
ET-BERT: A Contextualized Datagram Representation with
Pre-training Transformers for Encrypted Traffic Classification

Xinjie Lin1,2, Gang Xiong1,2, Gaopeng Gou1,2, Zhen Li1,2, Junzheng Shi1, Jing Yu1,2∗
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2School of Cyber Security, University of the Chinese Academy of Sciences, Beijing, China

ABSTRACT
Encrypted traffic classification requires discriminative and robust
traffic representation captured from content-invisible and imbal-
anced traffic data for accurate classification, which is challenging
but indispensable to achieve network security and network man-
agement. The major limitation of existing solutions is that they
highly rely on the deep features, which are overly dependent on
data size and hard to generalize on unseen data. How to leverage
the open-domain unlabeled traffic data to learn representation with
strong generalization ability remains a key challenge. In this paper,
we propose a new traffic representation model called Encrypted
Traffic Bidirectional Encoder Representations from Transformer
(ET-BERT), which pre-trains deep contextualized datagram-level
representation from large-scale unlabeled data. The pre-trained
model can be fine-tuned on a small number of task-specific la-
beled data and achieves state-of-the-art performance across five
encrypted traffic classification tasks, remarkably pushing the F1 of
ISCX-VPN-Service to 98.9% (5.2%↑), Cross-Platform (Android) to
92.5% (5.4%↑), CSTNET-TLS 1.3 to 97.4% (10.0%↑). Notably, we pro-
vide explanation of the empirically powerful pre-training model by
analyzing the randomness of ciphers. It gives us insights in under-
standing the boundary of classification ability over encrypted traffic.
The code is available at: https://github.com/linwhitehat/ET-BERT.

CCS CONCEPTS
• Information systems→ Traffic analysis; • Security and pri-
vacy→ Network security; • Computing methodologies→ Arti-
ficial intelligence.

KEYWORDS
Encrypted Traffic Classification, Pre-training, Transformer, Masked
BURST Model, Same-origin BURST Prediction
ACM Reference Format:
Xinjie Lin1,2, Gang Xiong1,2, Gaopeng Gou1,2, Zhen Li1,2, Junzheng Shi1,
Jing Yu1,2∗. 2022. ET-BERT: A Contextualized Datagram Representation
with Pre-training Transformers for Encrypted Traffic Classification. In
Proceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29,
2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3485447.3512217

∗ Corresponding Author.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’22, April 25–29, 2022, Lyon, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9096-5/22/04.
https://doi.org/10.1145/3485447.3512217

✔ ✔

✔

✔ ✔

✔

✔ ✔

✔

✔ ✔

✔ ✔

Figure 1: Fourmainkinds of EncryptedTrafficClassification
Methods: (a) Plaintext feature based fingerprint matching.
(b) Statistical feature basedmachine learning. (c) Raw traffic
feature based ML. (d) Raw traffic based pre-training.

1 INTRODUCTION
Network traffic classification, aiming to identify the category of
traffic from various applications or web services, is an important
technique in network management and network security [4, 32].
Recently, traffic encryption has been widely utilized to protect the
privacy and anonimity of Internet users. However, it also brings
great challenges to traffic classification since themalware traffic and
the cybercriminals can evade the surveillance system by privacy-
enhanced encryption techniques, such as Tor, VPN, etc. Traditional
methods capture patterns and keywords in the data packets from
the payload, called deep packet inspection (DPI), fail to apply to
the encrypted traffic. Furthermore, due to the rapid development of
encryption technology, traffic classification methods for a specific
kind of encrypted traffic cannot adapt well to the new environment
or unseen encryption strategies [27]. Therefore, how to capture the
implicit and robust patterns in the diverse encrypted traffic and
support accurate and generic traffic classification is essential to
achieve high network security and effective network management.

To tackle the above problem, research in encrypted traffic classi-
fication has evolved significantly over time as illustrated in Figure 1.
Early works [35] leverage the remaining plaintext in the encrypted
traffic (e.g. certificates) to construct the fingerprint and conduct
fingerprint matching for classification (Figure 1(a)). However, these
methods are not applicable to the newly emerging encrypted tech-
niques (e.g. TLS 1.3) since the plaintext becomes more sparse or

633

https://doi.org/10.1145/3485447.3512217
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485447.3512217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3485447.3512217&domain=pdf&date_stamp=2022-04-25

WWW ’22, April 25–29, 2022, Lyon, France Xinjie Lin et al.

obfuscated. To this end, some works [25, 34] extract the statistical
feature and employ classical machine learning algorithms to handle
the encrypted traffic without plaintext (Figure 1(b)). These methods
highly rely on expert-designed features and have limited generaliza-
tion ability. Recently, deep learning methods [19, 20] automatically
learn complicated patterns from the raw traffic (Figure 1(c)), and
achieve remarkable performance improvement. However, these
methods highly rely on the amount and distribution of labelled
training data, which is easy to cause model bias and hard to adapt
to newly emerged encryption.

In recent years, pre-training models have great breakthrough
in nature language processing [6], computer vision [8] and a wide
range of other fields [2, 17]. Pre-training based methods adopt large
unlabeled data to learn the unbiased data representations. Such data
representations can be easily transferred to the downstream tasks
by fine-tuning on limited amount of labeled data. In the field of
encrypted traffic classification, the most recent work [12] directly
applies the pre-training technique and obtains obvious improve-
ment on VPN traffic classification, but it lacks a pre-training task
designed for traffic and a reasonable input representation to demon-
strate the effect of the pre-training model.

In this paper, we propose a novel pre-training model for clas-
sifying encrypted traffic, called Encrypted Traffic Bidirectional
Encoder Representations from Transformer (ET-BERT). It aims
to learn generic traffic representations from large-scale unlabeled
encrypted traffic (Figure 1(d)). We first propose a raw traffic repre-
sentation model to transform the datagram to language-like tokens
for pre-training. Each traffic flow is presented by a transmission-
guided structure, denoted as BURST, which serves as the input. The
proposed framework consists of two stages: pre-training and fine-
tuning. Specifically, the pre-training network with Transformer
structure obtains datagram-level generic traffic representations by
self-supervised learning on large-scale unlabeled encrypted traf-
fic. Thereinto, we propose two novel pre-training tasks to learn
the traffic-specific patterns: the Masked BURST Model (MBM) task
captures the correlated relationship between different datagram
bytes in the same BURST and represent them by their context; the
Same-origin BURST Prediction (SBP) task models the transmission
relationships of preceding and subsequent BURST. Then, ET-BERT
incorporates with the specific classification task and fine-tune the
parameters with small number of task-specific labeled data.

