3–6]. Individual

characteristics, such as age, race, body mass and genetic

factors, as well as environmental factors, lifestyle and

dietary habits, such as salt intake, may contribute to the

development of HTN and TOD, i.e., cardiac, vascular

and renal damage.

Notably, biological sex has been revealed as a key fac-

tor in understanding variation in the development of

HTN and related CV implications. Recent data show

that men have a higher prevalence of HTN than women

among adults aged 18–39 years (9.2% men vs. 5.6%

women) and 40–59 years (37.2% men vs. 29.4% women),

but men have a lower prevalence of HTN than women

in adults older than 60 years (58.5% men vs. 66.8%

women) [7]. Therefore, aging is characterized by in-

creases in blood pressure (BP) in both men and women,

reaching 63.1% among adults aged 60 years and over,

and it is well known that the incidence of HTN increases

after menopause in women [8]. Actually, women experi-

ence steeper increases in BP than men as they age [9].

Along this line, 41% of postmenopausal women be-

come hypertensive, while more than 75% of women

older than 60 years are hypertensive in the USA [10].

The majority of women older than 60 years has stage 2
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HTN (BP ≥ 160/100 mmHg) or receives antihypertensive

therapy [11–13]. Notably, it is more difficult to achieve

BP control in elderly women, and women are at a

greater risk of developing resistance to antihypertensive

treatment than men [3, 14]. Due to the dramatic in-

crease of HTN in postmenopausal women, it is expected

that the steroid hormone estrogen plays an important

role in this process.

In fact, several studies have investigated the influence

of 17β-estradiol (E2) in the development of systemic

HTN and TOD. The influence of E2 leads to alterations

in mechanisms regulating the sympathetic nervous

system (SNS), renin-angiotensin-aldosterone system

(RAAS), body mass, oxidative stress, endothelial function

and salt sensitivity; all associated with a crucial inflam-

matory state and influenced by genetic factors, ultim-

ately resulting in cardiac, vascular and renal damage in

HTN. In the present article, we discuss the role of E2 in

mechanisms accounting for the development of HTN

and TOD in a sex-specific manner (Fig. 1). Accordingly,

the goal of this article is not to provide an exhaustive re-

view of the literature, but rather to focus on pertinent

studies (Table 1).

Regulatory effects of estrogen in hypertension
Sympathetic nervous system

The role of the SNS in the development of HTN is well

established, mediated by renal sympathetic nerves, in-

creased renin release, alteration of glomerular filtration

rate, and increased tubular sodium reabsorption [26].

Sympathetic nerve activity decreases with age, but it in-

creases in the presence of weight gain and metabolic

syndrome [27, 28], common to postmenopausal women.

In addition, sympathetic nerve activity differs signifi-

cantly between men and women [29] and E2 is expected

to mediate sex differences by exerting several regulatory

effects (Fig. 2a).

In this context, E2 has an important role in the brain.

Peripheral efferent nerves and signaling pathways that

respond to neurotransmitters and neurons containing

Fig. 1 Role of estrogen in sex differences in hypertension and related target organ damage. The influence of estrogen leads to alterations in

mechanisms regulating the sympathetic nervous system (SNS), renin-angiotensin-aldosterone system (RAAS), body mass, endothelial (dys)

function, oxidative stress and salt sensitivity; all associated with a crucial inflammatory state and influenced by genetic factors, ultimately resulting

in cardiac, vascular and renal damage in hypertension in a sex-specific manner
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nuclear estrogen receptors (ER) have been identified in

brain centers involved in the regulation of CV function

[30–32]. Interestingly, lower baroreflex sensitivity has

been described in postmenopausal women compared

with age-matched men, while postmenopausal women

with hormone therapy (HT) had higher baroreflex sensi-

tivity than those not on HT [15]. Along this line, it was

suggested that E2 exerts direct effects on central nervous

autonomic centers, thereby leading to sympathoinhibi-

tory effects, which could be important for conferring CV

protection [33].

Several studies with experimental animals support this

notion. For example, ovariectomized (OVX) rats showed

enhanced sympathetic activation and attenuated barore-

flex sensitivity or vagal tone, while these effects were at-

tenuated with E2 treatment [34]. It was further shown

that the activation of ERβ with a selective agonist in the

paraventricular nucleus and rostroventrolateral medulla

of OVX rats attenuates the sympathetic nerve activity re-

ducing BP in aldosterone-induced HTN [35], suggesting

that a potential decrease in ERβ levels or function with

aging could contribute to SNS-mediated HTN in

women. Furthermore, E2 treatment inhibited the devel-

opment of left ventricular (LV) hypertrophy (LVH) in

baroreceptor-denervated rats [36]. Together, these data

highlight the regulatory role of E2 in the SNS and its in-

fluence in the development of CV pathology related to

HTN.

