
ET++SwapsManager: Using Object Technology in the Financial
Engineering Domain

Thomas Eggenschwiler
Erich Gamma

UBILAB
Union Bank of Switzerland

Bahnhofstr. 45
CH-8021 Zurich, Switzerland

Tel.: +41-1-236 79 47
E-mail: {eggen,gamma}@ifi.unizh.ch

Paper category: Experience

Abstract

Providing the financial engineering community with adequate software tools presents

several challenges to application developers. Experience shows that reusability-oriented

software development as supported by object technology has the potential to meet these

challenges. To back the argument, a project of building a pilot implementation of a swap

valuation system using a comprehensive class library including an application framework

is reported. As a novelty the project emphasized the use of so-called design patterns. The

project experience suggests that the use of design patterns significantly eases the

application of a large class library and facilitates the reuse of design.

1 Background

UBILAB’s (Union Bank of Switzerland’s Informatics Laboratory) software engineering

group is currently involved in adopting object technology. During the last two years this

group’s core activity was the development and refinement of ET++ [Wei88, Wei89,

Gam90], a comprehensive class library for C++. The work on ET++ started in 1987 at the

University of Zurich. In 1990 the developers of ET++ joined UBILAB.

The value of ET++ for the construction of applications with an advanced user interface

was demonstrated in various projects inside and outside UBILAB. However, an

application that illustrated the value of objects in the context of a banking application was

still missing. To overcome this deficiency, we chose the problem domain of financial

engineering applications.

2 Challenges of Financial Engineering Applications

Financial markets continue to force suppliers of financial services and products to design

and implement more effective solutions to ever complex financial problems. Such

innovation increasingly depends on the availability of adequate software tools. In an

attempt to provide these tools the software engineer is confronted with the following

challenges:

• The pace of the markets requires a flexible development process. Once an opportunity

for a new financial instrument is perceived software development must be able to react

quickly with adequate support. Therefore short life cycles and tight communication

between developers and traders are essential.

• Traders want to assess the consequences of a deal more accurately through more

complete, and consequently larger, models of computation. To help risk management

to capture the big picture flexible "what-if" analyses must be provided.

• Furthermore, the interconnection of financial markets brings together a myriad of

market conventions, for example day-count conventions. This requires a base of

reusable domain specific building blocks which can not be engineered separately for

each tool. As a result, the development focus can no longer be one single project but

spans entire project families.

• Intuitive human/computer interfaces are necessary to reduce a trader's mental load

and optimize trading activities.

In view of these challenges, a reuse-oriented approach to software development appears

attractive.

3 The ET++SwapsManager

The ET++SwapsManager is a tool for the valuation of swaps. It was implemented in

collaboration with trading specialists from the swaps department at UBS.

3.1 ET++SwapsManager Objectives

The ET++SwapsManager project focused on the following goals:

• Promotion of modern user interface technology for banking applications

We emphasised a highly graphical user interface based on the direct manipulation

principle beyond push buttons and menus.

• Object technology as a tool for developing banking applications

The project should help to evaluate the suitability of object technology in general and

ET++ in particular for the development of banking applications.

• Domain specific frameworks

The construction of frameworks for a specific problem domain is a key issue of using

object technology on a large scale. As a first step in this direction the project should be

a mean to acquire domain knowledge.

• Design Patterns

Design patterns are a way to abstract and to reuse design experience. In the pilot

application we wanted to try and evaluate this approach.

3.2 Swap Valuation in a Nutshell

A financial swap is an exchange of two streams of (future) cash flows between two parties

[Kap90]. A swap has two sides which differ at least as to the currency of the cash flows or

how the cash flows are determined, i.e., fixed or floating (bound to some market index

which is set periodically).

As the term “swap” suggests, at the time of the deal, both streams or sets of cash flows

need to have equal value. To compare the two streams the associated cash flows are

discounted (“present valued”) based on interest rates taken from reference markets.

Since the two sides of the swap are not identical it follows that as interest rates move, the

values of the two sides of a concluded swap will eventually be misbalanced. Managing

such misbalances on a portfolio (collection of swaps) level is of utmost importance to the

swap trader.

In what follows we will sometimes use the convention of referring to an interest rate as a

yield. A yield is a normalized interest rate. Yields can be gathered from market data for

various investments with different terms to maturity. The term yield curve refers to a set of

yields for different terms to maturity.