The main contributions of this paper are summarized as follows:
(1) We propose a pre-training framework for encrypted traffic clas-
sification, which leverages large-scale unlabeled encrypted traffic
to learn generic datagram representation for a series of encrypted
traffic classification tasks. (2) We newly propose two traffic-specific
self-supervised pre-training tasks, e.g.Masked BURST Model and
Same-origin BURST Prediction, which capture both byte-level and
BURST-level contextual relationships to obtain generic datagram
representations. (3) ET-BERT has great generalization ability and
achieves a new state-of-the-art performance over 5 encrypted traf-
fic classification tasks, including General Encrypted Application
Classification, Encrypted Malware Classification, Encrypted Traf-
fic Classification on VPN, Encrypted Application Classification on
Tor, Encrypted Application Classification on TLS 1.3, and outper-
forms existing works remarkably by 5.4%, 0.2%, 5.2%, 4.4%, 10.0%.

Meanwhile, we provide theoretical explanation and analysis on the
powerful performance of the pre-trained model.

2 RELATEDWORK
2.1 Encrypted Traffic Classification
FingerprintConstruction.Unlike the packet-inspection approach
under plain-text traffic, which fails when the traffic is encrypted,
some studies suggest using unencrypted protocol field information.
FlowPrint [35] extracts device, certificate, size, and temporal fea-
tures to represent each flow and constructs a fingerprint library by
clustering and cross-correlating for efficient traffic classification.
However, these fingerprints are easily tampered with in virtual
communication networks and lose their correct meaning, whereas
our model does not rely on any plain-text information.

Statistical Methods.Most studies of encrypted traffic exploit
the statistical properties of the traffic to be independent of traffic en-
cryption. AppScanner [34] exploits statistical features of packet size
for training random forest classifiers, while BIND [1] also exploits
statistical features of temporality. However, it is hard to design
generic statistical features to cope with the massive applications
and websites that keep becoming complex, while our model does
not need to rely on human-designed features.

Deep Learning Models. Encrypted traffic classification using
supervised deep learning have become a popular approach that
automatically extracts discriminative features rather than relying
on manual design. DF [33] uses convolutional neural networks
(CNNs) and FS-Net [20] uses recurrent neural networks (RNNs)
to automatically extract representations from raw packet size se-
quences of encrypted traffic, while Deeppacket [23] and TSCRNN
[19] are characterizing raw payloads. However, this approach re-
lies on a large amount of supervised data to capture valid features
thus learning biased representations in imbalanced data, while our
model does not rely on large labeled data.

2.2 Pre-training Models
In natural language processing, the deep bidirectional pre-training
model based on Transformers achieves the best results for multiple
tasks. With this representation type and structure, RoBERTa [22]
uses dynamic masking and ALBERT [16] proposes sentence order
prediction to improve performance by advancing unsupervised
tasks. The extensions of the pre-training models include knowledge
enhancement and model compression, ERNIE [40] introduces entity
knowledge to improve language understanding, while DistilBERT
[28] reduces the number of network layers and parameters through
knowledge distillation techniques to significantly speed up model
training but with a slight reduction in performance. In addition,
the wide applications of pre-training models in cross-domains such
as visual language as well as computer vision demonstrate their
advantages of utilizing unlabeled data to help learn robust feature
representations on limited labeled data.

In encrypted traffic classification, although payloads have no
semantics, Sengupta et al. [29] exploit the randomness difference
between different ciphertexts to distinguish different applications,
which suggests that the encrypted traffic is not perfectly random
and implicit patterns exist. PERT [12] first applies the pre-training
model to migrate ALBERT to encrypted traffic classification and

634

ET-BERT: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification WWW ’22, April 25–29, 2022, Lyon, France

achieves 93.23% performance in ISCX-VPN-Service [9] on F1. How-
ever, it lacks of specific design for encrypted traffic representation
and the corresponding pre-training tasks, which limits its general-
ization ability on new encryption techniques (e.g. TLS 1.3) according
to our empirical study in Section 4.2. We design two pre-training
tasks taking into account the structural pattern of traffic transmis-
sion and the bi-directional association of packet payloads, then use
two fine-tuning strategies to better fit the traffic classification tasks.

3 ET-BERT
3.1 Model Architecture
In this paper, we aim to learn generic encrypted traffic represen-
tations and classify them in different scenarios (e.g. applications,
encryption protocols, or services). To this end, our proposed pre-
training strategy contains twomain stages: pre-training for learning
generic encrypted traffic representationswith large-scale unlabelled
data and fine-tuning for adjusting the pre-trained model for the
specific downstream task. In the pre-training stage, given the unla-
belled traffic flows, the pre-trained model outputs datagram-level
generic traffic representations. In the fine-tuning stage, given the
target-specific labelled packets or flows, the fine-tuned model pre-
dicts its category.

Encrypted traffic differs greatly from nature language and im-
ages in that it doesn’t contain human-understandable content and
explicit semantic units. In order to effectively leverage the pre-
training technique for encrypted traffic classification, we mainly
propose three main components in ET-BERT as shown in Figure 2:
(1)We proposeDatagram2Token approach (Section 3.2) to transform
encrypted traffic to pattern-preserved token unit for pre-training;
(2) Then two pre-training tasks, e.g. Masked BURST Model and
Same-origin BURST Prediction, are proposed to learn the contextu-
alized datagram representations from the transition context instead
of the semantic context (Section 3.3); (3) To adapt to different traffic
classification scenarios, we further propose two fine-tuning strate-
gies, e.g. packet-level fine-tuning for single packet classification and
flow-level fine-tuning for single flow classification (Section 3.4).

The main network architecture of ET-BERT consists of multi-
layer bi-directional Transformer blocks [36]. Each of the block is
composed of multi-head self-attention layers, which captures the
implicit relationships between the encoded traffic units in data-
grams. In this work, the network architecture consists of 12 trans-
former blocks with 12 attention heads in each self-attention layer.
The dimension of each input token H is set to 768 and the number
of input tokens is 512.

3.2 Datagram2Token Traffic Representation
In the real network environment, huge amount of traffic contains
diverse flows of different categories (e.g. different applications, pro-
tocols or services), which makes it difficult to learn a stable and
discriminative representation of a certain kind of traffic. There-
fore, we first split out flows with the same IP, port and protocol
from the traces before representing traffic. As a result, each split-
ted flow comes from the same traffic category containing a com-
plete flow session. To further transform a flow into a word-like
tokens similar to nature language, we propose a Datagram2Token

module that consists of three processes: (1) BURST Generator ex-
tracts continues server-to-client or client-to-server packets in one
session flow, named as BURST [26, 31], to represent the partial
complete information of a session. (2) Then BURST2Token process
transforms the datagram in each BURST to token embeddings via
the bi-gram model. Meanwhile, this process also splits a BURST
into two segments preparing for the pre-training tasks. (3) Finally,
Token2Emebdding concatenates the token embedding, position em-
bedding and segmentation embedding of each token to serve as the
input representation for pre-training.