The renal sympathetic nerves have also been shown to

play a role in regulating HTN in young and old female

spontaneously hypertensive rats (SHR), with a greater

decrease in BP with adrenergic blockade occurring in

old compared with young animals [37], suggesting an

important contribution of the SNS to HTN in old ani-

mals. In addition, renal denervation was associated with

reduced BP in both young and old females, with a more

pronounced response in old females. However, after

renal denervation the BP remained above 140 mmHg

[37–39], indicating that mechanisms other than the

renal nerves also contribute to HTN. In humans, clinical

trials of renal denervation for resistant HTN showed in-

consistent BP results [40–42]. However, a revised pro-

cedural method in the absence of antihypertensive

treatment led to significant BP reductions [43]. Never-

theless, the efficacy of renal denervation in the setting of

concurrent antihypertensive treatment was challenged

[44, 45], but the latest findings showed a significant re-

duction in BP [46].

Renin-angiotensin-aldosterone system

The RAAS is a complex system involved in the regula-

tion of BP through water and electrolyte balance, and

the preservation of vascular tone. The vasoconstrictive

properties of RAAS include the activation of angiotensin

(ANG) II, a potent vasoconstrictor also involved in cell

proliferation, hypertrophy, generation of oxidative radi-

cals and inflammation. ANG II also stimulates the secre-

tion of aldosterone increasing the reabsorption of

sodium into the blood, contributing to increases in BP.

Data from clinical investigations, epidemiological sur-

veys and experimental studies suggest that the compo-

nents of the circulating, as well as tissue-based RAAS,

are markedly affected by sex. In particular, men were

reported to have higher renin activity than women

regardless of age and ethnicity [47]. More recently, fur-

ther important sex differences in elements of RAAS were

reported showing that older men have lower aminopep-

tidase A and angiotensin-converting enzyme (ACE)

serum activity compared with older women, while older

women have higher ACE2 serum activity than younger

women [48]. During sodium intake, compared with

women, men were also found to have significantly higher

plasma aldosterone levels, extracellular volume and

Table 1 Examples of pertinent findings of estrogen administration

Effect Sample Reference

Increased baroreflex sensitivity Postmenopausal women [15]

Decreased renin levels & ACE activity Postmenopausal women [16, 17]

Increased eNOs & NO Human umbilical vein & bovine aorta endothelial cells [18]

Decreased sICAM1, VCAM1, IL-6 and plasma E-selectin Postmenopausal women [19]

Decreased left ventricular mass Postmenopausal women [20]

Decreased cardiomyocyte surface area Neonatal rat cardiomyocytes [21]

Accumulated nuclear phosphorylated protein kinase B Neonatal rat cardiomyocytes [22]

Decreased collagen; increased elastin Primary human aortic smooth muscle cells [23]

Increased leptin sensitivity; decreased insulin sensitivity Ovariectomized Long-Evans rats [24]

Decreased proteinuria, TGFB1 & PDGFA Ovariectomized Wistar rats [25]

ACE angiotensin-converting enzyme, eNOs endothelial NO synthase, IL-6 interleukin-6, NO nitric oxide, PDGFA platelet-derived growth factor subunit A, sICAM1

soluble intercellular adhesion molecule 1, TGFB1 transforming growth factor beta 1, VCAM1 vascular cell adhesion molecule 1
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systolic BP, as well as lower adrenal response to exogen-

ous ANG II [49].

These sex differences could be attributed to differences

in the balance of the RAAS between the sexes, with the

so-called depressor arm of the RAAS, i.e., ACE2/ANG 1-

7/Mas receptor and ANG type 2 receptor (AT2R)

counter-regulating the classical pressor ACE/ANG II/

AT1R pathway [50]. In this context, it was suggested that

men have the pressor pathway enhanced, while premeno-

pausal women have mainly the depressor pathway acti-

vated, whose activity is decreased in older women [51].

Experimental animals also demonstrate significant sex

differences. In particular, young male SHR have higher

mean BP than young female SHR [52–54], while this sex

difference is eliminated by RAAS inhibition [55]. This

also occurs after cessation of estrous cycling, which is

due to an increase in BP in females rather than any

change in BP in males [56, 57]. The sex-specific regula-

tion of the RAAS includes higher renal angiotensinogen

mRNA and protein levels in old males than females, as

well as higher renal ANG II in old females than males,

suggesting sex differences in the depressor response to

AT1R even when BP is similar [58]. In addition,

endothelin (ET) was shown to mediate increases in BP

in old female SHR [59]. Taken together, these data high-

light the important role of the RAAS and ET mediating

the increase in BP subsequent to cessation of estrous

cycling in aging female SHR.