3.3 ET++SwapsManager Concepts

The ET++SwapsManager has a highly interactive "object-oriented" user interface.

Abstractions from the trading domain are presented to the user as iconic objects. These

objects are:

– Swap

– Portfolio - a collection of swaps

– Yield curve - yields for a set of maturities, yields are major input data for swaps pricing

– Scenario - interest rate differences applicable to a yield curve

– Counterparty

Data pertaining to these objects can be edited through object specific inspectors/editors.

Much emphasis was put on direct manipulation and on adaptation of established user interface

metaphors to the trading activities.

Figure 1: Definition of a new swap

One such metaphor is used in the domain specific desktop on which domain objects are

represented as icons and relationships between the objects (swap, portfolio, etc.) can be

established through drag-and-drop manipulations. Dragging an object over an other

object automatically provides semantic feedback.

An other example is the yield curve editor which is a specialized drawing editor. It

contains different tools for directly manipulating yields used in the cash flow valuation

process.

The simultaneous and modeless presentation of data belonging to different objects in

different windows avoids deep menu hierarchies. However, to let the user open windows

freely has its own drawbacks. The screen can quickly become cluttered with windows and

considerable time must be spent on rearranging windows.

Figure 2: Creating a scenario through direct manipulation

To avoid this so-called window thrashing [Hen86] the ET++SwapsManager offers the idea

of a workspace. A workspace organizes problem domain objects. The objects can be

grouped according to individual work foci or tasks, and provides for fast switching

between one focus of attention and an other. An example of such a focus is the set of

swaps with the same client (see 3.4).

When the user switches workspaces all windows pertaining to the current workspace are

closed. The new workspace is automatically installed just as it had been left the last time it

was in use [Hen86].

Since workspaces only hold grouping and placement information they can be created and

destroyed by the user at will. Domain objects are not affected since they exist separately

from workspaces in a database. Domain objects may belong to multiple workspaces.

3.4 Using the ET++SwapsManager

To illustrate the ET++SwapsManager we present a sequence of interactions that comprises

a complete example of a user task. In this example the user a) wants to create a new swap

and b) add it to a portfolio holding all prior swaps with the same client. In addition, c) the

trader wants to perform “what-if” analysis on the swap d) as well as on the entire

portfolio. Traders have to be able to estimate the quantitative risk associated in the case of

interest rate changes.

Figure 3: Adding the new swap to the client’s portfolio

Figure 1 shows a snapshot of the system where the trader has opened a workspace which

holds client ABC’s swaps and a portfolio. A new swap (abc024) has already been created

and an editor for defining the details of the swap has been opened. The trader can now fill

in the details and then have the system generate the swap’s cash flows.

In figure 2 the trader has opened the graphical editor for the Swiss franc yield curve (CHF)

used to value the new swap. An interest rate (or yield) scenario can be created by directly

manipulating the curve. A new scenario (S_0) is automatically added to the current

workspace. This will invoke a recalculation of dependent data. Direct manipulation on the

curve thus allows to immediately trace the effect of interest rate changes on the values of

the two sides of the swap. A palette offers different tools for manipulation. Tools to select,

rotate or shift a range of the curve. In addition there are tools to zoom into the yield curve

or investigate points on the curve (spy).

Figure 4: Valuation of the portfolio using scenarios

After the new swap has been analyzed by itself, then the collective behavior of all swaps

with client ABC is investigated. To do this the swap is added to the portfolio of client ABC

by dragging the swap’s icon onto the portfolio’s icon (ABC) and dropping it, as shown in

figure 3. This operation demonstrates the “desktop”-like functionality offered in the

workspace window. Figure 3 also shows a window of the portfolio’s contents where its

cash flows are aggregated to a manageable number of “buckets”. Here, the user can

immediately see the effect of adding the new swap to the portfolio.

Finally, in figure 4 the trader has opened another interest rate scenario (Invert) and, to

study the portfolio’s behavior, applies both scenarios to the relevant yield curve.

Application of the scenarios is done through a drag-and-drop operation where a scenario

icon is dragged over the yield curve icon. The trader is also free to directly manipulate the

yield curve and thereby study the effects of interest rate changes on the portfolio in an ad

hoc way.

