
.

ET++ - An Object-Oriented Application Framework in C++

Andre’ Weinand
Erich Gamma
Rudolf Marty

Institute for Informatics
University of Zurich
Winterthurerstr. 190

CI-I-8057 Zurich, Switzerland
E-mail: (weinand,gamma,marty]@ifi.unizh.ch

(weinand,gamma.marty)@unizh.uucp

Abstract

ET++ is an object-oriented application framework
implemented in C++ for a UNIX? environment and a
conventional window system. The architecture of ET++
is based on MacApp and integrates a rich collection of
user interface building blocks as well as basic data
strut tures to form a homogeneous and extensibIe system.
The paper describes the graphic modeI and its underlying
abstract window system interface, shows composite
objects as a substrate for declarative layout specification
of complex dialogs, and presents a model for editable text
allowing the integration of arbitrary interaction objects.

1. Introduction

Since 1984 our research group worked on a UNIX based
toolkit to support high-level dialogs on bitmap-oriented
workstations. Our toolkit, called ET [Mar86], has been
used in several projects. It proved to be useful but
appeared to us as too rigid, especially after we started to
think in object-oriented terms.

In early 1987 we initiated a follow-up project to
design and implement a fully object-oriented application
framework for UNIX environments. The implementation
language is C++, our development and target systems Sun

t UNIX is a registered trademark of AT&T.

Permlwon to copy without fee all or part of this material is granted provided

thar the copies are not made or distributed for direct commercial advantage,

rhc ACM copyright notice and the title of the publication and its date appear,

and not~c IS given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish. requires a fee and/

or spcctlic pcrmmlon.

0 1988 ACM 0-89791-284-5/88/0009/0046 $1.50

workstations running Sun’s enhanced version of 4.2BSD
UNIX and SunWindowP. ET++, as we call the object-
oriented application framework, essentially combines the
functionality of MacAppm [Sch86,Ros86] with an
object-oriented flavour of the Macintosh toolbox [App85]
while enhancing and generalizing the class hierarchy.
Besides its uniform object-oriented implementation, the
novel aspects introduced in ET++ are:
. Its declarative layout specification for composite

objects as found in dialog boxes modeled after a
system to typeset mathematical formulas.

. The possibility to build up a hierarchy of
independently scrollable views.

. Flexible classes to handle text as a base to integrate
arbitrary objects.

Fig. I shows a screen with applications developed with
ET++.

2. ET++ -Technical Objectives

The principle aim in developing ET++ was to design and
implement an object-oriented application framework for a
UNIX environment with roughly the functionality of both
MacApp and the user interface elements of the Macintosh
tOObOX.

Another goal was to unify the hybrid. structure of
MacApp and the non object-oriented Macintosh toolbox
into a single object-oriented application framework. We
believe that a major drawback of MacApp is the fact that
MacApp is only a thin Iayer on top of the Macintosh
toolbox. The implementation of complex applications, as
a result, always requires some intimate knowledge of both
the internal structure of MacApp and the Macintosh
toolbox interface. We hoped that a single homogeneous

46 OOPSLA ‘88 Proceedings September 25-30,19&I

ation

Find What

SunWindowPort

n Match Whole Word

-PostscriptPort

Figure 1: Some applications developed with ET++

system would strongly improve the efficiency of building did not want to implement a new window system, and
complex applications, especially for non-expert program- third, we believed that it is possible to find a small set of
mers. This would allow students develop CASE (Com- window system functions that is available in most
puter Aided Software Engineering) applications in short window systems or that can be adapted in a small
term projects. interface layer between ET++ and an underlying system.

We planned to realize the building blocks of the
user interface exclusively with concepts known from
MacApp and to unify all parts of the implementation of
ET++ with a small set of basic mechanisms. If extensions
should become necessary they should never make the
overall structure of ET++ more complex and less elegant

3. The ET++ - Architecture

The basic building blocks of the ET++ architecture are a
class hierarchy and a small device dependent layer mainly
mapping an abstract window system interface to the
underlying real window system (Pig.2).

‘Ihe integration of foundation classes like those
known from the Smalltalk programming environment
[Go1831 was another goal. The term integration not only
means installing these classes in the class hierarchy but
also supporting them with mechanisms for interaction and
rendering on the screen.

Portability was a major issue in the design of ET++.
In contrast to the Macintosh, a UNIX environment lacks
an established window system standard. In order to
overcome these problems when building portable
applications, some implementors of user interface toolkits
and application frameworks build their own window
system which either occupies the entire screen or lives
inside a native window of the host environment. This was
not acceptable to us for a number of reasons: first, we
wanted to use all tools available on our Suns, second, we

Layor

Window System
UNIX

Figure 2: ET++ - architecture

Foundation classes represent basic data structures
(array, list, set etc.). The user interface classes
implement graphical eIements found in almost every user

September 25-30.1988 OOPSLA ‘88 Proceedings 47

interface toolkit such as menus, dialogs, or scrollbars.
Application classes are high level classes that factor out
the common control structure of applications running in a
highly graphic environment. The inteqace layer provides
a small set of functions for window management, input
handling, and drawing on various devices.

The basic application classes are derived from
MacApp and therefore have a similar behavior and similar
interfaces. These classes are Application,
Document, View, ViewFrame, Window, and
Command. They provide methods for the management of
documents, windows, and user commands. For a detailed
description of their structure and functionalities we refer
to [Sch86a, App86].

4. Design and Implementation Aspects

We will focus on the most relevant issues here, in order to
show the main differences from other systems and to
illustrate the benefits of an object-oriented approach.