3.2.1 BURST Generator. A BURST is defined as a set of time-
adjacent network packets originated from either the request or
the response in a single session flow. A sequence of BURSTs charac-
terize the pattern of network flow transmission from the application
layer perspective. In the application layer, the Document Object
Model (DOM) tree between web pages becomes diverse, stemming
from the personalization of web services. As the client-side ren-
dering process divides the web data into different objects (e.g. text
and images), the DOM structure generates semantic-aware frag-
ments and subliminally affects the client’s resource requests. Each
generated segment forms a BURST of network, which contains a
complete part of content with specific type from the DOM structure.
We extract the BURSTs as input for the pre-training model.

For the BURST, we are concerned with the source and destination
of the packet. Given a trace from packet capture file as a sequence
Trace = { f lowi , i ∈ N

+}, where f low = {pj , j ∈ N
+} is a session

flow consisting of source-to-destination packets p identified by a
five-tuple (IPsrc:PORTsrc, IPdst:PORTdst, Protocol). The BURST is
defined as:

BURST =

{
Bsrc = {psrcm ,m ∈ N+}

Bdst = {pdstn ,n ∈ N+}
(1)

wherem, n denotes the maximum number of unidirectional packets
of source-to-destination and destination-to-source respectively.

3.2.2 BURST2Token. In order to transform the BURST representa-
tion into the token representation for pre-training, we decompose
the hexadecimal BURST into a sequence of units.

To this end, we use a bi-gram to encode the hexadecimal se-
quence, where each unit consists of two adjacent bytes. We then
use Byte-Pair Encoding for token representation, where each to-
ken unit ranges from 0 to 65535, the dictionary size |V | is max
expressed as 65536. In addition, we also add the special tokens
[CLS], [SEP], [PAD] and [MASK] for training tasks. The first token
of each sequence is always [CLS], and the final hidden layer state as-
sociated with this token is used to represent the complete sequence
for classification tasks. The token [PAD] is a padding notation to
satisfy the minimum length requirement. The sub-BURST pair of
a BURST will be separated by [SEP]. The token [MASK] appears
during pre-training to learn the context of the traffic.

As shown in Figure 2, we equally divided a BURST into two
sub-BURSTs for SBP task. We differentiate the sub-BURSTs by the
special token [SEP] and the segment embedding indicating whether
it belongs to segment A or segment B. We denote the segment A as
sub-BURSTA and the segment B as sub-BURSTB .

635

WWW ’22, April 25–29, 2022, Lyon, France Xinjie Lin et al.

Figure 2: Overview of ET-BERT Framework.

3.2.3 Token2Embedding. We represent each token obtained in
BURST2Token by three embeddings: token embedding, position
embedding and segment embedding. A full token representation is
constructed by summing up the aforementioned three embeddings.
In this work, we take the full tokenized datagrams as original in-
puts. The first group of embedding vectors are randomly initialised,
where the embedding dimension is D = 768. After N times of
Transformer encoding, we obtain the final token embedding.

Token Embedding.As shown in Figure 2, the representation of
the token learn from the lookup table in Section 3.2.2 is called token
embedding Etoken. The final hidden vector of the input token as
Etoken ∈ RH , where the embedding dimension H is set to 768.

Position Embedding. Since the transmission of traffic data is
strongly related to the order, we use position embedding to ensure
the model learn to focus on the temporal relationship of tokens by
relative positions. We assign anH -dimensional vector to each input
token for representing its position information in the sequence. We
denote the position embedding as Epos ∈ RH , where the embedding
dimension H is set to 768.

Segment Embedding. As mentioned in Section 3.2.2, the seg-
ment embedding of sub-BURST is denoted as Eseд ∈ RH , where
the embedding dimension H is set to 768. At the fine-tuning stage,
we represent a packet or a flow as one segment for classification
task.

3.3 Pre-training ET-BERT
Our proposed two pre-training tasks capture the contextual rela-
tionship between traffic bytes by predicting the masked token as
well as the correct transmission order by predicting the Same-origin
BURST. The detailed process is shown in the middle of Figure 2.

Masked BURSTModel. This task is similar to the Masked Lan-
guage Model utilized by BERT [6]. The key difference is that traffic
tokens without obvious semantics are incorporated into ET-BERT
for capturing the dependencies among datagram bytes. During
the pre-training, each token in the input sequence is randomly
masked with 15% probability. As the chosen token, we replace it
with [MASK] at 80% chance, or choose a random token to replace
it or leave it unchanged at 10% chance, respectively.

For the masked tokens are replaced by the special token [MASK],
ET-BERT is trained to predict tokens at the masked positions based
on the context. Benefiting from the deep bi-directional representa-
tion brought by this task, we randomly mask k tokens for the input
sequence X . We use the negative log likelihood as our loss function
and formally define it as:

LMBM = −

k∑
i=1

log(P(MASKi = tokeni |X̄ ;θ)) (2)

where θ represents the set of trainable parameters of ET-BERT. The
probability P is modeled by the Transformer encoder with θ . X̄ is
the representation of X after masking andMASKi represents the
masked token at the ith position in the token sequence.

Same-origin BURST Prediction. The importance of BURSTs
in network traffic has been declared in the previous section, and our
purpose is to better learn the traffic representations by capturing the
correlation of packets in BURSTs. Moreover, we consider the tight
relationship between BURST structure and the web content, which
is able to convey the difference between BURSTs generated from
different categories of traffic. For example, there is a differentiation
in the traffic by loading content separately for social networking
sites with different DOM structures, e.g. in the order of text, image,
video and in the order of image, text, video. This phenomenon was
also confirmed by the study [37] for intra-domain fingerprinting.

We learn the dependencies between packets inside BURST via
the Same-origin BURST Prediction (SBP) task. For this task, a
binary classifier is used to predict whether two sub-BURST are
from the same BURST origin. Specifically, when choosing the sub-
BURSTA and sub-BURSTB for each sub-BURST pair, 50% of the
time sub-BURSTB is the actual next sub-BURST that follows sub-
BURSTA, and 50% of the time it is a random sub-BURST from
other BURSTs. For a given input containing sub-BURST pair Bj =
(sub-BAj , sub-B

B
j) and its ground-truth labelyj ∈ [0, 1] (0 represents

paired sub-BURSTs and 1 represents unpaired ones).

LSBP = −

n∑
j=1

log(P(yj |Bj ;θ)) (3)

636

ET-BERT: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification WWW ’22, April 25–29, 2022, Lyon, France

Overall, the final pre-training objective is the sum of the above
two losses, which is defined as:

L = LMBM + LSBP (4)
Pre-training Dataset. In this work, around 30GB of unlabeled

traffic data is used for pre-training. This dataset contains two parts:
(1) about 15GB traffic from the public datasets [9, 30]; (2) about 15GB
traffic from our passively collected traffic under the China Science
and Technology Network (CSTNET). Further, the dataset contains
rich network protocols, such as a new encryption protocol based
on UDP transport QUIC, Transport Layer Security, File Transfer
Protocol, Hyper Text Transfer Protocol, Secure Shell, etc., which
are common network protocols.

