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Estrogen is necessary for the normal growth and development of breast tissue, but high
levels of estrogen are a major risk factor for breast cancer. One mechanism by which estro-
gen could contribute to breast cancer is via the induction of DNA damage.This perspective
discusses the mechanisms by which estrogen alters the DNA damage response (DDR)
and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1,
BRCA1, and p53 and the feedback on estrogen receptor signaling from these proteins.
We put forward the hypothesis that estrogen receptor signaling converges to suppress
effective DNA repair and apoptosis in favor of proliferation. This is important in hormone-
dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as
well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or
altered in estrogen responsive breast cancer, which will further change the processing of
DNA damage. Finally, the action of estrogen signaling on DNA damage is also relevant to
the therapeutic setting as the suppression of a DDR by estrogen has the potential to alter
the response of cancers to anti-hormone treatment or chemotherapy that induces DNA
damage.

Keywords: estrogen receptor, DNA damage response, breast cancer, p53, BRCA1, DNA repair, tamoxifen, DDR

DNA DAMAGE INDUCED BY ESTROGEN
Lifetime exposure to estrogen is a major risk factor for breast can-
cer. Elevated serum levels of estrogen are associated with a 2–2.5×
greater risk of breast cancer development (1) and high levels of
estrogen in the breast of postmenopausal women are associated
with increased cancer risk (2). Estrogen signaling drives prolifer-
ation in the 60–70% of breast cancers that express the estrogen
receptor, and adjuvant anti-estrogen therapy is prescribed to the
majority of these patients to prevent breast cancer recurrence.

Estrogen signals through its two receptors, estrogen receptor
α (ERα) and estrogen receptor β (ERβ). Only ERα is essential
for breast development and activates pro-proliferative signaling in
the normal breast and breast cancer, whereas ERβ generally antag-
onizes ERα in the breast (3). Upon estrogen binding ERα acts
by parallel pathways to alter gene expression. ERα translocates
to the nucleus to activate gene targets directly or in coopera-
tion with co-activator proteins, or it can transactivate growth
receptors to boost receptor tyrosine kinase signaling. These path-
ways converge to promote growth and proliferation and suppress
apoptosis (3).

Despite the risks associated with estrogen exposure the exact
mechanisms by which estrogen contributes to the initiation and
progression of breast cancer remains elusive. However, a major
mechanism is potentially the induction of DNA damage as estro-
gen treatment leads to double stranded DNA breaks and genomic
instability (1, 4, 5). Early breast cancer lesions exhibit chromoso-
mal instability and aneuploidy (6), and in rat models this is linked
to estrogen exposure (7). Estrogen can induce DNA damage via the
production of oxidative metabolites that cause DNA adducts, or

other oxidative DNA damage, and this is supported by in vitro and
animal model studies (1). The second explanation for estrogen-
induced DNA damage is that hyperactivated estrogen signaling
provokes excessive proliferation when pathways become dysregu-
lated, and this theory has strong support from in vitro modeling
and gene signatures in breast cancer (3). Excessive proliferation
promotes DNA damage accumulation due to insufficient timely
repair leading to replication fork stalling and possibly even double
stranded DNA breaks (8). It is likely that both carcinogenic estro-
gen metabolites and deregulated estrogen signaling contribute to
estrogen-induced DNA damage. In this perspective a third possi-
bility is raised, that estrogen signaling suppresses the DNA damage
response and DNA repair to allow the accumulation of genomic
change conducive to tumorigenesis.

DNA DAMAGE RESPONSE AND DNA REPAIR PATHWAYS
ALTERED BY ESTROGEN SIGNALING
DNA damage is recognized and processed by series of pathways
called the “DNA damage response (DDR)”. The DDR assesses the
scope and severity of DNA damage to initiate cell cycle arrest,
senescence, repair, or in the case of irreparable damage, apoptosis.
If repair is activated then a number of different repair mechanisms
can be engaged [reviewed in Ref. (9)]. Small lesions of damaged
or incorrectly inserted nucleotides are repaired by base excision
repair (BER), nucleotide excision repair (NER), or mismatch
repair (MMR). The more catastrophic double stranded breaks are
repaired via non-homologous end-joining (NHEJ) or homolo-
gous recombination (HR). Small distorting lesions are extremely
common so the pathways that repair these defects (BER, NER, and

www.frontiersin.org May 2014 | Volume 4 | Article 106 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00106/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00106/abstract
http://www.frontiersin.org/people/u/112564
mailto:l.caldon@garvan.org.au
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Caldon Estrogen cross-talk with DNA damage

MMR) are also activated by constant genome surveillance, and
repair is coupled to transcription and DNA replication.