4.1. Foundation Classes

Foundation classes are generally useful data structures.
These classes are not strictly coupled with the rest of
ET++ and can be used autonomously. ET++‘s foundation
classes include a simplified version of the Smalltalk-
collection classes [Go183]. Examples are Ob jList
(doubly linked lists), SortedObjList (sorted lists),
OrderedCollection (dynamically growing indexed
arrays), Set (lookup tables based on hashing) and
Dictionary (tables storing a set of associations
between keys and values). These data structures are used
heavily in the implementation of ET++ itself. Other
useful data types included in the foundation classes are
Point and Rectangle which are frequently used in
the graphics building blocks.

Change Propagation: Tools for graphical software
design methodologies often require a mechanism to
maintain the connectivity between individual graphical
symbols. ET++ supports the coordination among different
objects by a change propagation mechanism realized at
the root of its class hierarchy (by the class Object).
Change propagation is modeled after Smallcall-80’s
changed and update principle.

InputlOutput of Objects: The foundation classes
provides the framework to transfer arbitrarily complex
objects from disk to memory and vice versa. This
functionality is based on the methods PrintOn and
ReadFrom which may he overridden to store orreadan
object’s instance variables. Input/output of pointers or
references to other objects are handled properly by the
framework. Although C++ does not provide automatic
activationlpassivarion as found in Objective-C? [Cox86],
when working with ET++ object input/output requires

only a small programming effort.

The input/output facility of objects together with
the flexible stream classes of C++ allowed a general
implementation of a DeepCopy method. These stream
classes support not only the transfer of data to disk files
but also to a buffer in memory as well. The DeepCopy
method simply invokes the P rint On method to write an
object to a buffer in memory, followed by ReadFrom
that creates the duplicate object out of this buffer.

Another application of the object input/output
facility is a kind of inspector for an object. The method
Inspect defined in class Object uses the PrintOn
method to display the state of an object in an inspector
window. This window registers itself as one of the
object’s dependents, If the inspected object follows the
change propagation protocols and announces its changes,
the inspector window will be updated accordingly and
thus will always show the actual state of its object.

4.2. The Graphics Model of ET++

ET++ supports a simple 2-D graphics model which lacks
complex operations like scaling and rotating (we plan to
integrate zooming into the next release). The model is
based ontheclassesView,VObject.ViewFrame and
BlankWindow. Unlike MacApp, all user interface
elements like menus, dialogs and scrollbars are
implemented on top of these classes.

4.2.1. Abstract Drawing Surfaces (View)

The view represents an abstract and possibly arbitrarily
large drawing surface with its own coordinate system. It is
subclassed to add a data structure which reflects the
position of graphical elements. Its most important method
(Draw) is called by ET++ whenever the View or a part of
it needs to be redrawn. This method is never called
directly by an application. Instead, the application
informs the view on which rectangular part of its drawing
surface has changed and thus needs to be updated. The
next time the application is idle, ET++ will call the Draw
method for the union of all invalidated rectangles, thereby
avoiding unnecessary redrawing. In addition, the Draw
method is also called to print the View on other devices
(e.g. printers) without need for additional code in the
application.

As a benevolent side-effect of this indirect drawing
scheme it is always possible to simultaneously show a
View or different portions of that View at several places
on the screen without any need for additional support by
an application. When an area of the View is invalidated
ET++ will redraw all places on the screen where that area
is visible. Feedback functions like rubberbanding are not
based on the invalidation mechanism for optimization
reasons. They rather use direct drawing with an

OOPSLA ‘88 Proceedings September W3O,i%88

exclusive-or raster operation. ET++ provides support for
automatically replicating this drawing to all places where
a view is visible.

4.2.2. Visual Interaction Objects

Drawing into a View can be accomplished by using the
graphic primitives provided by the ET++ window system
interface (section 4.3). But most graphical operations are
basically executed to visually represent some conceptual
entity which has its specific interaction behavior (e.g.
buttons, menus, etc.). In an object-oriented environment
these entities are best represented as objects. We decided
to introduce the abstract class VOb ject (visual object)
with a standard protocol for size management, for input
handling, and for the object’s rendering on the screen.

VOb ject is the most general graphical class in
ET++ and, in this respect, corresponds to the class
Object in the overall class hierarchy. The VOb ject is
the result of an evolutionary process in which we tried to
factor out the common behavior of all visual interaction
objects.

An instance variable of type Rectangle holds the
VOb ject’s origin and extent which both can be modified
and retrieved by a number of methods. In addition, a
VOb ject defines an abstract protocol for maintaining a
basepoint which is essential for the alignment of
VOb jects representing text. Furthermore, a VOb ject
is also a subclass of the EventHandler, the root of all
classes handling input. To react to a certain input event a
corresponding method must be overridden. A default
implementation forwards the event to another
EventHandler.

4.23. ViewFrame

The most important subclass of VOb ject is the
ViewFrame. An ET++ ViewFrame is kind of a
rectangular “hole? in a View through which another
View or a part of it can be seen and scrolled. In other
terms, a ViewFrame establishes a clipping boundary and
has its own coordinate system to show that portion of a
View which reflects the current scrolling position.

Unlike a Frame in MacApp a ViewFrame has no
controls, no border, and no direct support for subframes
(ViewFrames inside ViewFrames). But the lack of
these elements is not a deficiency of a ViewFrame
becauseaViewFrame isitselfa Vobject andtherefore
can he installed in a View like any other visual object.
This simple model allows us to build arbitrary hierarchies
of Views as shown in figure 3.