3.4 Fine-tuning ET-BERT
Fine-tuning can serve downstream classification tasks well because:
(1) the pre-training representation is traffic class-independent and
can be applied to any class of traffic representation; (2) since the
input of the pre-training model is at the datagram bytes level, down-
stream tasks that need to classify packets and flows can be trans-
formed into the corresponding datagram byte token to be classified
by the model; (3) the special [CLS] token of the output of the pre-
training model models the representation of the entire input traffic
and can be employed directly for classification.

Since the structure of fine-tuning and pre-training is basically
identical, we input the task-specific packet or flow representations
into the pre-trained ET-BERT and fine-tune all parameters in an
end-to-end model. At the output layer, the [CLS] represenation is
fed to a multi-class classifier for prediction. We propose two fine-
tuning strategies to adapt the classification of different scenarios: (1)
packet level as input dedicated to experimenting whether ET-BERT
can adapt to more fine-grained traffic data, as ET-BERT(packet);
(2) flow level as input dedicated to fairly and objectively compar-
ing ET-BERT with other methods, as ET-BERT(flow). The major
difference between the two fine-tuning models is the amount of
information of the input traffic. We use a stitched datagram ofM
consecutive packets in a flow as input data, whereM is set to 5 in
our approach. The traffic data processing is described in detail in
Section 4.1.

The cost of fine-tuning is relatively cheap compared to pre-
training, and a single GPU is sufficient for a fine-tuning task.

4 EXPERIMENTS
In this section, we conduct five encrypted traffic classification tasks
(Section 4.1) to prove the effectiveness of ET-BERT to solve problems
of different encryption scenarios and imbalanced data distribution.
We then compare our model with 11 methods (Section 4.2) and
perform an ablation analysis of the key components of the model
(Section 4.3). We further provide an interpretative analysis of the
remarkable performance obtained by ET-BERT (Section 4.4), and
the ability to handle few-shot samples (Section 4.5).

4.1 Experiment Setup
4.1.1 Datasets and Downstream Tasks. To evaluate the effective-
ness and generalization of ET-BERT, we conduct experiments across
five encrypted traffic classification tasks on six public datasets

Table 1: The Statistical Information of the Datasets.

Task Dataset #Flow #Packet #Label

GEAC Cross-Platform(iOS) [35] 20,858 707,717 196
Cross-Platform(Android) [35] 27,846 656,044 215

EMC USTC-TFC [39] 9,853 97,115 20

ETCV ISCX-VPN-Service [9] 3,694 60,000 12
ISCX-VPN-App [9] 2,329 77,163 17

EACT ISCX-Tor [10] 3,021 80,000 16

EAC-1.3 CSTNET-TLS 1.3 (Ours) 46,372 581,709 120

and one newly proposed dataset. The tasks and the corresponding
datasets are shown in Table 1.

Task 1: General Encrypted Application Classification (GEAC)
task aims to classify application traffic under standard encryption
protocols. We test on Cross-Platform (iOS) [35] and Cross-Platform
(Android) [35], which contain 196 and 215 applications respectively.
The iOS apps and the Android apps were collected from the top 100
Apps from the US, China and India. This dataset with the largest
number of categories and long-tail data distribution over all classes.

Task 2: EncryptedMalware Classification (EMC) is a collection
of encrypted traffic consisting of malware and benign applications
[39]. The dataset USTC-TFC [39] contains 10 categories of benign
traffic and 10 categories of malicious traffic.

Task 3: Encrypted Traffic Classification on VPN (ETCV) task
classifies encrypted traffic that uses Virtual Private Networks (VPNs)
for network communication. VPNs are popular for bypassing cen-
sorship as well as accessing geo-locked services, which is difficult
to detect due to its protocol obfuscation. We use the commonly
compared ISCX-VPN [9], which is constructed of 6 communication
applications captured through the Canadian Institute for Cyberse-
curity in both VPN and non-VPN. To test ET-BERT on service and
application, we further categorize the dataset by services and appli-
cations, forming the ISCX-VPN-Service dataset with 12 categories
and the ISCX-VPN-App dataset with 17 applications.

Task 4: Encrypted Application Classification on Tor (EACT)
task aims to classify encrypted traffic that uses the Onion Router
(Tor) for communication privacy enhancement. The dataset [10]
is called ISCX-Tor, which contains 16 applications. This kind of
traffic further obscures the behavior of the traffic by obfuscating
the communication between the sender and the receiver through a
distributed routing network, which is more challenging for traffic
classification as the pattern extraction of traffic becomes harder.

Task 5: Encrypted Application Classification on TLS 1.3 (EAC-
1.3) task aims to classify encrypted traffic over new encryption
protocol TLS 1.3. The dataset is our collection of 120 applications
under CSTNET from March to July 2021, named as CSTNET-TLS
1.3. As we know, this is the first TLS 1.3 dataset to date. The appli-
cations are acquired from Alexa Top-5000 [3] deployed with TLS
1.3 and we label each session flow by the server name indication
(SNI). In CSTNET-TLS 1.3, the SNI remains accessible due to the
compatibility of TLS 1.3. The ECH mechanism will disable the SNI
in the future and compromise the accuracy of the labeling, but we
discuss some thoughts to overcome it in Section 5.

637

WWW ’22, April 25–29, 2022, Lyon, France Xinjie Lin et al.

Table 2: Comparison Results on Cross-Platform, ISCX-VPN-Service and ISCX-VPN-App datasets.

Dataset Cross-Platform(iOS) Cross-Platform(Android) ISCX-VPN-Service ISCX-VPN-App

Method AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner[34] 0.3205 0.2103 0.2173 0.2030 0.3868 0.2523 0.2594 0.2440 0.7182 0.7339 0.7225 0.7197 0.6266 0.4864 0.5198 0.4935
CUMUL[25] 0.2910 0.1917 0.2081 0.1875 0.3525 0.2221 0.2409 0.2189 0.5610 0.5883 0.5676 0.5668 0.5365 0.4129 0.4535 0.4236
BIND[1] 0.3770 0.2566 0.2715 0.2484 0.4728 0.3126 0.3253 0.3026 0.7534 0.7583 0.7488 0.7420 0.6767 0.5152 0.5153 0.4965
K-fp[11] 0.2155 0.2037 0.2069 0.2003 0.2248 0.2113 0.2104 0.2052 0.6430 0.6492 0.6417 0.6395 0.6070 0.5478 0.5430 0.5303
FlowPrint[35] 0.9254 0.9438 0.9254 0.9260 0.8698 0.9007 0.8698 0.8702 0.7962 0.8042 0.7812 0.7820 0.8767 0.6697 0.6651 0.6531
DF[33] 0.3106 0.2232 0.2179 0.2140 0.3862 0.2595 0.2620 0.2527 0.7154 0.7192 0.7104 0.7102 0.6116 0.5706 0.4752 0.4799
FS-Net[20] 0.3712 0.2845 0.2754 0.2655 0.4846 0.3544 0.3365 0.3343 0.7205 0.7502 0.7238 0.7131 0.6647 0.4819 0.4848 0.4737
GraphDApp[31] 0.3245 0.2450 0.2392 0.2297 0.4031 0.2842 0.2786 0.2703 0.5977 0.6045 0.6220 0.6036 0.6328 0.5900 0.5472 0.5558
TSCRNN[19] - - - - - - - - - 0.9270 0.9260 0.9260 - - - -
Deeppacket[23] 0.9204 0.8963 0.8872 0.9034 0.8805 0.8004 0.7567 0.8138 0.9329 0.9377 0.9306 0.9321 0.9758 0.9785 0.9745 0.9765