The DDR signals through three main effector kinases, ATM,
ATR, and DNA-PK. ATM and DNA-PK recognize double stranded
breaks whereas ATR responds to single stranded regions that occur
at stalled replication forks and double stranded break overhangs.
The signaling pathways downstream of ATM, ATR, and DNA-PK
involve a myriad of proteins, however there are a number of key
effector proteins that include CHK1, CHK2, BRCA1, 53BP1, and
MDC1 which signal to DNA repair coordinators such as BRCA2,
PALB2 and to cell cycle checkpoints and the apoptotic machinery.
The major tumor suppressor protein, p53, is activated down-
stream of ATM/ATR, and acts as a genome guardian to determine
whether cells should arrest or apoptose. There is significant cross-
talk between the various pathways depending on the nature and
severity of the DNA damage.

The DDR is important to estrogen carcinogenesis as it dic-
tates how estrogen-mediated damage is processed by breast cells.
In prior genome wide studies of estrogen action, the major reg-
ulatory nodes of the ERα transcriptional program have included
proliferation, growth, and apoptosis, but not the DDR or DNA
repair (3). However, there is a growing body of literature, which
identifies estrogen signaling as regulating key effector DDR pro-
teins such as ATM, ATR, p53, BRCA1, and BRCA2, as well as direct
interactions with the DNA repair machinery. This is significant
not only for estrogen carcinogenesis, but also for the processing
of any genotoxic insults by estrogen-responsive tissues. Described
below are the most important interactions between ERα, the DDR,
and DNA repair pathways (Figure 1). ERβ is not discussed in this
perspective, but it should be noted that ERβ has opposing effects
to ERα in many contexts (10), and this is also true of regulation of
the DDR and DNA repair (11–13).

REGULATION OF EFFECTOR KINASES ATM, ATR, AND DNA-PK
ATM and ATR are key initiators of the DDR, and both are neg-
atively regulated by ERα. ERα downregulates transcription of
ATM via the activation of miR-18a and miR-106a (11). The
ATR/CHK1 signal transduction cascade is suppressed by ERα-
transactivated AKT phosphorylation of TOPBP1 to prevent an
interaction with ATR at sites of DNA damage (15). AKT also
phosphorylates CHK1 to prevent its interaction with co-activator
CLASPIN (15). The downregulation of ATM and ATR by ERα

interferes with the induction of cell cycle checkpoints so that cells
continue to progress through the cell cycle after DNA damage,
and DNA repair is delayed or not engaged (15, 16). Estrogen activ-
ity does not, however, preclude activation of the DDR. γ-H2Aχ

foci form in response to estrogen-induced DNA damage, and the
co-localization of Rad51 to these foci suggests the activation of
HR (4).

While ERα negatively regulates both ATM and ATR, it is possible
that ERα positively regulates DNA-PK mediated repair based on
recent findings of DNA-PK regulation by the androgen receptor
(AR). AR regulation of DNA-PK catalytic subunit (DNA-PKcs)
promotes the repair of DNA double stranded breaks and resis-
tance to DNA damage and DNA-PKcs likewise potentiates the
function of AR (17). Like AR, ERα is in a complex with DNA-
PK (18) and ERα is stabilized and its transcriptional function

potentiated by DNA-PK (19), and by analogy to AR, ERα may
also transactivate DNA-PK.

If ERα does positively regulate DNA-PK, ERα may suppress
DNA repair processes of higher fidelity (ATM- and ATR-mediated)
in preference for DNA-PK-mediated NHEJ. This is consistent with
observations of ERα activity leading to the accumulation of DNA
damage (1) as it would sustain proliferation by not engaging the
ATM/ATR pathways, while promoting DNA-PK-mediated NHEJ
to maintain genome integrity. Toillon et al. found that estrogen
treatment of irradiated breast cancer cells led to their sustained
proliferation without any increase in p53 activation or apoptosis
(20). This is consistent with a failure to activate ATM or ATR but
the repair of DNA by DNA-PK mediated NHEJ.