In order to realize subframes in a ViewFrame an

intermediate View is necessary to install ViewFrames

and other graphical objects (VOb jects). Although this
might appear as complex it dramaticahy simplifies both

simple VObjects

Figure 3: View-hierarchy

the implementation and the conceptual graphics mode1
without sacrificing the concept of subframes. Moreover,
the model allows the contents of the sub-ViewFrame as
well as the View showing these sub-ViewFrames to be
independently scrolled.

An example for an application of this mechanism is
a View showing several dialog items. With our model it
is possible to install an arbitrary View as a scrollable
dialog item (text, item lists) in a dialog view.

4.2.4. Windows

Up to this point we have only discussed Views and
mechanisms to render portions of Views in other
Views. But Views are abstract; in order to make a
View visible it must be connected with some real area on
thescreen.Thisleads us totheclass BlankWindow,the
root of all window classes.

In ET++ a real window (as provided by the
underlying window system) is considered as a “hole” in
the screen desktop and thus corresponds closely to a
ViewFrame which represents a “hole” in a View. In
other words a window is a suliclass of a ViewFrame
(called BlankWindow)which implements the bindingto
the window interface. Like the ViewFrame, a
BlankWindow has neither a border nor a title bar; it is
completely blank. Its main purpose is to implement the
update mechanism (section 4.2.1) of the drawing model.
A BlankWindow maintains a list of rectangular areas
which represent the area on the screen that needs to be
updated. Rectangular areas are added to this list
whenever a part of the window becomes damaged or
exposed by some external event, or whenever the
application invalidates an area of a View shown in that
window.

In addition, the BlankWindow implements the
event loop. Unlike the Macintosh toolbox, ET++ has no
notion of an active window. All events are forwarded

September 25-30,1988 OOPSLA ‘88 Proceedings 49

from the window system interface to the visible window
enclosing the current mouse position. Consequently, an
ET++ application does not have a single event loop
(located e.g. in the Application object) but an event
loop for every window. The window, in turn, forwards the
input events to the interaction objects it contains (Views,

ViewFrames,VObjects,etc.).

Windows with borders and title bars are
implemented as subclasses of BlankWindow by adding
a View which contains the appropriate graphical elements
and a ViewFrame representing the Contents of the
window.

4.3. The ET++ Window System Interface

In order to be independent from a special environment
(e.g. a certain window system), system dependencies were
encapsulated by introducing an abstract system interface
defining the minimal set of low-level functions necessary
to implement ET+. These functions can be subdivided
into the following categories:

graphical functions, window management, and
input handling

font, cursor, and bitmap management

operating system services.

All categories are defined as abstract classes which are to
be subclassed for a specific environment or output device.
These subclasses are considered as the system interface
layer of ET++.

As an example we describe the structure of the class
hierarchy of the first category and discuss their interface
(Fig. 4).

Port (an abstract output port)

I

C++Port (generates the equivalent C++

PicturePort
statements)

(generates the ET++ exchange
format for images)

PrinterPort (abstract printing device)

t

PicPoft (generates pit-troff code)

PostScriptPort (generates PostScript)

WindowPort (abstract window device)

t

SunWindowPort (an implementation for
SunWindow)

XWindowPort (a (planned) implementation
for X-Window)

Figure4: Port-hierarchy

The root of this hierarchy is the abstract class Port

defining the graphical output primitives common to all
output devices (Fig. 5). Subclasses of a Port override the

abstract output primitives with a device dependent
implementation or add device specific methods. The
abstract class WindowPort, for example, extends the
output interface of a Port with methods for input
handling and window management. The underlying
window system must actually only provide mechanisms
for the management of overlapping rectangular areas on
the screen. All drawing including window borders and
title bars is performed completely under control of ET++.
Thesubclass SunWindowPort isan implementationof
WindowPort for Sun workstations; an XWindowPort

(for X-Windows [Sch86b]) will soon be added.

Open, Close
Stroke{Line,Rect,Oval,RoundRect,Arc,

Polygon}
Fill(Rect,Oval,RoundRect,Arc,Polygonj
ShowBitmap
ShowPicture
ShowChar, ShowString
SetClip, ResetClip, SetOrigin
GiveHint

Figure 5: Graphics primitives

Usage of these classes is straightforward: ET++
maintains a variable port that holds a reference to the
current output port. All drawing primitives used in an
application are automatically applied to this current port.

The device dependent impIementation of the
graphic primitives of Fig. 5 is stateless, i.e. all primitives
take their drawing attributes as parameters. Because this
interface is cumbersome to use we added a second
interface which maintains state for attributes such as fill
pattern, fill mode, pen pattern, pen position, etc. thereby
providing an alternative set of graphic functions with less
parameters. Other interfaces exist to further reduce the
number of parameters for common usages. All these
alternative interfaces are based on the stateless primitives
implemented in the device independent portion of the
abstract Port and, as a consequence, do not enlarge the
device interface.

Except GiveHint all methods from figure 5 have
an evident functionality. GiveHint provides a
mechanism to let drivers optimize their internal behavior
by giving them some hints about the high-level structure
of a sequence of graphic primitives. A certain value out of
an open ended set of constants specifies the additional
information for a specific driver. Most calls to
GiveHint come in pairs, bracketing a sequence of
graphic primitives. Notice that all calls to GiveHint are

of advisory nature only and can be safely ignored by the
driver. There is also no need for an application to provide
hints by calling GiveHint. Three examples illustrate

‘I OOPSLA ‘88 Proceedings September 25-30.1988

theusage of GiveHint:

Double Bu#iering. Double buffering provides for flicker
free screen update. This simplifies the implementation
because it is no longer necessary to minimize the update
region by sophisticated and complex strategies. All
drawing requests between a pair of GiveHint calls are
done in a memory bitmap whose size is given as an
argument. At the end of the sequence the bitmap is copied
to the screen in a single operation.