Fig. 2 Regulatory effects of estrogen leading to sex differences in hypertension: a sympathetic nervous system, b renin-angiotensin-aldosterone

system, c body mass, d oxidative stress, e inflammation, f endothelial (dys) function, g salt sensitivity, h genetic factors, i cardiac hypertrophy, j

arterial stiffness, and k renal dysfunction. AT1R, angiotensin type 1 receptor; eNOs, endothelial nitric oxide synthase; ER, estrogen receptor; PI3K,

phosphoinositide 3-kinase (PI3K); PKB, protein kinase B (also known as AKT); RAAS, renin-angiotensin-aldosterone system
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In line with these findings, it has been widely hypothe-

sized that E2 is a protective CV factor due to its capacity

to control various components of the RAAS (Fig. 2b).

For example, HT was associated with reduced renin

levels and increased angiotensinogen levels [16], as well

as reduced circulating levels of ACE activity [17], which

may be mediated in part by a direct down-regulating ef-

fect of E2 on ACE mRNA [60]. Treatment of OVX rats

with E2 led to reduced tissue responsiveness to ANG II

and attenuated ANG-induced aldosterone secretion [61,

62], as well as reduced AT1R levels in ANG II-target tis-

sues [62–64]. In addition, the administration of E2 sig-

nificantly increased the production of ANG 1-7 [65, 66],

an angiotensin with cardioprotective effects. Overall, E2

appears to attenuate the production of ANG II and the

levels of AT1R, thereby leading to a decreased RAAS

activity.

Body mass

Higher body mass is associated with increased risk for

the development of HTN [67, 68], underlain by in-

creased sympathetic activity, increased ANG II forma-

tion and renin release, leading to adrenal aldosterone

production, thereby resulting in sodium retention. In-

creased visceral fat is associated with increased inflam-

matory mediators, increased oxidative stress and

decreased endothelial vasodilation [8, 69].

Not surprisingly, one sex may be more vulnerable than

the other. In particular, women may have higher levels

of body fat (adipose tissue) compared with men and a

greater risk of developing metabolic syndrome [70]. Not-

ably, overweight and obese women have a higher risk of

developing HTN compared with overweight and obese

men [71]. Decreased E2 levels after menopause are

markedly associated with lipid profile variations and ab-

dominal fat accumulation. Therefore, alterations in E2

levels may lead to metabolic and adipocyte physiology

disturbances contributing to obesity (Fig. 2c).

Subcutaneous and visceral adipose tissues express both

ER, ERα, and ERβ, with ERα playing a major role in the

activity of adipocytes and sex-specific fat distribution

[72, 73]. It has been shown that non-classical ERα sig-

naling mediates major effects of E2 on energy balance,

suggesting that selective ERα agonists could reduce the

risk of obesity and metabolic alterations in postmeno-

pausal women [74]. In addition, E2 directly increased

the number of anti-lipolytic α2A-adrenergic receptors in

subcutaneous adipocytes in vivo and in vitro [75], but

not in intra-abdominal adipose tissue, and it increased

the lipolytic β-adrenergic receptor expression through

ERα in vitro [76]. Further complex regulatory effects of

E2 include the down-regulation of peroxisome

proliferator-activated receptor-γ in the adipose tissue

and concomitant adipogenesis-related genes [77], as well

as the up-regulation of peroxisome proliferator-activated

receptor-α in the liver [78]. These results provide a

mechanistic insight for the effects of E2 on the mainten-

ance of fat distribution with an increased use of lipids as

an energy source, which may partially promote the fat

reduction in abdominal fat [79].

The regulation of adipokines and cytokines released by

the adipose tissue can be impaired in obesity and meta-

bolic syndrome, thereby contributing to CV complica-

tions, including arterial stiffness, vascular and renal

damage, ultimately contributing to the development of

HTN [6, 80]. Adipokines, such as leptin (a metabolic

regulator and feedback signal of body fat to regulate ap-

petite also with a lipolytic effect) and adiponectin (an

anti-inflammatory hormone) are cytokines released by

the adipose tissue. These hormones have gained atten-

tion due to their capacity to influence the inflammatory

system with pro- and anti-inflammatory actions. In-

creased levels of leptin and resistin—another adipokine

that contributes to obesity—and lower levels of adipo-

nectin were previously associated with uncontrolled BP

[80]. In obese postmenopausal women, increased leptin

and resistin levels and decreased adiponectin levels were

reported, while HT was shown to be beneficial in redu-

cing many of the parameters of metabolic syndrome

[81]. In addition, E2 may increase leptin sensitivity by

controlling the expression of leptin-specific receptors

[24]. Furthermore, the administration of estradiol benzo-

ate reduced resistin levels in adipocytes [82]. Together,

these data suggest that E2 is a pivotal regulator of

adipokines.

Oxidative stress

Oxidative stress is a condition that occurs when the rate

of reactive oxygen species (ROS) formation exceeds the

rate of the antioxidant defense system. ROS has an im-

portant role in cell signaling and tissue homeostasis. In

pathological conditions and environmental stress, ROS

levels can increase dramatically and may result in signifi-

cant damage to cellular structures. Oxidative stress has

been linked to the development of HTN.

