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ABSTRACT
In this paper, we present a novel simulation approach for
power grid network analysis. The new approach, called
ETBR for extended truncated balanced realization, is based
on model order reduction techniques to reduce the circuit
matrices before the simulation. Different from the (im-
proved) extended Krylov subspace methods EKS/IEKS [15,
2], ETBR performs fast truncated balanced realization on
response Grammian to reduce the original system with the
similar computation costs of EKS. ETBR also avoids the
adverse explicit moment representation of the input signals.
Instead, it uses spectrum representation of input signals by
fast Fourier transformation. As a result, ETBR is more flex-
ible for different types of input sources and can better cap-
ture the high frequency contents than EKS, and this leads
to more accurate results especially for fast changing input
signals. Experimental results on a number of large networks
(up to one million nodes) show that, given the same or-
der of the reduced model, ETBR is indeed more accurate
than the EKS method especially for input sources rich in
high-frequency components. ETBR also shows similar com-
putation costs of EKS and less memory consumption than
EKS.

1. INTRODUCTION
Reliable on-chip power delivery is one of the major chal-
lenges for 90nm and below VLSI technology. This situation
becomes worse as technology continues to scale owning to
the several reasons: First, technology scaling results in de-
creased interconnect width and increased interconnect resis-
tance in a power supply network. Second, increased device
density leads to increased supply current density on a chip.
Third, a higher clock frequency gives rise to more significant
inductance effect. At the same time, supply voltage contin-
ues to decrease, which results in a decreased noise margin
for signal transition, and makes transistor more vulnerable
to supply voltage degradation. So efficient verification of
power integrity becomes critical for final design closure.

Many research works have been done on efficient simulation
of on-chip power grid networks. Methods such as multigrid-
like [1, 5], hierarchical [16, 2], partition-based [3], fast iter-
ative [13] and random walk based [12, 4] approaches help
improve scalability of power gird network analysis. Another
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approach to fast power grid analysis is based on so-called
extended Krylov subspace based methods (EKS) [15, 2]. In
EKS methods, both a power grid system and its input sig-
nals are used to reduce the original circuits before the simu-
lation. Due to efficiency of Krylov subspace based reduction
techniques, EKS/IEKS can deal with very large power grid
circuits. But EKS method also suffers several shortcomings.
First, the methods need to represent the input signals in the
Taylor expansion form or the moment form with respect to
complex frequency variable s. This can lead to less accurate
results when the input signals are fast changing waveforms
with many spike-like shapes. Such high-frequency bearing
input waveforms cannot be represented accurately using the
moment form owning to the well-known problems in explicit
moment matching methods [8, 14]. Second, EKS is based on
the Krylov subspace method to reduce the circuit matrices.
The Krylov subspace approach leads to localized accuracy
due to moment-matching property. Multiple-point moment
matching will result in larger reduced systems, which de-
grades the simulation efficiency.

In this paper, we propose a novel model order reduction
based simulation approach. This approach, called ETBR
for extended truncated balanced realization, is based on the
similar idea of the EKS method, where both a system and
its input signals are used to reduce the original circuit ma-
trices. But different from the (improved) extended Krylov
subspace methods, EKS/IEKS [15, 2], ETBR performs fast
truncated balanced realization, which is more accurate than
Krylov subspace method used in EKS method, on response
Grammian to reduce the original system while with the sim-
ilar computation costs of EKS. ETBR also avoids the ex-
plicit moment representation of the input signals. Instead, it
uses spectrum representation of input signals by fast Fourier
transformation. As a result, ETBR is much more flexible for
different types of input sources and can better capture the
high frequency contents than EKS and this leads to more
accurate results for fast changing input signals. Experimen-
tal results, on a number of large networks up to one mil-
lion nodes, show that ETBR is indeed more accurate than
the EKS/IEKS method especially for current sources rich in
high-frequency components. ETBR also shows similar com-
putation costs of EKS and less memory consumption than
EKS.

The rest of this paper is organized as follows: Section 2
presents the power grid models used in the paper. Section 3
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Figure 1: The power grid model used.

reviews the extended Krylov subspace method. Our new
ETBR method is presented in Section 4. We also review the
standard and fast balanced truncation reduction methods in
this section. Section 5 presents the experimental results and
Section 6 concludes this paper.