PERT[12] 0.9789 0.9621 0.9611 0.9584 0.9772 0.8628 0.8591 0.8550 0.9352 0.9400 0.9349 0.9368 0.8229 0.7092 0.7173 0.6992

ET-BERT(flow) 0.9844 0.9701 0.9632 0.9643 0.9865 0.9324 0.9266 0.9246 0.9729 0.9756 0.9731 0.9733 0.8519 0.7508 0.7294 0.7306
ET-BERT(packet) 0.9810 0.9757 0.9772 0.9754 0.9728 0.9439 0.9119 0.9206 0.9890 0.9891 0.9890 0.9890 0.9962 0.9936 0.9938 0.9937

Table 3: Comparison Results on ISCX-Tor, USTC-TFC and CSTNET-TLS 1.3 datasets.

Dataset ISCX-Tor USTC-TFC CSTNET-TLS 1.3

Method AC PR RC F1 AC PR RC F1 AC PR RC F1

AppScanner[34] 0.6722 0.3756 0.4422 0.3913 0.8954 0.8984 0.8968 0.8892 0.6662 0.6246 0.6327 0.6201
CUMUL[25] 0.6606 0.3850 0.4416 0.3918 0.5675 0.6171 0.5738 0.5513 0.5391 0.4942 0.5060 0.4904
BIND[1] 0.7185 0.4598 0.4515 0.4511 0.8457 0.8681 0.8382 0.8396 0.7964 0.7605 0.7650 0.7560
K-fp[11] 0.6472 0.5576 0.5849 0.5522 - - - - 0.4036 0.3969 0.4044 0.3902
FlowPrint[35] 0.9092 0.3820 0.3661 0.3654 0.8146 0.6434 0.7002 0.6573 0.1261 0.1354 0.1272 0.1116
DF[33] 0.7533 0.6228 0.6010 0.5850 0.7787 0.7883 0.7819 0.7593 0.7936 0.7721 0.7573 0.7602
FS-Net[20] 0.6071 0.5080 0.5350 0.4590 0.8846 0.8846 0.8920 0.8840 0.8639 0.8404 0.8349 0.8322
GraphDApp[31] 0.6836 0.4864 0.4823 0.4488 0.8789 0.8226 0.8260 0.8234 0.7034 0.6464 0.6510 0.6440
TSCRNN[19] - 0.9490 0.9480 0.9480 - 0.9870 0.9860 0.9870 - - - -
Deeppacket[23] 0.7449 0.7549 0.7399 0.7473 0.9640 0.9650 0.9631 0.9641 0.8019 0.4315 0.2689 0.4022

PERT[12] 0.7682 0.4424 0.4446 0.4345 0.9909 0.9911 0.9910 0.9911 0.8915 0.8846 0.8719 0.8741

ET-BERT(flow) 0.8311 0.5564 0.6448 0.5886 0.9929 0.9930 0.9930 0.9930 0.9510 0.9460 0.9419 0.9426
ET-BERT(packet) 0.9921 0.9923 0.9921 0.9921 0.9915 0.9915 0.9916 0.9916 0.9737 0.9742 0.9742 0.9741

Ethical Considerations. For this research, an IRB was con-
sulted and any identification was not utilized. Furthermore, the
collection was completely passive. We have conformed to the user
agreements of the corporate network where the data was collected.

4.1.2 Data Pre-processing. We remove packets of Address Reso-
lution Protocol (ARP) and Dynamic Host Configuration Protocol
(DHCP), which are irrelevant to specific traffic of the transmitted
content. To avoid the influence of the packet header, which may
introduce biased interference in a finite set with strong identifi-
cation information such as IP and port [18, 23, 38], we removed
the Ethernet header, the IP header, and protocol ports of the TCP
header. In the stage of fine-tuning, we randomly select at most 500
flows and 5,000 packets from each class in all datasets. Each dataset
is divided into the training set, the validation set and the testing
set according to the ratio of 8 : 1 : 1.

4.1.3 Evaluation Metrics and Implementation Details. We evaluate
and compare the performance of the our model by four typical
metrics, including Accuracy (AC), Precision (PR), Recall (RC), and
F1 [35, 42]. Macro Average [21] is used to avoid biased results due
to imbalance between multiple categories of data by calculating the
mean value of AC, PR, RC and F1 of each category. In pre-training,
the batch size is 32 and the total steps is 500,000. We set the learning
rate is 2 × 10−5, and the ratio of warmup is 0.1. We fine-tune with

the AdamW optimizer for 10 epochs, where the learning rate is
set to 6 × 10−5 for flow-level, and 2 × 10−5 for packet-level. The
batch size is 32 and the dropout rate is 0.5. All the experiments
are implemented with Pytorch 1.8.0 and UER [41], conducted with
NVIDIA Tesla V100S GPUs.

4.2 Comparison with State-of-the-Art Methods
We compare ET-BERT with various state-of-the-art (SOTA) meth-
ods, including (1) fingerprint construction method: FlowPrint [35];
(2) statistical featuremethods: AppScanner [34], CUMUL [25], BIND
[1] and k-fingerprinting (K-fp) [11]; (3) deep learningmethods: Deep
Fingerprinting (DF) [33], FS-Net [20], GraphDApp [31], TSCRNN
[19], Deeppacket [23]; (4) pre-training method: PERT [12]. The
experimental results are shown in Tables 2 and 3. Additional com-
parison study can be found in Appendix A.1.

GEAC. According to Table 2, both ET-BERT(packet) and ET-
BERT(flow) outperform all methods significantly. Our model ob-
tains 1.7% and 5.4% respective improvement from the existing state
of the art ((e.g.) PERT and FlowPrint) on Cross-Platform (iOS) and
Cross-Platform (Android). FlowPrint utilizes plain-text fingerprints
including certificate fields to build a multi-dimensional fingerprint
library for identification of applications. However, ET-BERT learns

638

ET-BERT: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification WWW ’22, April 25–29, 2022, Lyon, France

Table 4: Ablation Study of Key Components in ET-BERT on ISCX-VPN-App dataset.