Women prior to menopause appear to have lower

levels of oxidative stress compared with age-matched

men, mediated by anti-oxidant activities of E2

scavenging-free radicals [83–85]. In contrast, postmeno-

pausal women have higher oxidative stress levels than

age-matched men [86]. Experimental data suggest a

greater antioxidant potential in females over males [87],

with higher levels of superoxide generation and lower

levels of nitric oxide (NO) in males compared with

females [88, 89]. Furthermore, female SHR showed

increased renal NADPH oxidase activity and urinary F2-

isoprostanes compared with male SHR [88, 90],
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corroborating the idea that E2 has a prominent role in

sex differences in oxidative stress (Fig. 2d).

In OVX rats, E2 deficiency was associated with in-

creased H2O2 production, as well as increased AT1R

levels, leading to increased oxidative stress and endothe-

lial dysfunction [64, 91]. In contrast, the administration

of E2 in OVX rats led to the down-regulation of AT1R

and E2 treatment of vascular smooth muscle cells re-

sulted in a time-dependent downregulation of AT1R

mRNA [64], indicating that the antioxidant properties of

E2 may be mediated through the downregulation of the

AT1R gene expression. In addition, E2 stimulates NO

level increases in endothelial cells via endothelial NO

synthase activation and ER-mediated mechanisms [18,

92, 93]. Ovariectomy-related loss of E2 leads to reduced

endothelial NO synthase levels and activity [94], which

appears to exert broad cardioprotective actions, includ-

ing the attenuation of chemotherapeutic drug-induced

cardiomyopathy [95]. E2 was further shown to reduce

NADPH oxidase levels in endothelial cells [96], as well

as to increase the levels of the antioxidant enzyme heme

oxygenase 1 in in vivo and in vitro models [97–102].

Also, E2 administration in OVX rats led to an increase

in catalase activity [103–105], and acute E2 treatment

substantially enhanced myocardial catalase activity and

restored LV oxidative stress and dysfunction caused by

ethanol in OVX rats [106]. Overall, E2 modulates several

factors, including pro- and antioxidant enzymes, thereby

attenuating the production of ROS.

Inflammation

Inflammation plays a central role in the CV system,

underlying several CV pathologies. CV alterations trigger

activation of inflammatory responses due to systemic

damage, releasing pro- and anti-inflammatory factors,

and activating cellular stress pathways.

Adipose tissue dysregulation is one of the main sources

of inflammatory signaling in obesity-associated metabolic

alterations, and E2 plays an important role. Menopause is

associated with increases in fat mass, as well as elevated

circulating inflammatory markers, such as tumor necrosis

factor alpha (TNFα), interleukin-6 (IL-6) and plasminogen

activator inhibitor-1 [107, 108]. Similarly, the loss of E2 in

OVX rodents, as well as the deficiency of ERα, has

been linked with increased adiposity in part mediated

by increased food intake and decreased energy ex-

penditure, accompanied by increased inflammation,

while E2 treatment attenuated these effects [109–111].

In fact, ERα protects against obesity-related diseases

and inflammation [112, 113]. In this context, ERα

polymorphisms result in insulin resistance, body fat

accumulation and inflammation [114, 115].

Many of the alterations occurring in comorbidities as-

sociated with decreased E2 levels and decreased ER

expression, including the metabolic syndrome and obes-

ity accompanied by inflammation, are attenuated by E2

(Fig. 2e). In particular, the administration of E2 has been

shown to be important in the regulation of metabolic

and inflammatory processes, leading to decreased

expression of genes involved in lipogenesis [116], in-

creased glucose clearance [117], lowered levels of inflam-

mation soluble intracellular adhesion molecule 1,

vascular cell adhesion molecule 1, E-selectin and ET in

postmenopausal women [19, 118], as well as lowered

circulatory cytokine levels, including TNFα, IL-1β and

IL-10, in OVX rats [119]. In addition, E2 induces the

transcriptional activation of Fas ligand via an ER-

mediated, NO-dependent mechanism, thereby resulting

in the inhibition of leukocyte traffic across the endothe-

lium [120].

E2 also has a key role in the regulation of NFκB, which

is a central modulator of a variety of inflammatory path-

ways and cellular responses. In particular, E2 repressed

the activity of NFκB by inhibiting its DNA-binding abil-

ity, as well as reducing the NFκB-p65 subunit expres-

sion, thereby down-regulating NFκB-dependent

activation of genes, such as TNFα and IL-6 [121, 122].

In addition, E2 appears to suppress inflammatory cell

adhesion to endothelial cells via an ERα-dependent

mechanism, which may involve inhibition of NFκB-

mediated up-regulation of vascular cell adhesion mol-

ecule 1 [123]. Overall, E2 is important in the regulation

of inflammatory pathways and signaling.

Endothelial dysfunction

Endothelial dysfunction is associated with increased sys-

temic oxidative stress and vascular inflammation. It is

characterized by reduced levels of vasodilators, such as

NO, and increased ET levels, thereby modulating vascu-

lar tone.