3.5 Architecture

The architecture of the ET++SwapsManager is based on the application framework ET++.

ET++ is a class library designed to provide a foundation for interactive graphic

applications with consistent user interfaces following the direct manipulation principle.

ET++ is implemented in C++ and runs under several operating and window systems. The

application specific extensions to the ET++ class library are depicted in figure 5. Bold class

names are abstract classes of ET++. The new, application specific, classes can be grouped

according to their responsibilities. The main categories are:

• Problem Domain Component

Several abstractions of the problem domain are modelled as separate classes. These

classes encapsulate all domain specific data and functionality, e.g., all calculations take

place in these classes.

• Editor/Inspector Classes

These are object specific views onto data pertaining to domain objects. They provide

the user interface functionality to browse and edit domain object.

• Desktop Classes

These classes render domain objects as icons on the desktop. They provide the

functionality to invoke inspectors and to relate objects through a drag-and-drop

mechanism.

• Manager Classes

Coordination of the interaction between domain objects and their respective

representation is factored into these classes. In a sense, they provide the glue between

domain classes and the user interface classes.

• Activity Classes

These classes represent undo-able direct manipulation commands.

Desktop Classes
SwapContext
YieldCurveContext
PortfolioContext
ScenarioContext

CntPartyContext

Context

SwapView
CashflowView
YieldCurveView

PortfolioView
ScenarioView
CntPartyView

YieldCurveGraphView

View

DeskView
DeskItem SwapItem

YieldCurveItem
PortfolioItem
ScenarioItem
CntPartyItem

DeskItemController

VObjectEvtHandler

SMObject Swap
YieldCurve
Portfolio
Scenario
CntParty

SwapSide

Cashflow

Data Management Component

SMBase

Problem
Domain
Component

Editor/Inspector Classes
Object

DeskItemMoverCommand
YieldCurveMover
YieldCurveZoomer
YieldCurveRangeSelector

Workspace

SMApplicationApplication

Manager Classes

Activity Classes

Figure 5: The ET++SwapsManager class hierarchy

pay rec

Portfolio
Swap

Currency
YEN

Yield Curve

Scenario Scenario

Market Rates

USDCHF
Currency Currency

Market Rates Market Rates

Yield CurveYield Curve

Figure 6: Object dependencies during valuation

A different view of the system architecture is given in figure 6 which shows the possible

arrangement of domain objects and the dependencies between them. Since domain

functionality is distributed among domain objects change propagation is used to ensure

consistency. As an example, if a scenario is modified then any yield curve dependent on

this scenario must recalculate its discount factors which in turn invalidates the present

values of dependent swaps and portfolios. These will then also recalculate their value.

4 Creating the ET++SwapsManager

The overall design approach taken in the ET++SwapsManager project was guided by a

strong conviction that new systems are grown, and not built [Bro87]. We set out with a

half-page specification for the project with the understanding that the bulk of know how

necessary to build the system would be acquired during multiple analysis/design

iterations (“round-trip gestalt design” [Boo91]).

The lack of domain knowledge in financial engineering on the side of the developers and

the diffuse notion on the side of the trading specialists how state-of-the-art user interface

technology could support their work lead us to employ exploratory prototyping [Flo84].

The aim was threefold:

• Learn about the domain through building prototypes on the basis of informal

communication and intuition, and then expose these prototypes to the critique of

domain specialists

• Explore implementations of interaction techniques in the context (guidance and

constraints) of the employed application framework

• Motivate domain specialists to take off precious time from trading.

The design iterations witnessed in the various prototypes incrementally caused a better

understanding of the key domain abstractions, what they are and how they relate to each

other. We started with a simple abstraction of a yield curve which was recognized early in

the project and step by step evolved the system from there on. The first prototypes mainly

concentrated on the representation and the direct manipulation of the yield curve.

Intermediate prototypes then successively included definition and valuation of swaps and

portfolios. Finally, the workspace and domain desktop metaphors integrated the domain

objects.

5 Design Patterns

A powerful form of reuse is design reuse. A promising approach to support design reuse

is the idea of design patterns. It was a goal of the ET++SwapsManager project to acquire

experience with this idea.

5.1 What are Design Patterns

An important lesson we learned during the development of ET++ is that there are some

design structures that emerge repeatedly [Gam91]. These structures typically improve a

design in terms of flexibility, reusability and elegance.