Method SBP MBM PT-P PT-B FT-f FT-cf FT-P AC PR RC F1

ET-BERT(packet)(full model) ✓ ✓ × ✓ × × ✓ 0.9471 0.9462 0.9412 0.9395

1 w/o SBP × ✓ × ✓ × × ✓ 0.9000 0.9142 0.9000 0.8998
2 w/o MBM ✓ × × ✓ × × ✓ 0.8471 0.8666 0.8471 0.8462
3 w/o BURST ✓ ✓ ✓ × × × ✓ 0.9235 0.9386 0.9235 0.9258

4 ET-BERT(flow) ✓ ✓ × ✓ ✓ × × 0.8133 0.7661 0.7374 0.7387
5 concatenated-flow(cf) ✓ ✓ × ✓ × ✓ × 0.8229 0.7488 0.6812 0.6961

6 w/o pre-training(packet) × × × × × × ✓ 0.5882 0.6152 0.5882 0.5638

contextual relationships on ciphertext without relying on any plain-
text fields. In addition, our model learns the pattern of traffic trans-
mission structure while PERT has not been able to master.

EMC. From the results on USTC-TFC as presented in Table 3,
we can observe that the performance of all the methods are inferior
to our model.Our model achieves the best performance on F1 as
99.30%. We observe that the malicious traffic in this dataset contain
unencrypted data in application layer and this makes much easier
for other models to leverage such plaintext for easier classification.

ETCV ET-BERT achieves 5.69% and 1.72% improvement over the
existing state-of-the-art model Deeppacket on ISCX-VPN-Service
and ISCX-VPN-App. Both datasets raise the imbalance challenge,
which is more severe on ISCX-VPN-App. Our model and Deep-
packet alleviate the effect of imbalanced data by learning corre-
lations between packet datagrams. Besides, ET-BERT achieves an
average improvement on F1 of 25.55% and 42.89% for all methods
except PERT, which indicates that our model has strong ability in
identifying confusion traffic even in the case of imbalanced data.

EACT. As the results on ISCX-Tor shown in Table 3, ET-BERT
improves 4.41% over the existing best result obtained by TSCRNN.
The initial traffic in Tor is not only multi-layer encrypted but also
adversarially obfuscated. TSCRNN enriches flows by random sam-
pling to train the model, while we exploit the intrinsic relationship
of packets to achieve better classification.

EAC-1.3. Our model is improved by 10.0% from 87.41% over the
existing state-of-the-art as the results on CSTNET-TLS 1.3 shown
in Table 3. TLS 1.3 poses new challenge for the FlowPrint and
Deeppacket by improving the security of the transmission and
conversely. ET-BERT pushes F1 to 97.41% by deeply representing
datagrams. This indicates that the encrypted traffic datagrams over
TLS 1.3 still have implicit patterns, which is better leveraged by
ET-BERT for classification.

4.3 Ablation Study
We show ablation results to verify the contribution of each compo-
nent on the widely compared ISCX-VPN-App. To fairly compare
packet and flow level fine-tuning approaches, we randomly selected
at most 100 packets and flows from each class as the training dataset.
In Table 4, PT-P and PT-B respectively represent the inputs are ran-
domly selected adjacent packets and our proposed BURST packets
in pre-training (PT). FT-f, FT-cf and FT-P respectively denote using
a flow, a concatenated flow [12] and a single packet in fine-tuning
(FT). (1) In models ’1-3’, we evaluate the impact of each task and the

Table 5: Results of 15 Randomness Tests on 5 Ciphers.

Ciphers/Tests AES(GCM) AES(CBC) CHA20 ARC4 3DES

Monobit 0.7918 0.2585 0.9761 0.5687 0.4099
Block Frequency 0.6316 0.0791 0.0176 0.4821 0.6434
Independent Runs 0.8824 0.1672 0.8966 0.7052 0.4241
Longest Runs 0.7198 0.3148 0.5134 0.5156 0.2889
Spectral 0.6202 0.9707 0.9415 0.6729 0.5756
Overlapping Patterns(OP) 0.0519 0.9856 0.1002 0.9089 0.4762
Non OP 0.8148 0.1967 0.4445 0.0096 0.5156
Universal 0.8501 0.3277 0.1149 0.0416 0.3062
Serial 0.7690 0.4539 0.1600 0.6068 0.8381
Approximate Entropy 0.9239 0.5226 0.3371 0.3470 0.3611
Cumulative Sums 0.9496 0.4512 0.7355 0.1742 0.4043
Random Excursions(RE) 0.1811 0.1232 0.4112 0.9424 0.9091
RE Variant 0.4805 0.0119 0.9542 0.5978 0.9065
Matrix Rank 0.5674 0.4890 0.0880 0.0504 0.1447
Linear Complexity 0.6235 0.4519 0.7428 0.0952 0.9384

input of pre-training. The respective decrease of 3.97% and 9.33%
on F1 for ’1’ and ’2’ indicates that both self-supervised tasks are
beneficial in providing complementary patterns for classification. In
addition, we input packets instead of BURST in ’3’ and the F1 score
decreases by 1.37%. It proves that the BURST structure can learn the
relationship between packets for better traffic classification. (2) In
model ’4’ and ’5’, we evaluate the effect of fine-tuning flows in dif-
ferent forms. Model ’4’ uses consecutive packets as the input while
model ’5’ uses packets separately as the input and concatenates
the outputs at the final encoder layer, as like PERT [12]. When we
switch from flow to concatenated-flow, the results for model ’5’
drop by 4.26%. Different packets of one flow are interdependent
and our fine-tuning method for classifying flows is more beneficial.
(3) We remove the pre-trained model to evaluate the impact of pre-
training. According to model ’6’, we perform supervised learning
on labeled data by training the Transformer model directly and the
F1 score decreases remarkably by 37.57% compared with ET-BERT.

4.4 Interpretability
4.4.1 Randomness Analysis. The aforementioned results demon-
strate the effectiveness and generalization of ET-BERT due to the
imperfect randomness of the ciphers of encrypted payloads. An
ideal encryption scheme causes the generated message to bear the
maximum possible entropy [5]. However, this hypothesis is not

639

WWW ’22, April 25–29, 2022, Lyon, France Xinjie Lin et al.

0

20

40

60

80

100

C
ip
h
e
r
R
a
ti
o

(%

)

Cross-Platform(IOS) Cross-Platform(Android)

USTC ISCX-VPN

ISCX-Tor TLS 1.3

Figure 3: The Distribution of the Ciphers across all Datasets.

valid in practice since different cipher implementations have vary-
ing degrees of randomness [7]. We evaluate the strength of 5 ciphers
in this paper through 15 sets of statistical tests[24], where p-value
= 1 indicates perfect randomness of the sequences. As shown in
Table 5, these ciphers indeed fail to achieve perfect randomness.

4.4.2 Impact of Ciphers. To assess the impact of the difference
ciphers of ET-BERT, we analyse the employment of ciphers for
different datasets. As shown in Figure 3, the horizontal coordinate
indicates the ciphers that account for the top 13 types and others,
and the vertical coordinate represents the percentage of each cipher.
The ISCX-VPN, ISCX-Tor and USTC-TFC contain at least 3 ciphers
including RC4 and 3DES with weaker randomness, while other
datasets mainly consist of one cipher. According to Tables 2 and
3, ET-BERT achieves an F1 close to 100% on datasets with weaker
randomness and the presence of greater fluctuations, average 99.14%
in ETCV, 99.21% in EACT, and 99.30% in EMC.