Clinical data have indicated an important association

between endothelial dysfunction and reduced E2 levels

in postmenopausal women. In particular, vascular and

hemodynamic parameters and arterial stiffness were ele-

vated, while the endothelial function was reduced across

different stages of the menopausal transition [124]. In

line, oophorectomy associated with acute E2 deprivation

resulted in impaired endothelium-dependent vasodila-

tion, due to reduced NO availability [125], while HT

improved endothelium-dependent vasodilation after

oophorectomy, as well as after menopause [126]. Inter-

estingly, this beneficial effect of HT was reported to be

greater in hypertensive postmenopausal women [127].

Furthermore, the levels of plasma ET were higher in

postmenopausal women than in premenopausal women,

while HT attenuated this increase [128].

E2 may act on the CV system directly in the vessels or

indirectly by regulating the lipid profile (Fig. 2f). These
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E2 actions are associated with lower coronary vascular

resistance, enhanced coronary blood flow and improved

coronary vasodilatory responses [129, 130]. The effects

of E2 in the vascular system comprise increases in the

synthesis of NO [92], modulation of serum- and ANG

II-stimulated synthesis of ET [131, 132], and long-term

modulation of vascular tonus, inducing the production

of prostaglandins [133]. Along this line, E2 administra-

tion in OVX rats restored flow-induced dilation medi-

ated by epoxyeicosatrienoic acids, which are generated

following metabolism of arachidonic acid by cytochrome

P450 epoxygenases [134–136]. However, it is not clear

whether E2 regulates the synthesis of epoxyeicosatrie-

noic acids. E2 also has an anti-proliferative role in vascu-

lar remodeling [137], inhibiting the proliferation of the

inner layer after injury [138]. Studies have also demon-

strated antioxidant effects of E2. In particular, E2 ap-

pears to be involved in the regulation of the uptake of

oxidized low-density lipoprotein, which was found to be

dependent upon ER activation [139]. In addition, E2 re-

duced cholesteryl ester accumulation in human

monocyte-derived macrophages [139]. Collectively, these

data indicate that E2 regulates endothelial function

through multiple mechanisms.

Salt sensitivity

Salt sensitivity refers to BP responses to changes in

dietary salt intake. It has been described that salt in-

take has pathological effects on the vasculature and

sodium homeostasis, and salt sensitivity appears to be

related not only to kidney malfunction but also to

endothelial dysfunction [140]. Interventional studies

with essential hypertensive patients receiving diets

with varying salt levels demonstrated that patients

who were salt-sensitive more often had LVH, CV

events, and/or endothelial dysfunction than non-salt

sensitive hypertensive patients [141–143].

A recent study with human subjects and experimental

animals indicated that females have 30% higher salt sensi-

tivity of BP than males, regardless of menopausal status or

HTN and altered aldosterone production, and differences

in the kidney seem to be responsible for this sex-specific

effect [144]. Another previous study examined BP re-

sponses to dietary sodium and potassium interventions by

sex, age and baseline BP subgroups among men and

women aged 16 years or older. Also, this study showed

that the female sex, as well as older age and elevated base-

line BP levels, increases BP responses to dietary sodium

intake [145]. Salt sensitivity increases with age and is likely

mediated by impaired vasodilation of the renal circulation,

possibly due to reduced NO availability, increased vaso-

constriction response to ANG II, leading to a disturbed

renal sodium handling, oxidative stress, and HTN [146,

147]. As postmenopausal women appear to be more salt-

sensitive than pre-menopausal women [148], decreases in

ovarian hormone levels and increased sensitivity to dietary

sodium may be important factors in the development of

HTN at menopause. Furthermore, the surgical removal of

the ovaries is associated with the development of salt sen-

sitivity [149], while the administration of E2 reduced salt

sensitivity of BP in postmenopausal women [150]. These

data support further the view that salt sensitivity may be

associated at least in part with changes of the hormonal

profile, particularly E2 (Fig. 2g), that occur in women after

menopause.

HTN due to salt sensitivity has been linked to de-

creased renal NO production and inappropriate activa-

tion of the RAAS [151]. As previously discussed, E2 has

an important role in both systems, NO and RAAS, and

through its antioxidant properties, it has the ability to

increase the bioavailability of endothelium-derived NO.

Subsequently, in the presence of salt sensitivity, de-

creases in E2 levels may impair the bioavailability of NO.

In addition, in OVX salt-sensitive rats, HTN was corre-

lated with increased renal AT1R protein levels, while

treatment with E2 or an AT1R antagonist prevented the

development of HTN [151]. Therefore, menopause-

related E2 deficiency leads to the over-expression of

renal AT1R, thereby resulting in oxidative stress and dis-

turbed renal sodium handling, ultimately contributing to

the development of HTN.