2. POWER GRID NETWORK MODELS
The power grid networks in this paper are modeled as RC
networks with known time-variant current sources, which
can be obtained by gate level logic simulations of the circuits.
Fig. 1 shows the power grid models used in this paper. For a
power grid, some nodes having known voltage are modeled
as constant voltage sources. For C4 power grids, the known
voltage nodes can be internal nodes inside the power grid.
Given the current source vector, u(t), the node voltages can
be obtained by solving the following differential equations,
which is formulated using modified nodal analysis (MNA)
approach,

Gv(t) + C
dv(t)

dt
= Bu(t) (1)

where G ∈ Rn×n is the conductance matrix, C ∈ Rn×n

is the matrix resulting from storage elements. v(t) is the
vector of time-varying node voltages and branch currents
of voltage sources. u(t) is the vector of independent power
sources, and B is the input selector matrix.

3. REVIEW OF EXTENDED KRYLOV
SUBSPACE METHODS

Krylov subspace based model order reduction methods have
been well-accepted in interconnect modeling. But the meth-
ods are less efficient for on-chip power supply network analy-
sis, due to the presence of a large number of inputs (supply
current excitations) and outputs (potential supply voltage
degradation nodes). The main reason is that the computa-
tion costs and the projection vectors directly depend on the
terminal count and the reduced model may increase very
quickly with increasing terminal count.

To mitigate this problem, extended Krylov subspace method
was proposed [15, 2]. The idea is to perform the reduc-
tion on both model and input in the moment form. As
a result, the original multi-input and multi-output reduc-
tion problem becomes single-input and multi-output prob-
lem. One-side Krylov subspace method like PRIMA [7] can

Algorithm 1: (Improved) Extended Krylov Subspace
method (EKS/IEKS)

Input: Circuit of G, C, B, u, reduction order q
Output: Reduced system matrices Ĝ, Ĉ, B̂

1. b0 = Bu0, m0 = G−1b0, v̂0 = α0m0, α0 = norm(m0)
2. For i = 1 : q
3. vi = G−1(Πi−1

j=0αjBui − C(v̂1 + αi−1
Pi−1

j=0 hi−1,j v̂j))
4. For k = 1 : i− 1
5. hi,k = v̂

T
k vi

5. v̄i = vi −
Pi

j=0 hi,j v̂j
6. If norm(v̄i) < ε break;
7. Else v̂i =

v̄i
norm(v̄i)

, αi =
1

norm(v̄i)

8. Ĝ = V TGV ,Ĉ = V TCV , B̂ = V TB
9. End

be efficiently used for reducing such systems. The compu-
tation now is independent of the number of terminals in the
network. IEKS [2] shows that for piece-wise linear (PWL)
sources, which is approximated by sums of delayed ramps
in Laplace domain, the 1/s and 1/s2 terms are always zero.
So no moment shifting is required as in [15].

Specifically, instead of computing the vectors of the n-
th order moments for explicit moment matching, extended
Krylov subspace method constructs a modified Krylov sub-
space by orthonormalizing the moment vectors with current
sources. For a RLC network in frequency domain,

(G + sC)v(s) = Bu(s) (2)

where G is conductance matrix, C is storage element matrix.
B is position matrix. If we expand v(s) and u(s) in moment
form, we have

(G+sC)(m0+m1s+m2s
2+...) = B(u0+u1s+u2s

2+...) (3)

The EKS algorithm essentially performs the orthonormal-
ization on the response moments mi. The EKS algorithm is
shown in Algorithm 1.

After we obtain the reduced system, we can perform the
transient simulation on the reduced system,

Ĝv̂(t) + Ĉ
dv̂(t)

dt
= B̂u(t) (4)

Transient simulation can be carried out on (4), which will
be very efficient due to reduced circuit matrices. After this,
the original waveforms can be obtained by v(t) = V v̂(t).

4. NEW EXTENDED BALANCED TRUN-
CATION METHOD

As mentioned before, EKS is less accurate due to its explicit
representation of the current sources in moment form and
localized moment-matching property. In this paper, we pro-
pose an extended truncated balanced realization method,
called ETBR, to mitigate the mentioned problems in EKS
method.