BRCA1
BRCA1 is a downstream effector of the DDR that is recruited to
sites of DNA damage, functions directly in HR, but also influ-
ences cell cycle arrest and other DNA repair pathways. There is
strong evidence that BRCA1 limits estrogen-mediated tumorigen-
esis: Brca1 knockout mice show an enhanced proliferative response
to estrogen treatment and accelerated development of preneoplas-
tic mammary lesions (21), and the reduction of serum estrogen
levels by oophorectomy protects carriers of the BRCA1 mutation
against breast cancer (22). Indeed, BRCA1 has a negative effect
on ERα, through direct binding to inhibit ERα-mediated gene
transcription (23, 24), downregulation of ERα co-activator, p300
(25), reduced cross-talk from growth factor signaling (26), and
potentially monoubiquitination (25, 27). These effects are antag-
onized by cyclin D1, a direct transcriptional target of ERα that is
instrumental in estrogen-induced proliferation (28).

While BRCA1 suppresses ERα, ERα regulation of BRCA1
enhances BRCA1 function. Estrogen promotes transcription of
BRCA1 via binding of an ERα/p300 complex (29), and stimu-
lates the formation of a complex between ERα, CBP, and BRCA1
that facilitates double stranded break repair (30). Surprisingly,
BRCA1 induces the transcription of ESR1 which encodes ERα,
and the positive feedback between BRCA1 and ERα provides a
rational explanation for why many BRCA1 negative cancers are
ERα negative (31).

p53
Estrogen receptor α and p53 have a bi-directional relationship
affecting both expression and function. The TP53 gene is tran-
scriptionally activated by ERα (32, 33) and downstream of ERα-
target, c-MYC (34), and ERα stabilizes the p53 protein (35).
Despite ERα inducing higher levels of p53 it may not be active:
in breast cancer cell lines estrogen induces cytoplasmic redistrib-
ution of p53 to reduce its transcriptional function (12, 36). ERα

alters the p53 transcriptional program to reverse transcriptional
activation and repression by p53, including downregulation of
the p53-mediated apoptotic response induced by DNA damage
(37). ERα represses p53-mediated transcription either through
the recruitment of co-repressors (38) or via independent targeting
and repression of p53 target gene sets (39). A separate subset of
target genes for p53 activation is enhanced by ERα activity (37).

p53 and ERα exist in complex with MDM2, and this com-
plex modulates the activity of p53 and ERα. MDM2 is a negative
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FIGURE 1 | Key effectors of the DNA damage response and DNA
repair that intersect with estrogen receptor α signaling. The DNA
damage response (DDR) is a series of pathways that recognize and
process DNA damage. After DNA damage recognition, signals are
transduced and amplified through kinase activation (ATM, ATR, DNA-PK,
CHK1, and CHK2) to downstream effectors (e.g., p53 and BRCA1) that
facilitate DNA repair, apoptosis, and cell cycle arrest. Estrogen receptor α

(ERα) exists in complex with multiple members of the DDR and DNA

repair pathways (e.g., DNA-PK, BRCA1, p53, and MDM2). These
protein:protein interactions are denoted by ERα represented as a hexagon.
This includes c-Abl, a multi-functional regulator of the DDR and its
downstream pathways (14). ERα also transcriptionally regulates or is
regulated by other members of these pathways (e.g., ATM, ATR, CHK1,
BRCA2, and DNA damage checkpoint protein Rad17), denoted by red
lines. ERα signaling antagonizes two major endpoints of DDR action:
apoptosis and cell cycle arrest (red lines).

feedback regulator of p53 (40), whereas MDM2 positively reg-
ulates ERα transcriptional activity, most probably through direct
MDM2:ERα interaction (41, 42). Conversely, the MDM2/p53/ERα

ternary complex downregulates the activity of ERα by monoubiq-
uitination, probably via the ubiquitin ligase activity of MDM2
(43). MDM2 may also downregulate ERα independently of p53
(43). In the presence of cellular stress, including UV-mediated
DNA damage, p53 dissociates from MDM2 and this is associated
with an increase in ERα levels and block of the estrogen-dependent
downregulation of ERα (43). Paradoxically, while ERα represses

p53-mediated transcription, ERα also protects p53 from repres-
sion by MDM2 (40), and estrogen treatment is necessary for a p53
response to be mounted in the mouse mammary gland against
ionizing radiation (44).

p53 upregulates the expression of ESR1, but alters the transcrip-
tional functions of ERα. p53 induction of ESR1 occurs following
DNA damage such as irradiation (45). Like ERα modulation of
p53 function, p53 alters the transcriptional program of ERα to
repress certain estrogen responsive genes such as BRCA2, c-JUN,
and BCL2 (37, 46). Indeed it appears that the combination of ERα
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and p53 induces a distinct transcriptional program compared to
either ERα or p53 alone (47).