Genetic factors

It is well known that genetic factors play a major role in

CV pathology [152, 153] and that they influence the de-

velopment of HTN [154]. Interestingly, through model-

ing gene-environment interactions, several genetic

variants associated with HTN-related phenotypes have

been discovered [155]. Thus, mechanisms related to in-

dividual genetic variation may lead to specific responses

in HTN, which may differ significantly between the

sexes [156].

In this context, various studies have reported sex-

specific associations between HTN and polymorphisms

of components of the RAAS [157], endothelial NO

synthase [158] and aldosterone synthase [159]. In a

large-scale study of the general population, double

homozygosity for Thr235 and Thr174 in the angiotensi-

nogen gene was associated with a 10% increase in angio-

tensinogen levels and was considered a risk factor for

elevated BP in women but not in men [157]. Gene

variants of the endothelial NO synthase were reported to

influence the long-term burden and trend of BP since

childhood in females contributing to their predisposition

to HTN [158]. Polymorphisms in the β1-adrenergic re-

ceptor and α2A adrenergic receptor were also associated

with BP in women [160]. Investigation of the association

between the insertion/deletion (I/D) polymorphism of
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the gene that codes for ACE and HTN in black and

white men and women revealed a significant association

between the D variant and HTN only in black women,

highlighting the importance of sex-specific ethnic differ-

ences in the association between genetic variation and

expression of a hypertensive phenotype [161]. Further-

more, this ACE polymorphism was associated with BP in

a sex- and age-dependent manner [162].

As previously mentioned, the effects of E2 in the CV

system are mainly mediated by the two ERs, i.e., ERα

encoded by the ESR1 gene and ERβ encoded by the

ESR2 gene. Polymorphisms in ESR1 have been associated

with diastolic BP in women [163]. Moreover, ESR1 geno-

types and alterations in its expression have been linked

with increased body mass and body fat distribution [115,

164, 165]. The binding of E2 to ERβ has been reported

to lead to vasodilation [166]. In this context, it has been

shown that women that are heterozygous for certain

genotypic polymorphisms of ESR2 present increased risk

of HTN, especially those who use oral contraceptives

[167], suggesting that specific single-nucleotide polymor-

phisms in ESR2 may transform the interaction of E2

with ERβ to a harmful axis regarding BP instead of a

protective one.

In addition, variation at rs10144225 in ESR2 was asso-

ciated with salt sensitivity of BP in premenopausal

women but not in men or postmenopausal women

[168]. In premenopausal women with the major allele,

E2 is expected to bind to ERβ leading to vasodilation,

thereby acting to protect against salt sensitivity of BP.

However, in women with the risk allele, the binding af-

finity between E2 and ERβ may decrease, thereby attenu-

ating the vasodilatory effects of E2, ultimately leading to

salt sensitivity of BP. Together, polymorphic variants

within ESR2 may inhibit its binding to E2, thereby hin-

dering the vasodilatory effects of E2, ultimately leading

to a loss of its protective actions against HTN [168].

Interestingly, polymorphisms in the human follicle-

stimulating hormone receptor gene, which may cause

hereditary hypergonadotropic ovarian failure, have also

been linked to HTN in women [169]. Therefore, genetic

variation influences the regulatory effects of E2, thereby

impacting sex-specific phenotypes in the development of

HTN (Fig. 2h).

Regulatory effects of estrogen in hypertension-
induced target organ damage
Patients with HTN and lack of BP control have a higher

probability to develop TOD, such as cardiac hyper-

trophy, vascular alterations—including arterial stiff-

ness—and renal damage. Individuals can respond

differently to the development and manifestation of the

disease, response to treatment, outcome and recovery

process. The development of these CV complications

also differs significantly between men and women [156,

170, 171], and E2 appears to be crucial in sex-specific

pathophysiology [172].

Cardiac hypertrophy

The heart responds to pathological stimuli, such as

HTN, aortic stenosis, or cardiac injury, with hypertrophy

of the cardiac muscle, accompanied by several tissue and

cellular alterations, including increases in cardiomyocyte

size and changes in the extracellular matrix. Although

initially this is an adaptive and compensatory response,

upon the persistence of the stress factor, there is mal-

adaptive remodeling leading to pathological hypertrophy.

Consequently, HTN-induced LVH is a major risk factor

for heart failure and sudden death [173]. In the hyper-

trophic process, distinct molecular mechanisms may

occur between men and women, many of which are ex-

pected to be mediated by E2 (Fig. 2i).

Despite antihypertensive therapy, hypertensive women

have a greater risk to develop LVH than hypertensive

men [174], and the presence of LVH in HTN offsets the

protection in a cardiovascular risk linked with the female

sex [175]. As in patients with aortic stenosis [176–182],

another major precursor inducing LVH, the hyper-

trophic response of the heart in hypertensive patients

exhibits significant sex differences in its structural and

functional adaptation [183, 184]. These differences in-

clude greater indexed LV mass, better systolic function

and increased risk of incident heart failure with pre-

served ejection fraction in hypertensive women com-

pared with hypertensive men [79, 185, 186]. Studies with

experimental animals also demonstrate major sex differ-

ences in the development of HTN-induced LVH, where

males develop greater hypertrophy and dysfunction than

females [172].