The new method features two improvements. First, the in-
put signals are represented in its spectrum form in frequency



domain directly by fast Fourier transformation. Second, fast
balanced truncation method is used to perform the reduc-
tion, which has global accuracy [6, 11].

In the following, we first review the balanced truncation
method and then the fast Grammian computation method.

4.1 Review of standard TBR
Given a system in a standard state-space form

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(5)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, y(t), u(t) ∈ Rp.
The controllable and observable Grammians are the unique
symmetric positive definite solutions to the Lyapunov equa-
tions.

AX + XAT + BBT = 0
ATY + Y A + CTC = 0

(6)

Since the eigenvalues of the product XY are invariant un-
der similarity transformation, we can perform a similarity
transformation (Ab = T−1AT,Bb = T−1B,Cb = CT ) to
diagonalize the product XY such that

T−1XY T = Σ = diag(σ1
2, σ2

2, . . . , σn
2) (7)

where the Hankel singular values of the system (σk), are
arranged in a descending order. If we partition the matrices
as »

W T
1

W T
2

–
XY

ˆ
V1 V2

˜
=

»
Σ1 0
0 Σ2

–
(8)

where Σ1 = diag(σ1
2, σ2

2, . . . , σr
2) are the first r largest

eigenvalues of Grammian product XY and W1 and V1 are
corresponding eigenvectors. A reduced model can be ob-
tained as follows

ẋ(t) = Arx(t) + Bru(t)
y(t) = Crx(t)

(9)

where Ar = W T
1 AV1, Br = W T

1 B, Cr = CV1. The er-
ror in the transfer function of the order r approximation is
bounded by 2

PN
i=r+1 σk. In the TBR procedure, the com-

putational cost is dominated by solving Lyapunov equations
O(n3), which makes it too expensive to apply to integrated
circuits problems and thus an efficient Grammian approxi-
mation technique is highly appreciated.

4.2 Review of fast TBR method: Poor man’s
TBR

Existing Grammian approximation technique, PMTBR [10],
is restricted to a state-space model (5) with A = AT and
C = BT . This is the case for RC and RL circuits. In this
symmetrized case, it is easy to see that, both Grammians are
equal and are obtained by solving the Lyapunov equation

AX + XAT + BBT = 0 (10)

Since X is symmetric, it is orthogonally diagonalizable, i.e.,
there exists T−1 = T T such that T TXT = Σ. Then, we
have

T TXXT = (T TXT )(T TXT ) = (Σ)2 (11)

which means, in this symmetrized case, the eigenspace of
Grammian product XX is exactly the eigenspace of each X

and we only need to find the dominant invariant subspace of
an approximated Grammian X̂. In frequency domain, the
Grammian X can also be computed from the expression

X =

Z +∞

−∞
(jωI −A)−1BBT (jωI − A)−Hdω (12)

where superscript H denotes Hermitian transpose. Let ωk

be kth sampling point. If we define

zk = (jωkI − A)−1B (13)

then X can be approximated as

X̂ =
X

zkz
H
k = ZZH (14)

where Z = [z1, z2, . . . , zn]. Since X̂ is symmetric, it is or-
thogonally diagonalizable.

V̂ T X̂V̂ =

»
V̂ T

1

V̂ T
2

–
X̂

ˆ
V̂1 V̂2

˜
=

»
Σ̂1 0

0 Σ̂2

–
(15)

where V̂ T V̂ = I . V̂ converges to the eigenspaces of X and
the dominant eigenvectors V̂1 can be used as the projection
matrix in a model reduction approach (Ar = V̂ T

1 AV̂1, Br =

V̂ T
1 B).

4.3 Response Grammian and fast computa-
tion method

Follow the similar strategy of EKS method, we consider the
input signals of the system into TBR based reduction frame-
work so that efficient reduction can be done by converting
an MIMO system into an SIMO system.