Overall this body of work suggests that estrogen and ERα upreg-
ulate but sequester p53, such that the DDR and DNA repair are
suppressed in the presence of active estrogen signaling, but there
is still some safeguard via p53. When estrogen treated breast can-
cer cells are irradiated there is partial activation of p53 and its
downstream pathways, but the pro-proliferative effects of estrogen
override any checkpoint-mediated cell cycle arrest (20). Con-
versely, in mouse models, p53 provides protection from lymph
node hyperplasia and ductal carcinoma in situ (DCIS) induced by
deregulated estrogen signaling (48).

DNA REPAIR MACHINERY
Estrogen receptor α interacts directly with DNA repair proteins
with varying impact on DNA repair mechanisms and ERα func-
tion. This includes FEN1, MPG, APE1, and TDG of the BER
pathway (49, 50), O(6)-methylguanine-DNA methyltransferase,
which corrects mutagenic DNA lesion O(6)-methylguanine back
to guanine (51), NHEJ repair proteins Ku70 and Ku86 in the con-
text of gene transcription (18) and MSH2 of the MMR pathway
(52). The binding of ERα to MPG enhances BER (53), while estro-
gen treatment upregulates or downregulates NER, depending on
cell type (54, 55). The binding of repair proteins has different
outcomes on ERα: MPG inhibits ERα-induced transcription and
transactivation of signaling pathways (53), MSH2 and TDG trans-
activate ERα (50, 52), and the binding of FEN1 and APE1 to ERα

has distinct effects on different ERα target genes (56, 57).
Estrogen receptor α interacts with other core DNA damage

processing proteins, although the consequence for DNA repair or
ERα action is unknown. Estrogen treatment upregulates BRCA2
(58) of the HR pathway, and through phosphorylation protects
BRCA2 from degradation (59). ERα also directly interacts with
DNA repair signaling and processing protein PARP-1 in the con-
text of ERα-mediated gene transcription (18), which potentially
affects ERα-regulated gene networks.

CELL CYCLE CHECKPOINTS AND APOPTOSIS
One of the most important functions of the DDR is to halt pro-
liferation via the activation of cell cycle checkpoints or induce
apoptosis. The effector proteins of these responses are not only
targets of the DDR but as a set are antagonized by pro-proliferative
ERα signaling. The DDR induces a G1/S phase arrest downstream
of ATR via CDC25A inhibition of cyclin A/E/CDK2 complexes,
and downstream of p53 via p21 inhibition of cyclin D/CDK4/6 and
cyclin E/CDK2 complexes. A G2/M arrest is induced downstream
of Chk1/Chk2 via activation of CDC25 phosphatases to inhibit
cyclin B/Cdk1 complexes (60). ERα antagonizes cell cycle arrest
by upregulating CCND1 (cyclin D1), CCNE2 (cyclin E2), and
CDC25A, and downregulating CIP1 (p21) downstream of c-MYC
(61–63). Likewise, p53 induces apoptosis by induction of FAS-R,
BAX, PUMA, and NOXA (64), but ERα induces an anti-apoptotic
signal including upregulation of BCL2 (65).

Consequently, active ERα signaling will antagonize the anti-
proliferative and pro-apoptotic signals of the DRR. The outcome
will be dictated by the strength of each signal, but ERα signaling
is able to sustain proliferation in situations where otherwise DNA

damage would have induced a cell cycle arrest and apoptosis (15,
20, 66).

DISRUPTION OF DDR AND DNA REPAIR PATHWAYS IN
BREAST CANCER, AND THEIR ASSOCIATION WITH ERα

STATUS AND PROGNOSIS
DNA damage pathways are altered in breast cancer by mutation,
changes in expression, amplification, and methylation, and as a
class the DDR and DNA repair proteins are frequently altered in
cancer and associated with poor prognosis. A survey of the liter-
ature shows that DDR pathways differ significantly between ERα

positive and ERα negative breast cancer (Table 1). At least part
of this change may be due to loss of ERα signaling, and certainly
changes to p53, ATM, and TIMELESS (which functions in the
ATR pathway) are consistent with the loss of ERα regulation of
these genes/proteins. However, given that changes to DNA dam-
age processing are a hallmark of cancer that contributes to tumor
initiation, some of the changes no doubt precede loss of ERα,
and may in fact contribute to its loss. This is exemplified in can-
cers with low BRCA1 and ERα, and BRCA1 loss is hypothesized
to lead to ERα downregulation in breast cancer (31). Neverthe-
less, the presence or absence of DDR/DNA repair proteins will
affect DNA repair in hormone-responsive cancers and the bi-
directional regulation of the DDR/DNA repair and ERα. Likewise,
the loss of ERα will affect the DDR/DNA repair in ERα negative
cancers.