Design patterns explicitly name and capture such structures. They describe the intent and

organization of design structures at an abstract level. By doing so, a design pattern can be

reused when designing new or improving existing systems. For this reason, we consider

design patterns as a valuable addition to existing object-oriented design methods [Wir90,

Boo91, Rum91]. The use of patterns to simplify and guide the design process has also

found applicability in other domains, e.g., Alexander’s work for architecture design

[Ale77]. Design patterns are related to idioms as introduced by Coplien [Cop92]. A

difference is that design patterns try to describe abstract design structures, idioms are

more concrete solutions in the context of a specific programming language.

Design patterns occur at different levels of abstraction. At a lower level there are patterns

to design individual classes, i.e. their interfaces and internals. Examples for such patterns

are: template methods [Wir90], double dispatching [Heb90], or iterator classes [Str91].

Higher level design patterns are concerned with the design of collaborating objects or

object teams1. These patterns focus on:

– Interaction among objects

– Distribution of responsibilities [Wir89, Bec89]

– Role of an object in a team

– Composition of objects.

The following is a list of some important design patterns that occur at this higher level.

This list is intended to give an idea of the spirit of design patterns. For a comprehensive

collection of patterns we refer to [Gam91]:

• Strategy

In the strategy pattern an object delegates the implementation of some behaviour to a

separate strategy object. In this way the implementation of the behaviour can be

replaced by using a different strategy object.

• Observer

Observer objects observe other objects. When they observe a change they react by

1 Such groups of objects are also called behavioral compositions [Hel90]

updating their own representation. Observer objects provide for synchronization,

coordination or consistency constraints between objects.

• Composer

A composer object provides for treating a composition of objects like a single object. A

composer object is a mean to create recursive objects.

• Forwarder

The idea behind the forwarder pattern is to create a hierarchy of responsibilities among

objects. This is achieved by providing the infrastructure to link objects and to forward

messages along these links. An object interested in a message will intercept it otherwise

it forwards the message to the next object. An instance of a forwarder pattern is the

event handling architecture in MacApp [App89] or ET++.

• Bridge

A bridge object separates an abstraction from its implementation or representation.2

• Manager

Manager objects manage the communication between objects. They mediate between

objects and help to reduce the object coupling among objects. For example, a

PrintManager object manages the communication between graphical objects and a Printer

object.

• Wrapper

Wrapper objects represent a specific property, which can be attached to other objects by

composing them with the wrapper object. Various object-oriented user interface

toolkits use this pattern to decorate graphical objects with different borders or to attach

additional behaviour like scrolling.

• Activity

The activity pattern distinguishes between activity creators, activity consumers, and

activities themselves. The activity object knows how to perform some task and

maintains the required context information. An activity object can be created by any

object in the system and is then consumed or triggered by a specific activity consumer.

The implementation of undoable commands in interactive applications typically uses

this pattern (see Fig. 5).

After this general introduction to design patterns we will describe in the next section how

they were helpful for creating the ET++SwapsManager.

2 Coplien [Cop92] uses the term Envelope/Letter idiom for these structures

5.2 Using Design Patterns in the ET++SwapsManager

Design patterns were reused in various places in the overall ET++SwapsManager

architecture:

– The manager pattern was applied to decouple problem domain objects from the user

interface. A special manager object (Context) takes care of organizing the

communication between a problem domain object like a Swap and its visual

representation (see Fig. 5).

– The observer pattern was used to trigger the recalculation after any changes in a

domain object.

– Wrapper objects were created to attach additional application specific properties to

existing graphical objects.

In addition, other patterns like forwarders, activities, abstract factories or strategies were

incorporated into the application architecture by reusing the ET++ class library. These

examples illustrate that design patterns can be considered as micro-architectures that

contribute to an overall system architecture.

The abstract nature of design patterns has shown up as a major benefit. For example, the

ET++ class library provides a class Document which is responsible for window

management, data management, and command processing. This class accomplishes its

responsibilities by mediating between data and window objects. Document is therefore an

instance of a manager pattern, and mainly mediates between different objects. In the

ET++SwapsManager application we needed a similar abstraction to connect the problem

domain objects with user interface objects. The Document class itself was not reusable

because it is was a very concrete implementation of such a manager object. However, the

abstract design pattern underlying the implementation of Document was reused in the

ET++SwapsManager.