4.5 Few-shot Analysis
To validate the effectiveness and robustness of ET-BERT in few-
shot settings, we design comparison experiments with different
data proportions on ISCX-VPN-Service. We set the data size of
each category to 500 and randomly select 40%, 20% and 10% of the
samples for the few-shot experiments. In Figure 4, the comparison
results illustrate that the pre-training method is least affected by
the reduction of data size. The F1 scores of ET-BERT(packet) with
40%, 20%, 10% data size are respectively 95.78%, 98.33% and 91.55%.
Our model achieves the best results among all methods. In con-
trast, traditional supervised methods (e.g. BIND, DF, FS-Net) show
substantial F1 performance degradation when the sample size is
reduced, e.g. Deeppacket’s performance decreases by 40.22% when
the sample size is reduced from the full size to 10%. This indicates
that the pre-training approach solves the classification problem for
the few-shot encrypted traffic more effectively.

5 DISCUSSION
In this section, we discuss some limitations of this work, as well as
the potential implications it may have in inducing further research
in the field. Generalizability: The variability of encrypted traffic
due to changes in the content of Internet services [13] over time
will challenge the ability of our approach with fixed patterns leaned
from fixed data and keeping unchanged over time. As the use and

F
1

%

ALL 40% 20% 10%

Figure 4: Comparison Results on Few-shot ISCX-VPN-App.

rise of TLS 1.3, the labeling of encrypted traffic will not be possible
through SNI. We mitigate this in two ways to accommodate the
ECH mechanism and thus guarantee the test of generalizability, in-
cluding active visiting and labeling with unique process identifiers.
Pre-training Security: Although ET-BERT has good robustness
and generalization under a variety of encrypted traffic scenarios,
it depends on the clean pre-training data. When an attacker delib-
erately adds low-frequency subwords as the "toxic" embeddings,
a poisoned pre-trained model with a "backdoor" can be generated
to force the model to predict the target class and finally fool the
normally fine-tuned model on specific classification tasks [14, 15].
However, how to construct the "toxic" tokens of encrypted traffic
has not been studied yet.

6 CONCLUSION
In this paper, we propose a new encrypted traffic representation
model, ET-BERT, which can pre-train deep contextual datagram-
level traffic representations from large-scale unlabeled data, then
accurately classify encrypted traffic for multiple scenarios with a
simple fine-tuning on a small amount of task-specific labeled data.
We comprehensively evaluate the generalization and robustness of
ET-BERT on 5 publicly available datasets and the TLS 1.3 dataset
collected from CSTNET. ET-BERT has great generalization ability
and achieves a new state-of-the-art performance over 5 encrypted
traffic classification tasks, including General Encrypted Application
Classification, Encrypted Malware Classification, Encrypted Traffic
Classification on VPN, Encrypted Application Classification on Tor,
Encrypted Application Classification on TLS 1.3, and outperforms
existing works remarkably by 5.4%, 0.2%, 5.2%, 4.4%, 10.0%. In the
future, wewould like to investigate the ability of ET-BERT to predict
new classes of samples and to resist sample attacks.

ACKNOWLEDGMENTS
This work is supported by The National Key Research and Devel-
opment Program of China No. 2021YFB3101400 and the Strategic
Priority Research Program of Chinese Academy of Sciences, Grant
No. XDC02040400. We are grateful to anonymous reviewers for
their fruitful comments, corrections and inspiration to improve this
paper. We also sincerely appreciate the shepherding from Magnus
Almgren and writing help from Zhong Guan and Lulin Wang.

640

ET-BERT: A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification WWW ’22, April 25–29, 2022, Lyon, France

REFERENCES
[1] Khaled Al-Naami, Swarup Chandra, Ahmad M. Mustafa, Latifur Khan, Zhiqiang

Lin, KevinW. Hamlen, and Bhavani M. Thuraisingham. 2016. Adaptive Encrypted
Traffic Fingerprinting with Bi-Directional Dependence. In the Annual Conference
on Computer Security Applications. 177–188.

[2] Emily Alsentzer, John R. Murphy, Willie Boag, Wei-Hung Weng, Di Jin, Tristan
Naumann, and Matthew B. A. McDermott. 2019. Publicly Available Clinical BERT
Embeddings. In the Clinical Natural Language Processing Workshop. 72–78.

[3] Amazon. 2021. Alexa Top Sites. https://www.alexa.com/topsites/.
[4] Tomasz Bujlow, Valentín Carela-Español, and Pere Barlet-Ros. 2015. Independent

Comparison of Popular DPI Tools for Traffic Classification. Computer Networks
76 (2015), 75–89.

[5] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (2.
ed.).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 4171–4186.

[7] Ali Doganaksoy, Baris Ege, Onur Koçak, and Fatih Sulak. 2010. Cryptographic
Randomness Testing of Block Ciphers and Hash Functions. Cryptology ePrint
Archive (2010), 564.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations.

[9] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic using
Time-related Features. In the International Conference on Information Systems
Security and Privacy. 407–414.

[10] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. 2017. Characterization of Tor Traffic using Time based
Features. In the International Conference on Information Systems Security and
Privacy. 253–262.

[11] Jamie Hayes and George Danezis. 2016. K-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In USENIX Security Symposium. 1187–1203.

[12] Hong Ye He, Zhi Guo Yang, and Xiang Ning Chen. 2020. PERT: Payload Encoding
Representation from Transformer for Encrypted Traffic Classification. In ITU
Kaleidoscopef: Industry-Driven Digital Transformation. 1–8.

[13] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Díaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In the ACM SIGSAC
Conference on Computer and Communications Security. 263–274.

[14] Nora Kassner and Hinrich Schütze. 2020. Negated and Misprimed Probes for
Pretrained Language Models: Birds Can Talk, But Cannot Fly. In the Annual
Meeting of the Association for Computational Linguistics. 7811–7818.

[15] Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight Poisoning Attacks
on Pretrained Models. In the Annual Meeting of the Association for Computational
Linguistics. 2793–2806.

[16] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In International Conference on Learning
Representations.

[17] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. 2019. BioBERT: A Pre-trained Biomedical Lan-
guage Representation Model for Biomedical Text Mining. Bioinformatics 36, 4
(2019), 1234–1240.

[18] Rui Li, Xi Xiao, Shiguang Ni, Haitao Zheng, and Shutao Xia. 2018. Byte Segment
Neural Network for Network Traffic Classification. In International Symposium
on Quality of Service. 1–10.

[19] Kunda Lin, Xiaolong Xu, and Honghao Gao. 2021. TSCRNN: A Novel Classifi-
cation Scheme of Encrypted Traffic Based on Flow Spatiotemporal Features for
Efficient Management of IIoT. Computer Networks 190 (2021), 107974.