Character Batching. The text classes display text
essentially by calling the method ShowChar. It may
seem inefficient passing every single character through
the device switch and the clipping machinery of the
window system in order to get displayed. On the other
hand, the complexity of the text manipulation classes
would increase substantially if only the method
ShowString would be used just to optimize speed. TO
overcome this dilemma, the method GiveHint is used
to inform the driver when a new Iine starts and again
when it ends. With this information at hand the driver is
able to collect single characters of a line into some data
structure (a batch) and use one single optimized operation
to clip and display the entire batch.

High Resolution Printing. In this context GiveHint is
used for high resolution printing of text, e.g. on a
PostScript printer. Usually, all text positioning is based
on screen pixel coordinates. But a PostScript printer is
able to adjust characters much more precisely.
GiveHint may be used to give additional information
about synchronization points within a line to a PostScript
driver.

4.4. Text Handling

Manipulating text is an essential part of most applications.
Text editing features are typically needed in many
different contexts such as dialog boxes (dialog items),
diagrams (annotations), and browsers (program text). Our
goal was to design a framework that can be used in a
general way. To achieve this goal we strictly separated
between a class to render and format text (TextView)
and classes for managing the data structures to store the
text. These classes are descendants of an abstract class
Text defining a standardized protocol for all Text
classes (Fig. 6). To display and edit a text, an instance of a
subclass of Text is passed to a TextView. The
TextView acts as Controller and View in the model-
view-controller (MVC) [SchMa] paradigm, the instance
of a Text class represents the Model. The most important
(abstract) methods of the class Text are Cut, copy,
Paste, and GetIterator. The method Get-
Iterator returns an instance of the class Text-

Iterator. Thisiteratorretrieves a sub-sequenceoftext
character by character, word by word, or line by line

Object

CodeTextView

RestrictedTextView

t

CheapText

GapText

L StytedText

L VObjectText

Figure 6: Text Classes

together with the bounding box and the baseline.

CheapText is the simplest implementation of a
text data structure and is typically used by dialog items.
The underlying data structure is a dynamic character
array. GapText should be used for larger texts and
implements the text abstraction as a character array with a
gap such as found, e.g., in the text package of the Andrew
system [Han87]. A subclass of GapText. the class
S tyledText , supports multifont text,

An interesting subclass of Text is VOb ject -
Text. The protocol supported by visual objects (section
4.2.2) makes it possible to consider a VOb j ect as a
glyph that can be integrated into text and behaving as an
ordinary character. This integration of VObjects into
text is realized by the class VObjectText which
extends the methods for cutting and pasting text
intermixed with visual objects. Fig. 7 shows an instance
of a VObjectText rendered by a TextView:
Applications of inserting instances of VOb jects into a
text are dialog items such as buttons or annotation items
as found in hypertext systems. In order to make the dialog
items in the text responsive to user input, the methods
interpreting input events of the class TextView have to
be overridden to call the corresponding method of the
VOb ject. Remember that visual objects are a subclass
of EventHandler and therefore support these methods.
TextViewitself isasubclassof VObject anditisthus
possible to nest instances of the class TextView

September 25-30,1988 OOPSLA ‘88 Proceedings 51

Fonts Styles sizes Format

An example of a VObjectText

;ome Examples of instances of UObJecis in a tent. This item

s an onnofaled/fem. Clicking on it pops up a window to edit

m annotation. Other examples ere an tlctiongutton or some \ /
30@@ rat/u buffuns. The neHt two eHomples are

UeuMusmer that con be ScrotIed independently of the rest 01

he tent:

o linish 1 an instance of a Borderltem

Figure 7: An example of a VObjectText

recursively. ViewFrames areasubclass of VObject
and their instances can be integrated into a text, too. Since
all applications use ViewFrames to display their
Views and since the class VObjectText establishes
the ground to integrate them into a text we have build a
flexible yet simple framework to integrate text and
graphics. In Fig. 7 the MouseView from [Sch86a] is
installed in a ViewFrame and integrated into the text.
Associated with the ViewFrames is their scrolling
mechanism. This means, that it is possible to scroll the
View shown in the ViewFrame (the mouse picture)
independent from the rest of the text. The insertion of
ViewFrames into text is an example of a view hierarchy
(section 4.2.3). Given the general abstraction of
VOb jet t s, the implementation of this special kind of
text structure was very straightforward.

A graphical editor, e.g., rises TextViews for
annotations and installs them directly into its own view.
In order to get scrollable text in dialog boxes or in a
program editor a TextView has to be installed in a
ViewFrame. The predefincd class EditTextItem
used in dialog boxes is simply a subclass of ViewFrame
showinga TextView. The class CodeTextView adds
auto indenting and find-matching-bracket features to the
functions provided by a TextView. Instances of the
class RestrictedTextView are used whenever the
edited text has to conform to a client specified format.
This format is specified with a regular expression and
checked upon every insertion or deletion of text (there is a
class RegularExpression in the foundation CkiSSeS).

A typical application of RestrictedTextViews are

dialog items to enter floating point or integer numbers.