Design patterns tend to motivate developers to go beyond concrete objects, i.e., they

objectify concepts which are not immediately apparent as objects in the problem domain.

The modeling of day-count conventions with a strategy object is an example for this.

We also noticed that design patterns have a potential to reduce the learning effort for a

class library. Each class library has a certain design "culture". This design culture is

characterized by the set of design patterns that were applied by the class library

developers. A specific design pattern is typically reused by its developers in different

places of the library. For this reason it becomes attractive to teach clients these patterns,

especially novice clients. Once they are familiar with them they can reuse this

understanding. Moreover, we have noticed that some of these design patterns emerge in

different class libraries.

Clients should also benefit from thinking in design patterns. We noticed that this has the

benevolent side-effect that they try to look at their own designs from a more abstract point

of view, i.e. “how do my objects interact”, “what are their roles”, etc.

Finally, design patterns have proven to be very helpful in design reviews. They provided

a common vocabulary to discuss a design. In addition, when there were some problem

spots in the design, we noticed that design patterns helped to explore other design

alternatives. We refer to this activity as design pattern matching.

To conclude, we do not think that the use of design patterns makes someone a better

designer. The design process still remains iterative. In the ET++SwapsManager project

design patterns mainly helped to reduce complexity by providing named abstractions for

design structures. In addition, design patterns motivated reorganizations of the

ET++SwapsManager's class hierarchy to improve its flexibility. This fact was not only

noticed in our project but was also reported from other developers that were exposed to

the idea of design patterns.

6 Evaluation

In this section we will discuss some results of the ET++SwapsManager project.

6.1 Development Effort

The pilot application was completed in seven person months. It is important to note that

the ET++SwapsManager is not only a user-interface mock-up, but supports the

functionality to price real swaps. The ET++SwapsManager was implemented by the first

author while he was coached by the second. None of us had prior knowledge of swaps

pricing and financial engineering. In comparison with other developments for the swaps

trading department our project achieved a noticeably higher productivity.

6.2 Using a User Interface Framework

In the ET++SwapsManager project we experienced the following benefits from using a

user interface framework:

• Support for prototyping of direct manipulation user interfaces through reusable

abstractions and building blocks for graphical object editing.

• The user interface framework allows the reuse of an application's architecture and

therefore provides the developer with architectural guidance.

One major obstacle of this reuse-oriented approach was the learning effort for the user

interface framework. This problem was aggravated by the general difficulty to document

frameworks in an adequate way. The comprehension problems could be alleviated by

some ET++ specific browsing tools and by teaching the design patterns of the class

library.

6.3 Reusability

In the ET++SwapsManager project we successfully reused an existing class library. We are

well aware that the identification of reusable domain abstractions requires experience

from more than one specific project in a problem domain. Therefore it was not surprising

that the project was less successful in directly contributing new reusable classes.

Nevertheless, through the project we have identified candidate abstractions for reusable

components.

Candidate abstractions for reusable components in the user interface component are:

• Workspaces for task-oriented views onto trading data

• Graphical editor for yield curves

• Domain specific desktop which provides functionality to view and modify

relationships among domain objects

We see a large potential for reusable components when we look at support for financial

instruments in general. Possible reusable components from this wider problem domain

are:

• Market conventions as separate strategy objects

• Cash flows and options which encapsulate how they arrive at their nominal values and

thus allow application of generic algorithms in valuation.

• Portfolios as collections of abstract cash flows and options

• Yield curves which encapsulate market valuation system details

In our view, these abstractions will be promising components in a domain specific

framework which would integrate these components on the level of abstract protocols.

7 Conclusion and Future Work

The ET++SwapsManager project shows potential to serve as a catalyst for object

technology in the bank. It is already frequently cited as the standard reference for how

user interface technology could be used in banking applications.

In the short term, emphasis will be put on extending the ET++SwapsManager to a fully

operational swap valuation and pricing system. As a medium term goal the evolution of a

financial engineering platform in the form of a domain specific application framework is

considered. Essential steps in this evolution will be the production of a series of

operational tools which will foster the necessary domain know how and will surface more

powerful abstractions.