PERSPECTIVES
Estrogen receptor signaling is not typically thought to influence
DNA repair as the literature has focused on its classic nodes of
action of proliferation, growth, and apoptosis. The evidence, how-
ever, is overwhelming that ERα signaling has an impact on DNA
damage processing through its regulation of ATM, ATR, DNA-PK,
p53, BRCA1, BRCA2, and the DNA repair machinery. Given that
estrogen can cause DNA damage, this raises a vital question of how
estrogen receptor signaling processes the DNA damage caused by
estrogen action. For example, does it dampen damage responses
in favor of continuing proliferation, or does it act as a sentinel
against DNA damage? Overall, estrogen receptor activity appears
to downplay the response to DNA damage while simultaneously
promoting proliferation. Consequently sustained ERα signaling
may be permissive of the accumulation of genomic change from
low level DNA damage that contributes to tumor initiation. Some
of the major effectors of the DDR (e.g., p53 and BRCA1) do have
negative feedback on the estrogen receptor, as does active DNA
repair. Thus in the face of serious DNA damage ERα signaling is
downregulated to protect the cell from continuing proliferation,
and potentially allow full engagement in the DDR.

Several critical experiments will clarify whether active ERα

signaling overrides the DDR. These include co-treatment with
estrogen and different DNA damaging agents to determine the
extent to which the DDR is activated and how ERα promoter
binding is affected by DNA damage. This should incorporate the
titration of doses of DNA damage to determine if there is a tip-
ping point between sustained proliferation due to ERα action,
and engagement of the DDR and DNA repair. Since ERα has
cross-talk with both BRCA1 and p53, the combinatorial effects
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Table 1 | DNA damage response and DNA repair genes altered in breast cancer and relationship to ERα status.

Gene/

protein

Interaction with ERα Alteration and relationship to

ERα status in breast cancer

Prognosis Reference

ATM ERα downregulates miR-18a and

miR-106a to downregulate ATM protein

expression, and miR-18a directly binds to

the ATM-3′-UTR

ATM protein is higher in ER

negative breast cancers

High ATM protein is correlated with

recurrence in breast cancer

(11, 16, 67)

ATR ATR is functionally downregulated by ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

association between ATR:TOPBP1

– – (15)

BRCA1 The BRCA1:Oct1 complex directly binds

the ESR1 promoter to drive ERα

transcription; BRCA1 suppresses

ERα-mediated transcription through direct

binding and co-activators; ERα promotes

BRCA1 transcription via an ERα/p300

transcriptional complex

Low BRCA1/BRCA1 (by

mutation, methylation, or low

mRNA) is associated with ER

negative breast cancers

Oophorectomy (resulting in reduced

estrogen levels) is protective against

breast cancer in BRCA1 familial breast

cancers

(22–26, 29,

31)

BRCA2 BRCA2 is upregulated by estrogen

treatment, possibly as an indirect target

rather than via ERα

BRCA2 is higher in ER negative

breast cancers

High BRCA2 predicts poor

disease-free survival

(68, 69)

c-ABL c-ABL enhances estrogen receptor ERα

transcriptional activity through its ERα

stabilization by phosphorylation

Expression of c-ABL and ERα are

not correlated

Co-expression of c-ABL and ERα is

associated with advanced tumor stage

and lymph node involvement

(70, 71)

CHEK2 – CHEK2 mutated breast cancers

tend to be ERα positive

In ER positive breast cancers, CHEK2

mutation is associated with increased

risk of death and second breast

cancers, but not in ER negative cancers

(72, 73)

CHK1 CHK1 is phosphorylated via ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

CLASPIN:CHK1 interaction

CHK1 mRNA and protein are

highly expressed in ER negative

CHK1 not prognostic for outcome

metastasis in breast cancer

(15, 74)

CLASPIN CHK1 is phosphorylated via ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