Following our goal to use uniform mechanisms
wherever possible, the implementation of the class
TextView uses the same mechanism for invalidating a
region of a view in order to update the screen as described
in a previous section. The possibility of double buffering
considerably reduced the implementation effort for the
text building block. We did not have to design an
incremental update algorithm to reduce the amount of
flickering on the screen. With double buffering we
achieved a flicker free screen update, even for text
displayed against arbitrary backgrounds.

4.5. Dialog Classes

Dialog items like menus, buttons, scrollbars, and editable
texts are the most basic elements of an interactive user
interface and are available in almost any user interface
toolkit. But usually there is only a fixed set of them and
no simple way to build new dialog items from existing
ones or to construct them from predefined lower level
components. A button, for example, may consist of an
image or text, a single or double borderline, and a special
behavior to react on mouse clicks. A scrollbar typically
consists of an up and a down button together with an
analog slider which itself may be a filled rectangle, an
image, or even a number reflecting its current value. All
these parts may be useful for other kinds of dialogs or in a
completely different context.

At tirst sight multiple inheritance seemed to be a
possible way to combine various kinds of basic classes to
form the complex items mentioned above. But on second
thoughts it became obvious that multiple inheritance was
not the mechanism we were looking for. As an example,
multiple inheritance does not allow combination of a
TextItem and two BorderItems in order to get a
DoubleBorderedTextItem

Another observation was that dialog items most
often come in groups. The Macintosh printing dialog, for
example, consists of about 30 different items which are
placed nicely in a dialog window. On the Macintosh the
placement of dialog items can be done interactively with
the resource editor. But if the size of a single item
changes, the overall layout of the dialog has to be redone.
Moreover, the precise horizontal and vertical alignment of
text items is a tedious task if done interactively. This lead
us to integrate some layout management based on a
hierarchical and high level layout description rather than
on the explicit placement of items.

We found an almost perfect approach in the UNIX
text processing tool eqn [KerX], a trofl-preprocessor for
typesetting mathematics. Eqn translates a simple
description of a formula into a sequence of typesetting
commands. The basic items of eqn are characters or

52 OOPSLA ‘88 Proceedings September 2530,1988

strings which can be pieced together with a number of
layout operators to form more complex items: Repeated
grouping of items finally leads to a tree representation of
the formula.

We used this approach to implement all our dialog
classes in the following way: a dialog is considered as a
tree of VObjects, with simple VObjects
(Text Items, ImageItems etc.) as leafs and
COmpOSite VObjects (DialogNodes) as inner nodes.
A DialogNode is a object that allows several
VObjects(e.g. a Collection) tobecombinedintoa
single, composite object which can be treated as a unit.
The class DialogNode is abstract because it does not
know anything about the layout of the VObjects it
contains. Its main purpose is to apply methods executed
on itself(such as Draw,Highlight.Move etc.)toau
of its components and to forward input events to one of
them. Subclasses of DialogNode are responsible for
controlling both the communications between their
components and the relationship between the location of
these components.

Fig. 8 shows the dialog portion of the class hierarchy.

VObject

Textltem

hageltem

Button

f

(non-editable unformated text)

(him image)

t

ActionButton

OnOff8utton (a button with state)

t

RadioButton

ToggleButton

DialogNode (a composite VObject)

1

AnalogSlider (A VObject with any

L ScrollBar
number of thumbs)

Borderltem (a VObject with border and title)

CluStW (a compositeVObject with a

t

OneOfCluster
tabular layout)

ManyOfCluster

Figure 8: Excerpt of the dialog classes

A Border It em, for example, draws a borderline around
its contents and displays an optional title centered above
its contents. The contents as well as the title are
considered as VOb j ec t s .

The most important subclass of a DialogNode is
the Cluster which implements a tabular layout of the
contained VOb jects. The commonly used horizontal or
vertical lists of items are special cases of a general layout.
Each item can be aligned in a Cluster horizontally as
well as vertically in a number of ways (left, right, center,
top, bottom, base).

The Cluster presents a very powerful mechanism
to fit the needs of complex dialog layouts without having
to position items explicitly (Fig. 9).

new BorderItem(new TextItem("Lines"),
new OneOfCluster(HLeft,

new

new

new

new

0

1,
1;

ClusterWBase,
new RadioButton,
new TextItem ("none"),O),
Cluster (VCenter,
new RadioButton,
new ImageItem(imagel),O),
ClusterWCenter,
new RadioButton,
new ImageItem(imageZ),O),
Cluster(VCenter,
new RadioButton,
new ImageItem(image3),0),

Figure 9: A dialog and its defining statement

The Oneofcluster used in Fig. 9 is a subclass of
Cluster that implements the one-of behavior of several
on-off-buttons.

A DialogView implements a standard behavior
for modal or modeless dialog boxes. Its method
DoCreateDialog must be overridden to create the
dialog as a tree of dialog items. In DoSetupDialog all
initial settings of dialog items should be done. The
method Control must be overridden to react to all
dialog interactions.

In addition, the DialogView registers all
EditTextItems, maintains an active insertion point,
and allows cycling through these items with a key.