References

[Ale77] C. Alexander et al., A Pattern Language , Oxford University Press, New York,

1977. (5.1)

[App89] Apple Computer, MacApp II Programmer's Manual, Apple Computer, Inc.,

Cupertino, CA, 1989. (5.1)

[Bec89] K. Beck and W. Cunningham, “A Laboratory For Teaching Object-Oriented

Thinking,” In OOPSLA'89 Conference Proceedings October 1-6, New Orleans,

Louisiana), published as OOPSLA'89, Special Issue of SIGPLAN Notices, Vol. 24,

No. 10, November 1989, pp. 1-6. (5.1)

[Boo91] G. Booch, Object-oriented Design with Applications, The Benjamin/Cummings

Publishing Company, Reading, Mass., 1991. (4, 5.1)

[Bro87] F. P. Brooks Jr., “No Silver Bullet - Essence and Accidents of Software

Engineering,” IEEE Computer, Vol. 20, No. 4, April 1987,. (4)

[Cop92] J. O. Coplien, Advanced C++ Programming Styles and Idioms , Addison-Wesley,

Reading, Mass., 1992. (5.1)

[Flo84] C. Floyd, “A Systematic Look at Prototyping,” In Approaches to Prototyping, K.

Budde, ed. Springer-Verlag, Berlin, 1984, pp. 1-18. (4)

[Gam90] E. Gamma and A. Weinand, “ET++ - A Portable C++ Class Library for a UNIX

Environment,” In OOPSLA'90 Tutorial , ACM, New York, October 1990,. (1)

[Gam91] E. Gamma, Objektorientierte Software-Entwicklung am Beispiel von ET++:

Klassenbibliothek, Werkzeuge, Design , Dissertation, Universität Zürich, 1991. (5.1)

[Heb90] K. J. Hebel and R. E. Johnson, “Arithmetic and Double Dispatching in

Smalltalk-80,” The Journal of Object-Oriented Programming, Vol. 2, No. 6,

January 1990, pp. 40-44. (5.1)

[Hel90] R. Helm, I. M. Holland, and D. Gangopadhyay, “Contracts: Specifying

Behavioral Compositions in Object-Oriented Systems,” In OOPSLA'90

Conference Proceedings (October 21-25, Ottawa, Canada), published as

OOPSLA'90, Special Issue of SIGPLAN Notices, Vol. 25, No. 10, October 1990,

pp. 169-180. (5.1)

[Hen86] D. A. Henderson and S. K. Card, “Rooms: The Use of Multiple Virtual

Workspaces to Reduce Space Contention in a Window–Based Graphical User

Interface,” ACM Transactions on Graphics , Vol. 5, No. 3, July 1986, pp. 211-243.

(3.3)

[Kap90] K. R. Kapner and J. F. Marshall, The Swaps Handbook - Swaps and Related Risk

Management Instruments , Institute of Finance, New York, 1990. (3.2)

[Rum91] J. Rumbaugh et al., Object-Oriented Modelling and Design, Prentice-Hall,

Englewood Cliffs, New Jersey, 1991. (5.1)

[Str91] B. Stroustrup, The C++ Programming Language, Second Edition, Addison-

Wesley, Reading, Mass., 1991. (5.1)

[Wei88] A. Weinand, E. Gamma, and R. Marty, “ET++ – An Object Oriented

Application Framework in C++,” In OOPSLA'88 Conference Proceedings

(September 25-30, San Diego, CA), published as OOPSLA'88, Special Issue of

SIGPLAN Notices , Vol. 23, No. 11, November 1988, pp. 168-182. (1)

[Wei89] A. Weinand, E. Gamma, and R. Marty, “Design and Implementation of ET++,

a Seamless Object–Oriented Application Framework,” Structured Programming,

Vol. 10, No. 2, June 1989, pp. 63-87. (1)

[Wir89] R. Wirfs-Brock and B. Wilkerson, “Object-Oriented Design: A Responsibility-

Driven Approach,” In OOPSLA'89 Conference Proceedings October 1-6, New

Orleans, Louisiana) , published as OOPSLA'89, Special Issue of SIGPLAN Notices,

Vol. 24, No. 10, November 1989, pp. 71-77. (5.1)

[Wir90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented

Software , Prentice-Hall, Englewood Cliffs, New Jersey, 1990. (5.1)