[20] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. FS-Net: A
Flow Sequence Network For Encrypted Traffic Classification. In IEEE Conference
on Computer Communications. 1171–1179.

[21] Chuan Liu, Wenyong Wang, Meng Wang, Fengmao Lv, and Martin Konan. 2017.
An Efficient Instance Selection Algorithm to Reconstruct Training Set for Support
Vector Machine. Knowledge-Based Systems 116 (2017), 58–73.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692
(2019).

[23] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep Packet: A Novel Approach for Encrypted
Traffic Classification Using Deep Learning. Soft Computing 24 (2020), 1999–2012.

[24] National Institute of Standards and Technology. 2016. Random Bit Genera-
tion: Guide to the Statistical Tests. https://csrc.nist.gov/Projects/Random-Bit-

Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests.
[25] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-

nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In Annual Network and Distributed System Security Symposium.

[26] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website Fingerprinting in Onion Routing Based Anonymization Networks. In
the Annual ACM Workshop on Privacy in the Electronic Society. 103–114.

[27] Shahbaz Rezaei and Xin Liu. 2019. Deep Learning for Encrypted Traffic Classifi-
cation: An Overview. IEEE Communications Magazine 57, 5 (2019), 76–81.

[28] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distil-
BERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv
preprint arXiv:1910.01108 (2019).

[29] Satadal Sengupta, Niloy Ganguly, Pradipta De, and Sandip Chakraborty. 2019.
Exploiting Diversity in Android TLS Implementations for Mobile App Traffic
Classification. In The World Wide Web Conference. 1657–1668.

[30] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-
tion. In the International Conference on Information Systems Security and Privacy.
108–116.

[31] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2021.
Accurate Decentralized Application Identification via Encrypted Traffic Analysis
Using Graph Neural Networks. IEEE Transactions on Information Forensics and
Security 16 (2021), 2367–2380.

[32] Hongtao Shi, Hongping Li, Dan Zhang, Chaqiu Cheng, and Xuanxuan Cao. 2018.
An Efficient Feature Generation Approach Based on Deep Learning and Feature
Selection Techniques for Traffic Classification. Computer Networks 132 (2018),
81–98.

[33] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. 2018. Deep
Fingerprinting: Undermining Website Fingerprinting Defenses with Deep Learn-
ing. In the ACM SIGSAC Conference on Computer and Communications Security.
1928–1943.

[34] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2018.
Robust Smartphone App Identification via Encrypted Network Traffic Analysis.
IEEE Transactions on Information Forensics and Security 13, 1 (2018), 63–78.

[35] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J.
Dubois, Martina Lindorfer, David R. Choffnes, Maarten van Steen, and Andreas
Peter. 2020. FlowPrint: Semi-SupervisedMobile-App Fingerprinting on Encrypted
Network Traffic. In Annual Network and Distributed System Security Symposium.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In the International Conference on Neural Information Processing Sys-
tems. 6000–6010.

[37] Kailong Wang, Junzhe Zhang, Guangdong Bai, Ryan K. L. Ko, and Jin Song Dong.
2021. It’s Not Just the Site, It’s the Contents: Intra-domain Fingerprinting Social
Media Websites Through CDN Bursts. In The Web Conference. 2142–2153.

[38] PanWang, Shuhang Li, Feng Ye, ZixuanWang, andMoxuan Zhang. 2020. PacketC-
GAN: Exploratory Study of Class Imbalance for Encrypted Traffic Classification
Using CGAN. In IEEE International Conference on Communications. 1–7.

[39] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. 2017.
Malware Traffic Classification Using Convolutional Neural Network for Rep-
resentation Learning. In International Conference on Information Networking.
712–717.

[40] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu.
2019. ERNIE: Enhanced Language Representation with Informative Entities. In
the Conference of the Association for Computational Linguistics. 1441–1451.

[41] Zhe Zhao, Hui Chen, Jinbin Zhang, Xin Zhao, Tao Liu, Wei Lu, Xi Chen, Haotang
Deng, Qi Ju, and Xiaoyong Du. 2019. UER: An Open-Source Toolkit for Pre-
training Models. In the Conference on Empirical Methods in Natural Language
Processing. 241–246.

[42] Wenbo Zheng, Chao Gou, Lan Yan, and Shaocong Mo. 2020. Learning to Classify:
A Flow-Based Relation Network for Encrypted Traffic Classification. In The Web
Conference. 13–22.

A ADDITIONAL COMPARISON STUDY
A.1 Qualitative Analysis
To further evaluate the performance differences between the mod-
els, we select 5 models for comparative analysis with ET-BERT,
including Transformer at flow level, Transformer at packet level,
DF, Deeppacket and PERT. The Transformer model as the baseline
of ET-BERT can visually compare the improvement of our pre-
trained model, and the remaining three models are representative
methods to compare the prominence of our models.

641

https://www.alexa.com/topsites/
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests

WWW ’22, April 25–29, 2022, Lyon, France Xinjie Lin et al.

(a) Representation with ET-BERT (b) Representationwith Transformer at packet (c) Representation with Deeppacket

(e) Representation with PERT (f) Representation with Transformer at flow (g) Representation with DF

Figure 5: t-SNE Visualization of Classification Boundaries with 6 Methods on ISCX-VPN-App Testset.

We use t-distributed stochastic neighbor embedding (t-SNE) to
downscale the test set samples predicted by each model and plot
them as two-dimensional images, as in Figure 5. We choose the
sampled ISCX-VPN-App dataset in Section 4.3 and then show the
best results for each model: (a-c) are packet-level results and (e-g)
are flow-level results.

There is no doubt that our model exhibits the best classification
performance because ET-BERT captures patterns that can distin-
guish between different encrypted traffic even under the more

secure new encryption protocols. Also with ET-BERT at the packet
level, (b) and (c) fail to accurately classify applications especially
AIM, ICQ and Gmail, which are used for online chat and Gmail
provides online chat service in addition to email service. At the
flow level, the classification effect of (f) and (g) is confusing, as
YouTube and other streaming applications including Vimeo, Netflix
and Spotify cannot be distinguished by these methods, while PERT
performs relatively better but still suffers from the interference of
applications with the same services.

642

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Encrypted Traffic Classification
	2.2 Pre-training Models

	3 ET-BERT
	3.1 Model Architecture
	3.2 Datagram2Token Traffic Representation
	3.3 Pre-training ET-BERT
	3.4 Fine-tuning ET-BERT

	4 EXPERIMENTS
	4.1 Experiment Setup
	4.2 Comparison with State-of-the-Art Methods
	4.3 Ablation Study
	4.4 Interpretability
	4.5 Few-shot Analysis

	5 DISCUSSION
	6 CONCLUSION
	Acknowledgments
	References
	A Additional Comparison Study
	A.1 Qualitative Analysis