September 25-30,1988 OOPSLA ‘88 Proceedings 53

4.6. CollectionView and Menus

Another specialized view is the CollectionView,
which displays any collection of VOb ject s as provided
by the foundation classes in a tabular format. In fact its
implementation is based on the class Cluster of the
dialog classes. It also takes care of selecting and
deselecting single items as well as contiguous and non-
contiguous areas of items. The CollectionView is a
basic building block for all user interface objects which
have to present a collection of selectable items. It is the
root class for menus, menu bars, tools’ palettes, or
scrollable lists of dialog items. Due to the very general
natureof CollectionView a Menu, fOreXan@e,ciUI

always scroll and show items not only as lists but also in a
tabular style. Hierarchical popup menus are implemented
with items of class popup 1 tern,, which contain a
submenu in an instance variable and implement the
special behavior to open thar submenu.

The evolution of the classes CollectionView
and Menu illustrates a very interesting example of the
principle “Promotion of Structure” as defined in [Ste86].

In a first version of the chss Menu, the item list
was implemented as a simple linked list for efficiency
reasons. Later it became necessary to have the items of a
font menu sorted alphabetically. The first idea was to
integrate a sort method, but on second thoughts we
decided to replace our linked list in the implementation of
the chss Menu with the more general data structure
Co 1 lect ion found in the foundation classes. To show a
sorted menu it was now only necessary to use a
SortedObjList ratherthanan ObjList.

At that time the class Menu was basically a View
which could render a Collection of special
MenuItems as a vertical list from which one item could
be selected with the mouse. This mechanism seemed
useful in itself e.g. for implementing a palette of tools
like the one found in MacDraw. Consequently the next
step was to factor out this mechanism into a class called
Collectionview.

Simultaneously, we extended the layout algorithm
to show a Collection not only vertically but also in a
two-dimensional style. With this extension the
CollectionView became one of the most reusable
parts of ET++. We became able to build not only menus
but also menu bars for Macintosh-style pulldown menus,
scrollable lists of arbitrary items, and tools’ palettes with
a few lines of code.

In yet another step we extended the
CollectionView toworkwiththegeneral VObject
instead of a more specialized MenuItem which enabled
us to implement the graphics part of a simple spreadsheet
application with each cell containing a full-fledged text
editor with just a couple of lines.

The last step was to replace the special layout
algorithm by a dialog item of type Cluster to further
reduce the source bulk of CollectionView.

5. The Anatomy of an ET++ - Application

This section tries to give an impression of how the
different classes of ET++ fit together and what they
contribute to a typical application. We briefly discuss
some structural and functional properties of the tree editor
displaying the class hierarchy in Fig. 1. This tree editor is
a very simple application of some 500 lines of code but
nevertheless shows the most important characteristics of
an ET++ application.

The following features are automatically provided
by the application framework classes and need no special
programming effort.
- scrollable views (including autoscrolling)

splittable views allow several panes (e.g.
ViewFrames) hking on disconnected pOrtiOnS

of the tree view
- multiple documents in multiple windows and

window management dialogs
- automatic file and dialog management for loading

and storing a tree onto disk

printing of a view and dealing with multiple pages

generating the ET++ exchange format of images
which can be read by other ET++ applications, for
example a graphics editor

- double buffering for flicker-free screen update.

The implementation of the tree editor reveals the high
reusability of the ET++ classes and centers around the
D i a 1 ogNode which provides a convenient framework to
handle the layout management of several subtrees. The
subdivision of the window into a dialog and a tree part is
another application of the layout mechanism provided by
the dialog classes.

The visual representation of inner nodes and leafs
of a tree are just instances of the very general class
VOb j ect . The current implementation uses simple static
Text Items, but the modification of a single line would
suffice to replace them with a full-fledged text editor (e.g.
an EditTextItem). Forwarding of input events is
implemented in the DialogNode. Maintaining an
active insertion point is handled by the DialogView.

A DialogNode manages a Collection of
arbitrary VOb jects. Thus, the resulting data structure
underlying the tree editor is basically a Collection of
Collections. Transfering this data structure to disk
and reading it back into memory is almost completely
handled by the foundation classes. As long as no new
subclasses of VOb jects are inserted into the tree no

54 OOPSLA ‘88 Proceedings September 2!5-30,1988

additional code for input/output has to be written. Table 2

The implementation of undoable commands, e.g.
relinking of leafs and subtrees is substantially simplified
with the class Command and the possibility to make
deepcopies of arbitrary objects. This provides an easy
way to make a copy of a subtree before executing a

command.

level classes

0 13 9.1

1 24 17.1

2 33 23.6

3 19 13.6

4 16 11.4

5 18 12.9

6 11 7.9

7 6- 4.3

6. Current Status

The ET++ class library is currently in use by three groups
at our institute. Recently, we started to use ET++ in
student projects. During the development of the class
library several applications evolved which were used to
test the functionality of ET++: A drawing program
comparable with MacDraw which also supports
connections between graphical elements, a tree editor
used to browse in the class hierarchy (Fig. 1). and a
spreadsheet, just to name some.

6.1. Some Statistics

The current implementation consists of 140 classes
containing 1653 methods. 309 of these methods are C++
inline functions typically used to access instance
variables. Only a subset of these classes and methods has
to be known for using ET++.

Table 1

I lines of code 1 classes I methods I

Foundation 6ooo
Classes

34 403

Application

Framework
13200 97 1071

I
Device

6800 Interface (3~C) 1 9 1 179 1

We estimate that around 30-40 classes are used to develop
a typical application. Our class library comprises 23000
lines of C++ and 3000 lines of C code (Table 1). C has
only been used in the interface code to the window
system. Table 2 shows the distribution of the classes
among the different levels of the hierarchy giving an
indication of the degree of subclassing used in ET++.

(Level 0 contains the class Object and other classes not
derived from Object). These numbers give an idea of
the high-reusability of the classes for the implementation
of ET++ itself.