To this end, for linear system in (1), we first define the
response Grammian at the frequency domain as:

Xr =

Z +∞

−∞
(jωC + G)−1Bu(jω)uT (jω)BT (jωC + G)−Hdω

(16)

To fast compute the response Grammian Xr, we can follow
the similar strategy in PMTBR method. Specifically, let
ωk be kth sampling point over the frequency range. If we
further define

zr
k = (jωkC + G)−1Bu(jωk) (17)

then X̂ can be computed as

X̂r =
X

zr
kz

r
k

H = ZrZ
H
r (18)

where Zr is a matrix whose columns are zr
k. Since the ap-

proximate Grammian X̂r is symmetric, we can obtain the
project matrix by singular value decomposition of either X̂r

or Zr. After this, we can reduce the original matrices into
small ones and then perform the transient analysis on the
reduced circuit matrices.

Notice that we need frequency response of input signal
u(jωk) in (17). This can be obtained by fast Fourier trans-
formation on the input signals in time domain.

4.4 Extended truncated balanced realization
method: ETBR



Algorithm 2: Extended Truncated Balanced Realiza-
tion method (ETBR)

Input: Circuit of G, C, B, u(t), number of samples: q
Output: Reduced system matrices Ĝ, Ĉ, B̂

1. Convert all the input signals u(t) into u(s) using FFT.
2. Select q frequency points s1, s2, . . . , sq over the frequency
range
3. Compute zr

k = (skC +G)
−1Bu(sk)

4. Form the matrix Zr = [zr
1 , z

r
2 , . . . , z

r
q ]

5. Perform SVD on Zr, Zr = VrSrUT
r

6. Ĝ = V T
r GVr ,Ĉ = V T

r CVr , B̂ = V T
r B

7. End

In this subsection, we give the algorithm flow of the proposed
ETBR method, which is summarized in Algorithm 2.

After the algorithm, the reduced system in (4) can be sim-
ulated in time domain and the original waveforms can be
obtained by v(t) = Vrv̂(t). Note that, like the EKS method,
we use congruence transformation for the reduction process
with orthogonal columns in the projection matrix (using
Arnoldi or Arnoldi-like process), the reduced system must
be stable. As far as simulation is concerned, this is good
enough. If all the observable ports are also the current
source nodes, i.e. y(t) = BT v(t), where y(t) is the voltage
vector at all observable ports, the reduced system is passive.

It was shown in [11] that the fast TBR method has the sim-
ilar time complexity of the multiple-point Krylov subspace
based reduction methods. For the single-point EKS method,
ETBR should be slower if the equations (step 3 in both Al-
gorithm 1 and Algorithm 2) are solved the same number
of times in theory as EKS requires only one LU decompo-
sition, which should dominate the computation costs. But
practically, if we solve for zr

k in step 3 in Algorithm 2 us-
ing non-LU-decomposition based methods, ETBR can take
a similar CPU time of EKS for the same number of reduced
order. Furthermore, ETBR may even use less memory by
avoiding using LU decomposition as there is no need to store
L and U matrices. Also it is well known that iterative linear
solvers are more memory efficient than direct solvers using
LU decomposition. We will have more discussions on CPU
time and memory issues in next section of experimental re-
sults.

Comparing with the EKS/IKES method, ETBR has the fol-
lowing advantages and features:

1. More accurate over wide band frequency ranges due
to the global error bound provided by the TBR based
methods.

2. Avoid the explicit moment representation of the input
signals, which can lead more accurate results than the
EKS method when signals are rich in high frequency
components.

3. Can deal with any type of time-domain and frequency-
domain input signals. While the EKS method can only
deal with input signals in piecewise linear form.

Table 1: Test circuits
Test Ckts #Nodes #Sources

Ckt1 1, 000 100
Ckt2 10, 000 100
Ckt3 10, 000 1, 000
Ckt4 100, 000 1, 000
Ckt5 100, 000 4, 000
Ckt6 500, 000 5, 000
Ckt7 500, 000 20, 000
Ckt8 1, 000, 000 50, 000

4. Easier to implement than the EKS method and thus
more numerical stable than EKS as no explicit input
moments are used.