CLASPIN:CHK1 interaction

CLASPIN mRNA and CLASPIN

protein are highly expressed in

ER negative breast cancers

CLASPIN mRNA is not prognostic for

metastasis

(15, 74)

DNA-PK The DNA-PK:ERα protein complex

increases ERα phosphorylation and

reduces ERα turnover. The DNA-PK:ERα

complex binds to ERα responsive gene

promoters, an effect that is not

dependent on DNA damage

– – (19)

FANCD2 – FANCD2 protein is higher in ER

negative breast cancers

– (75)

MDM2 MDM2 interacts with ERα in a ternary

complex with p53. MDM2 positively

regulates ERα transcriptional activity, but

downregulates overall activity through

ERα monoubiquitination

High MDM2 protein is correlated

with ER positive breast cancers

Low MDM2 protein is correlated with

high nuclear grade and lymph node

involvement

(41–43, 76)

(Continued)
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Table 1 | Continued

Gene/

protein

Interaction with ERα Alteration and relationship to

ERα status in breast cancer

Prognosis Reference

p53 ERα upregulates TP53 and stabilizes p53,

but generally suppresses p53

transcriptional function. p53 upregulates

ESR1, but also modulates ERα induced

transcription

p53 is generally wild-type and

expressed in ER positive breast

cancer

TP53 mutation or p53 mutated gene

signature is prognostic for poor

disease-free survival

(12, 32, 33,

35–39,

45–47, 77)

PCNA PCNA interacts directly with ERα to

modulate its transcriptional function in

normally proliferating cells

– – (78)

RAD17 RAD17 mRNA is upregulated by estrogen

in an ERα dependent manner

RAD17 mRNA often high in

breast cancer; high RAD17

protein correlated with ER

negative; RAD17 sometimes lost

in ER negative, but due to loss of

5q11 locus

High RAD17 mRNA prognostic of

increased lymph node metastasis

(79–81)

TIMELESS TIMELESS is upregulated by estrogen,

probably via ERα, and downregulated by

anti-estrogens

TIMELESS mRNA is high in ER+

patients who have relapsed for

endocrine therapy

High levels of TIMELESS mRNA

prognostic of poor relapse-free survival

for ER+ breast cancers

(82)

TOPBP1 TOPBP1 is regulated downstream of ERα

transactivated AKT signaling, which

suppresses the DNA damage induced

association between ATR:TOPBP1

TOPBP1 expression has no

relationship to ERα status

Low TOPBP1 mRNA and high TOPBP1

protein are both associated with

increased breast cancer grade

(15, 83, 84)

–, no relationship reported.

should be considered by simultaneously activating ERα signaling
and treating with DNA damage in the context of BRCA1 and p53
ablation. Finally, it is a priority to investigate the effect of ERα on
its binding partners DNA-PK, PCNA, and PARP-1 in the context
of DNA damage.

The role of ERα in modulating DNA damage has important
clinical implications. Anti-estrogen treatment is the mainstay of
adjuvant therapy for breast cancer, but the most common therapy,
Tamoxifen, is itself a source of DNA damage (85), and this dam-
age has been detected in patients and is implicated in endometrial
cancer (86). Tamoxifen has agonist effects through ERα in the
endometrium (87) so it is interesting to speculate that Tamox-
ifen therapy induces DNA damage and disturbs a balance between
estrogen signaling and the DDR in the endometrium to detri-
mental effect. Chemotherapies and radiation therapy induce DNA
damage, so ERα may suppress the DDR to reduce the efficacy of
these treatments. Indeed, patients with ER positive breast can-
cers have significantly lower response rates to chemotherapy than
those with ER negative cancers (88), and in vitro studies suggest
this is dependent on ERα action (89–91). Co-administration of
anti-estrogens and radiation therapy or chemotherapy appears
to enhance therapy cytotoxicity and a likely explanation is that
anti-estrogen treatment prevents pro-proliferative bypass of cyto-
toxicity by estrogen (66, 90). Conversely, estrogen receptor action
is needed for sustained p53 expression to allow the induction
of apoptosis by chemotherapeutic doxorubicin (92), and good
prognosis ERα positive breast cancers generally express p53.

Consequently, the pro-apoptotic arm of the DDR appears com-
promised in some circumstances by the complete inhibition of
ERα signaling. Further understanding of the cross-talk between
ERα and DNA damage processing will provide crucial informa-
tion to guide drug, radiation therapy, and hormone combination
treatment of breast cancer patients.
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