%ofall

classes

7. Related Work

The architecture of MacApp provided the base for ET++.
There already was an effort in the Intermedia project
[Mey86,Yan88] to port the MacApp framework to non-
Macintosh environments such as Sun workstations or
IBM RT PCs. Their approach differs from ours in that
they based their MacApp framework on a port of the
Macintosh toolbox, CadMac done by Cadmus Computer
Systems. CadMac is implemented in conventional C and
does not use object-oriented techniques. Intermedia
extended the object structure of MacApp by introducing
special subclasses for their hypermedia system. The
resulting system is not integrated into a standard window
system. Intermedia is currently one large integrated
process with the disadvantage that it is impossible to run
several tools simultaneously. Due to its smooth
integration into an existing window system, tools
developed with ET++ can run in parallel with already
existing ones.

Another user interface toolkit available for UNIX
environments is IC-PAKfw 201 [Cox86]. The IC-PAK
201 class library from StepstoneTH is a collection of
Objective-C classes which they call user inre$zce
software-Es. The main point where ET++ and IC-PAK
201 differ is the user interface architecture they are based
upon. IC-PAK 201 uses Smalltalk-8O’s model-view-
controller (MVC) paradigm whereas ET++ is based on
MacApp. Beyond this architectural difference ET++
provides a richer set of user interface classes. Unlike
MacApp or ET++, IC-PAK does not support automatic
transparent printing.

Other object-oriented class libraries for Unix
environments typically address only a subset of the needs
of graphical applications. For example the object-oriented
program support (OOPS) class library [Gor87]
corresponds roughly to the foundation classes provided in
ET++ but provides no classes except Point and
Rectangle for building graphical applications. We
were not able to base our work on OOPS because it was

Seplember 25-30,1988 OOPSLA ‘88 Procedings 56

not available when we started. OOPS offers some tation of a DeepCopy method. Another application of
interesting classes not provided by our foundation classes streams is a text window with a stream interface that is
especially the ones to program with coroutines similar to used to display debug messages. Its implementation
those of Smalltalk-80, consisted of overriding one method of a stream class.

The X Toolkit lRao87] coded in conventional C
with some object-oriented conventions is based on the
abstraction of a widget. This is an object providing a user
interface abstraction roughly corresponding our
VOb jet t s. The X Toolkit includes a set of implemen-
tations of this abstraction, for example, buttons, labels,
forms, or scrollbars. The functionality provided by these
classes is comparable with the user-interface classes of
ET++. The main difference between ET++ and the X
Toolkit or other frameworks for X windows such as
Interviews Kin871 or the Andrew Toolkit Ipa1881 is the
homogeneous integration of foundation and application
classes providing, for example, the base for undoable
commands or mouse tracking. Another difference is that
these systems are not based on a graphical model
separating between Views and ViewFrames allowing
the transparent integration of features like scrolling,
autoscrolling, or splittable views into a framework. The X
Toolkit and Interviews are tightly coupled with the
underlying X window system. An exception is the
Andrew Toolkit which is based on a similar abstract
window system interface as ET++. Another feature of the
Andrew Toolkit is the integration of dynamic linking into
an object-oriented environment. Recently we started
experimenting with dynamic linking in ET++, too and we
integrated this feature transparently with our object
inpu;/output facility.

The strict compile time checking of C++ was a big
help for the parallel development of ET++. When merging
our development efforts, the new version was in most
cases up and running as soon as it compiled error-free.

ET++ has been developed with a C++ version not
supporting multiple inheritance. The current class
hierarchy of ET++ is easy to understand and we are not
sure if we would have arrived at the same clear class
structure had we begun with multiple inheritance in the
first place. We are looking forward to experimenting with
the new version of the C++ compiler supporting multiple
inheritance.

In contrast to Objective-C, C++ does not provide
any information about the class structure or the field
layout of an object at run time. Having some of this
information available, input/output of objects could he
provided at the root of the class hierarchy for all classes.
C++ has no built-in facility to check the type of an object
at runtime, With some programming conventions it is
possible to implement an IsKindOf method in the class
Object . This is done in the OOPS library, and in ET++
we use a similar scheme. But this leads to different roots
of the class hierarchies and to different conventions.

8. Implementing an Application Framework in C++
under UNIX

Using C++ as the implementation language of ET++ has
worked extremely well. The well known efficiency of
C++ was a very favorable background for the implemen-
tation of ET++. Indeed, we never experienced efficiency
problems due to dynamic binding. In addition to the
object-oriented concepts C++ provides some other
features that improved the programming interface as well
as the code of ET++: Default arguments are often used in
the constructors of ET++ classes and support both easy to
use but still flexible method interfaces. Operator
overloading is another feature of C++ that was very useful
for implementing the two classes Point and
Rectangle. Operator overloading helped us to reduce
the bulk of code considerably and also improved its
readability. The related feature of function overloading
was used mainly in constructors and is an elegant way to
provide alternative interfaces to create instances of a class.

Executable modules produced with the ET++
library are quite large (0.8-l MByte). For our draw
application, for example, the binary bulk can be divided
into: 150 KByte application code, 300 KByte ET++
library, 400 KByte SunWindow libraries. When running
several ET++ tools in parallel, the memory requirements
are high. These memory problems are drastically reduced
with the possibility to create shared libraries as included,
e.g., in Sun’s new operating system release.