Notably, HT in hypertensive postmenopausal women

contributed to a reduction in LV mass [20, 187, 188],

thereby indicating a modulatory role of E2 in HTN-

induced LVH. Similarly, in OVX spontaneously

hypertensive heart failure rats treated with E2, the

development of HTN and related LVH were attenuated

[189]. Direct effects of E2 and its receptors in the myo-

cardium have been previously shown [190–198], which

might affect several processes in a sex-specific manner

[199–206]. The loss of E2 by ovariectomy suggests that

E2 influences cardiac hypertrophy in part via the phos-

phoinositide 3-kinase (PI3K)/protein kinase B (PKB, also

known as AKT) signaling pathway [94]. In this context,

the hearts of premenopausal women exhibit greater PKB

activity than those of men or of postmenopausal women,

and treatment of rat cardiomyocytes with E2 led to

higher levels of phosphorylated PKB [22]. Therefore, E2

influences signal transduction in the myocardium that
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might exert regulatory actions on the hypertrophic re-

sponse in a sex-specific manner.

In addition, E2 inhibits the cardiomyocyte response to

hypertrophic stimuli by preventing new protein synthesis

and skeletal muscle actin expression [21]. ET stimulates

the tyrosine phosphatase calcineurin resulting in new

protein synthesis. Both ET and calcineurin were inhib-

ited by E2, which also induced the gene encoding

MCIP1, an anti-hypertrophic protein that prevents cal-

cineurin activity [21]. E2 also stimulates the production

and release of natriuretic peptides [21, 207], thereby

inhibiting the hypertrophic response [208, 209]. Several

studies revealed that E2 acts through ERβ to mitigate

the deleterious signaling by ANG II that produces car-

diac hypertrophy [208], as well as to protect against

LVH in rodents with transverse aortic constriction [190,

210] in a sex-specific manner [201, 204, 211]. Interest-

ingly, polymorphisms in the ESR2 gene are associated

with LV mass and wall thickness in women with HTN

but not in men [212], thereby indicating an important

role of ERβ in the development of cardiac hypertrophy

and sex-specific responses.

Arterial stiffness

Arterial stiffness is characterized by the reduced capabil-

ity of an artery to expand and contract in response to

pressure changes. This process is tightly associated with

HTN, and arterial stiffness has emerged as an important

predictor of CV events and mortality [213]. Sex differ-

ences in arterial stiffness have been reported, and E2 has

been implicated in vascular and endothelial protection

(Fig. 2j).

The structure of the arterial wall is maintained by the

balance between collagen and elastin—extracellular

matrix components responsible for the compliance and

stability of the arterial wall. On the one hand, increased

collagen content and density have been associated with

increased vascular stiffness [214–217]. On the other

hand, elastin is an essential determinant of arterial mor-

phogenesis and vascular disease [218, 219]. In fact, mu-

tations in the gene coding for the most abundant elastic

fiber proteins result in a broad spectrum of elastic tissue

disorders, ranging from skeletal abnormalities to ocular

and vascular defects [220–226]. Along this line, elastin

haploinsufficiency in mice leads to altered mechanical

properties of large arteries, thereby contributing to in-

creases in BP [227, 228]. Similarly, age-related proteo-

lytic degradation and chemical alterations of elastic

fibers result in changes in their mechanical properties

[229], thereby conferring the arterial wall a more rigid

structure, ultimately contributing to arterial stiffness.

Major determinants of arterial stiffness include age,

sex and BP [230–233]. Accordingly, markers of arterial

stiffness differ significantly between men and women. In

particular, compared with elderly hypertensive men, eld-

erly hypertensive women have a longer ejection time,

earlier arterial wave reflection and smaller vessel size, in-

dependent of body size and heart rate [234]. Also in

end-stage renal disease, arterial wave reflection is greater

in women compared with men [235]. Furthermore, aor-

tic stiffness is greater in women than men and is associ-

ated with diastolic dysfunction, impaired ventricular

coupling and LV remodeling, potentially contributing to

the greater risk of heart failure with preserved ejection

fraction in women [236, 237]. Notably, compared with

premenopausal women, postmenopausal women have

greater pulse wave velocity, indicating that the deficiency

of E2 associated with menopause may account for the

augmented increase in arterial stiffness with aging in

women [238–241]. Along this line, investigations of

postmenopausal women indicate that HT ameliorates ar-

terial stiffness [242, 243].