5. Has the similar time complexity of EKS and use less
memory than EKS.

5. EXPERIMENTAL RESULTS
The proposed ETBR algorithm has been implemented using
Matlab 7.0 and tested on a Intel Xeon 3.0GHz dual CPU
workstation with 2GB memory under Linux environment.
All the test circuits are randomly generated RC power grid
networks up to one million nodes (R on the order of Ω and
C on the order of pF), as shown in Table 1. Efficient matrix
computations benefit from sparse matrix structure and a
parser implemented by Python.

To solve circuits with one million nodes in Matlab, an exter-
nal linear solver package UMFPACK [17] is used, which is
linked with Matlab using Matlab mexFunction. For ETBR,
we use a non-LU-decomposition solver in UMFPACK. While
for EKS, the LU decomposition solver is used.

In sequel, we will compare our ETBR with IEKS [2], first
in accuracy and then in CPU times. In all the test cases, to
make a fair comparison, the reduction order q is set to 6 for
IEKS and the number of frequency samples used for ETBR
is also set to 6.

Fig. 2 shows the simulation results of ETBR and IEKS at the
200th node of Ckt2. The simulation errors compared with
SPICE results are shown in Fig. 3. One of the input signal
waveforms in both time domain and frequency domain is as
shown in Fig. 4. Through Fig. 3, we can see that ETBR is
more accurate than IEKS over the entire simulation time.

In the second testing case, we change the input signals so
that they can have more fast changing spikes as shown in
Fig. 7(a). In other words, current sources are rich in high-
frequency components.

We find that ETBR’s results are much better than EKS’s as
shown in Fig. 5. From the simulation errors comparison in
Fig. 6, we can see that ETBR is almost 3× more accurate
than IEKS (the maximum error: ETBR 0.003 vs IEKS 0.01).
This is not a surprise for us if we notice that the input
signals shown in Fig. 7(b) have much more high frequency
components from 107MHz to 108MHz than the input signals
shown in Fig. 4(b).
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Figure 2: Transient waveform at the 200th node of
Ckt2.
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Figure 3: The simulation errors of ETBR and IEKS
of Ckt2.
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Figure 4: Transient waveform at the 5th current
source of Ckt2.

Finally, we compare the CPU time of the two algorithms
on a set of power grid networks up to one million nodes.
The capacity of our implementation is mainly limited by
the physical memory of our machine (2GB).

Table 2 shows the CPU times of both ETBR (including the
cost of FFT) and IEKS on the given set of circuits using the
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Figure 5: Transient waveform at the 200th node of
Ckt2 with fast changing inputs.
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Figure 6: The simulation errors of ETBR and IEKS
on Ckt2 with fast changing inputs.
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Figure 7: The transient waveform at the 5th current
source of Ckt2.

same reduction order q = 6. We find that EKS is a bit faster
for small circuits. But for Ckt6 and larger circuits, the CPU
times are almost the same for both methods. For the largest
circuit Ckt8, EKS cannot even finish owning to the memory
constraint; while ETBR runs through all the circuits. This
clearly shows that ETBR is more memory efficient by using
a non-LU decomposition solver than EKS.



Table 2: CPU times (in seconds) comparison of
ETBR and IEKS (q = 6)

Test Ckts ETBR (s) EKS (s)

Ckt1 0.23 0.08
Ckt2 1.28 0.89
Ckt3 1.8 1.4
Ckt4 20.4 18.8
Ckt5 28.6 25.3
Ckt6 152 151
Ckt7 162 160
Ckt8 562 out of memory

6. CONCLUSION
In this paper, we have proposed a new power grid analy-
sis approach based on truncated balanced realization reduc-
tion techniques. The new simulation method, called ETBR,
performs the reduction on the system before the transient
simulation. But different from the existing extended Krylov
subspace methods such as EKS or IEKS, it uses fast trun-
cated balanced realization method on response Grammian
to perform the reduction. As a result, ETBR can deliver
more accurate results than the EKS method over large fre-
quency range with similar computation costs. Also the new
method avoids the explicit moment representation of the in-
put signals. So it can better capture the high frequency
contents than the EKS method, which leads to more accu-
rate results for fast changing input signals. Experimental
results demonstrated that, given the same order of the re-
duced model, ETBR is more accurate than EKS especially
for input sources rich in high-frequency components. ETBR
also shows similar computation costs of EKS and less mem-
ory consumption than EKS.
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