9. Conclusions and Summary

ET++ is an application framework based on the
architecture of MacApp. It is smoothly integrated into a
Unix environment with a conventional window system.
All levels of the implementation use object-oriented
techniques. The novel as@~ts described in this paper were
an approach for handling composite objects and their
declarative layout specification, classes for editable text
allowing the integration of arbitrary interaction objects,
and finally a model to build hierarchies of scrollable
views.

The stream classes as provided by C++ proved to be
a very powerful abstraction. As shown in the foundation
classes, streams provided for a straightforward implemen-

We believe that without applying object-oriented
techniques it would not have been possible to implement a
system that comprises the functionality of the Macintosh
toolbox and of MacApp by only two programmers in just
one year.

56 OOPSIA ‘88 Proceedings September 25X41988

+12

10. Future Work bin871

The starting point for our effort was to develop CASE-
tools. We are now starting to work on tools for well
known design methods such as entity-relationship
modeling. In the near future we are particularly interested
in tools and methods for object-oriented design.

Another aspect that we want to study is the
integration of the ET++ application framework into a
server-based window system such as NeWSTM [Mic861 or
X-Windows. One benefit of a server-based window
system will be a further reduction in the size of the
executable modules. NeWS supports dynamic loading of
client code into the server process, and we are interested
in what parts of an application framework cati be moved
into the server.

B4=861

W@61

[Mic86]

Acknowledgements [pa1881

The authors would like to thank Peter Schnorf, Bruno
Scmffer, Christoph Draxler, Karin Imholz and Anna
Schlosser for their helpful comments on earlier versions
of this paper. We are grateful to our early users -
Wolfgang Pree, Hanspeter M&se&&k and Duri Schmidt
- for their tolerance working with an evolving
experimental system.

[Rao87]

References

[App85] Apple Coniputer, Inside Macintosh Volume I,
Addison-Wesley, Reading, Mass., November
1985.

[Ros86]

[App86] Apple Computer, MucApp Programmer’s
Manual, Apple Computer, Inc., Cupertino, CA,
November 1986.

[Cox86] Brad J. Cox, Object Oriented Programming,
Addison-Wesley, Reading, Mass., 1986.

[Go1831 Adele Goldberg and David Robson. SmaZltulk-
80, The Language and its Implementation,
Addison-Wesley, Reading, Mass., November
1983.

[Sch86b]

[Sch86]

[Gor87] Keith E. Gorlen, “An Object-Oriented Class
Library for C++ Programs,‘* Software--Practice
and Experience, vol. 17, no. 12, pp. 899-922,
December 1987.

[Sch86a]

[S&863
[Han871 Wilfred J. Hansen, “Data Structures in a Bit-

Mapped Text Editor,” BYTE, vol. 12, no. 1, pp.
183-189, January 1987.

[Ker75] B. W. Kemighan and L. L. Cherry, “A System
for Typesetting Mathematics,” Comm. Assoc.
Comp. Much., vol. 18, pp. 151-157, Be11
Laboratories, Murray Hill, New Jersey, March
1975.

[Yan88]

Mark A. Linton, “Interviews Reference Manual
(Version 2-l),” Computer Systems Laboratory,
Stanford University, September 1987.

Rudolf Marty and Erich Gamma, ET - An
Editor Toolkit for Bitmap-oriented
Workstations, 86, Institut fiir Informatik der
Universitit Ziirich, Ziirich, 1986.

Norman Meyrowitz, “Intermedia: The
Architecture and Construction of an Object-
Oriented Hypermedia System and Applications
Framework,” OOPSLA’85, Special Issue of
SIGPLAN Notices, vol. 21, no. Il. pp. 186-201,

’ Portland, Oregon, November 1986.

Sun Microsystems, Inc., NeWS Preliminary
Technical Overview, October 1986.

Andrew J. Palay, Wilfred J. Hansen, Michael L.
Kazar, Mark Sherman, Maria G. Wadlow,
Thomas P. Neuendorffer, Zalman Stem, Miles
Bader, and Thorn Pefers, “The Andrew Toolkit
- An Overview,” in Proc. EUUG, London, 7-9
April, 1988.

Ram Rao and Smokey Wallace. “The’ X
Toolkit: The Standard Toolkit for X Version
11.” in USENIX Association Conference
Proceedings (Atlanta, Georgia, June P-13). pp.
117-129, USENIX Assoc., El Cerrito, Calif.,
1987.

Larry Rosenstein, Ken Doyle, and Scott
Wallace, “Object-Oriented Programming for
Macintosh Applications,” in ACM Fall Joint
Computer Science Conference, Dallas Texas,
pp. 31-35, November 2-6.1986.

Robert W. Scheiffler tqd Jim Gettys, “The X
Window System,” Transactions on Graphics,
vol. 5, no. 2, pp. 79-109, April 1986.

Kurt J. Schmucker. “Macapp: An Application
Framework,” Byte, vol. 11, no. 8, pp. 189-193,
August 1986.

Kurt J. Schmucker, Object Oriented
Programming for the Macintosh, Hayden,
Hasbrouck Heights, New Jersey, 1986.

Mark Stefik and Daniel G. Bobrow, “Object-
Oriented Programming: Themes and
Variations,” The AI Magazine, vol. 6, no. 4, pp.
40-62, Winter 1986.

Nicole Yankelovich, Bernard J. Haan, Norman
K. Meyrowitz, and Steven M. Drucker,
“Intermedia: The Concept and the Construction
Of a Seamless Information Environment,” IEEE
Computer, pp. 81-96, January 1988.

September 2530,1988 OOPSLA ‘88 Proceedings