The molecular processes that contribute to the

changes in vascular properties accounting for these dif-

ferences are incompletely understood, as well as the role

of biological sex influencing genes and proteins of the

extracellular matrix in older males and females. Indeed,

potential mechanisms include sex differences in collagen

isoforms, elastin levels and abundance of other extracel-

lular matrix proteins [244–246]. Along this line, the de-

crease of E2 at menopause may lead to arterial stiffness

through mechanisms related to changes in the compo-

nents of the arterial wall, such as collagen and elastin

deposition, leading to alterations in the arterial biomech-

anical properties. In this context, E2 has been shown to

decrease collagen deposition and increase elastin

production in human aortic smooth muscle cells [23].

Notably, acute endogenous E2 deprivation leads to im-

paired NO release [125], thereby resulting in loss of

vasodilation, ultimately contributing to arterial stiffness.

However, E2 administration promotes vasodilation in

part by stimulating endothelial NO synthase and NO re-

lease, thereby promoting vasodilation [247, 248], as well

as by up-regulating the endothelial NO synthase mes-

senger RNA and protein levels [18, 93]. E2 also inhibits

vascular smooth muscle cell proliferation [249] mediated

by ERα [138, 250]. Therefore, E2 exerting direct effects

in the vessel wall contributes to sex differences in

arterial stiffening.

Renal dysfunction

Chronic kidney disease (CKD), defined by albuminuria

and/or reduced estimated glomerular filtration rate, is a

common TOD in HTN, associated with high rates of

morbidity and mortality [251]. The prevalence of CKD

increases with aging, underlain by changes in kidney

morphology, hemodynamics and function, which in-

crease the incidence of CV events. Sex differences in
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CKD have been reported, and E2 has been shown to

influence renal disease development (Fig. 2k).

Considering chronic renal disease of various etiologies

reveals a complicated role for biological sex. For ex-

ample, the prevalence of CKD appears to be higher in

older women than older men [252, 253]. However, the

male sex is an independent risk factor for end-stage

renal disease [254]. Further studies have reported differ-

ent clinical features and prognosis of renal diseases be-

tween men and women. In particular, men present with

a more rapid rate of progression of renal diseases, such

as polycystic kidney disease, IgA nephropathy, mem-

branous nephropathy, chronic renal failure, than women

[255, 256]. Similarly, there is a faster decline in renal

function and worse prognosis of CKD in men than in

women [257, 258]. Collectively, these data indicate that

the male sex is a major determinant of the progression

of renal dysfunction, while younger, premenopausal

women may be protected from the development of

CKD.

Experimental studies of CKD with rats also showed

that males present with faster progression and worse

outcome of renal disease than females [259]. In particu-

lar, male rats exhibit marked albuminuria, augmented

cortical histological damage, interstitial inflammation

and fibrosis, while these are all significantly less pro-

nounced in female rats [260]. Similarly, renal function is

worse in male than in female rats following ischemia/re-

perfusion injury [261]. However, a more recent study re-

ported no sex differences in acute renal injury due to

ischemia alone, but only male rats developed CKD [262].

Notably, OVX rats also developed CKD and ovariec-

tomy was associated with increased proteinuria, oxida-

tive stress, increased glomerular and tubular damage,

whereas E2 is thought to protect against renal disease

[25, 262, 263]. Along this line, HT has been suggested

for the management of CKD in postmenopausal

women [264].

Although the molecular processes regulated by E2 that

might affect renal function are incompletely understood,

E2 exerts modulatory actions on renal morphology, such

as anti-growth effects on glomerular mesangial cells and

inhibition of mesangial extracellular matrix accumula-

tion, common to the development of glomerular scler-

osis [265–268]. In particular, E2 inhibits collagen

synthesis induced by transforming growth factor β in

glomerular mesangial cells, suggesting that E2 may limit

the progression of glomerulosclerosis, thereby attenuat-

ing deleterious effects in the kidney [266, 268, 269]. In

addition, the inhibitory effects of E2 on various compo-

nents of the RAAS may protect the kidney against glom-

erular remodeling, damage and glomerulosclerosis. On

the other hand, the stimulatory effects of E2 on NO may

attenuate mesangial cell growth, matrix production,

vasoconstriction and renal sodium reabsorption, which

contribute to the progression of CKD [270]. It has been

suggested that the relative renal protection observed in

females may be mediated by ERα [271]. Further research

is warranted.

Perspectives and significance
Although the role of biological sex has yet underesti-

mated consequences for physiology and pathology [272],

several experimental and clinical studies have demon-

strated the importance of understanding its effects and

the underlying mechanisms in many diseases, highlight-

ing that sex differences represent important biological

phenomena that need further investigation. At least in

part, E2 accounts for these sex differences and has a key

role in the development of HTN and associated TOD.

However, there are several pitfalls of HT and risks that

depend on the type, dose, duration of use, route of ad-

ministration and timing of initiation [273]. In this con-

text, the elucidation of E2-related mechanisms and the

identification of targets with therapeutic potential will

contribute to the development of more efficient therap-

ies for men and women, improving the treatment and

care of patients with HTN and CV diseases according to

individual needs.
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