
 Open access Proceedings Article DOI:10.1109/INFCOM.2011.5935070

ETCH: Efficient Channel Hopping for communication rendezvous in dynamic spectrum
access networks — Source link

Yifan Zhang, Qun Li, Gexin Yu, Baosheng Wang

Institutions: College of William & Mary, National University of Defense Technology

Published on: 10 Apr 2011 - International Conference on Computer Communications

Topics: Rendezvous, Throughput, Radio resource management, Cognitive radio and Channel (programming)

Related papers:

 Rendezvous for Cognitive Radios

 A quorum-based framework for establishing control channels in dynamic spectrum access networks

 Sequence-Based Rendezvous for Dynamic Spectrum Access

 Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks

 Maximizing Rendezvous Diversity in Rendezvous Protocols for Decentralized Cognitive Radio Networks

Share this paper:

View more about this paper here: https://typeset.io/papers/etch-efficient-channel-hopping-for-communication-rendezvous-
4hopwwe0aw

https://typeset.io/
https://www.doi.org/10.1109/INFCOM.2011.5935070
https://typeset.io/papers/etch-efficient-channel-hopping-for-communication-rendezvous-4hopwwe0aw
https://typeset.io/authors/yifan-zhang-3pd3koq860
https://typeset.io/authors/qun-li-4dsamdrw8r
https://typeset.io/authors/gexin-yu-1tj2qbx3ie
https://typeset.io/authors/baosheng-wang-hy8yzf9npo
https://typeset.io/institutions/college-of-william-mary-1gqdr6ia
https://typeset.io/institutions/national-university-of-defense-technology-2w25ba83
https://typeset.io/conferences/international-conference-on-computer-communications-145lolxb
https://typeset.io/topics/rendezvous-3a7tqdqq
https://typeset.io/topics/throughput-1du22mto
https://typeset.io/topics/radio-resource-management-3fbf6zie
https://typeset.io/topics/cognitive-radio-r99rvqjd
https://typeset.io/topics/channel-programming-3hh9z6gl
https://typeset.io/papers/rendezvous-for-cognitive-radios-3fdcb678df
https://typeset.io/papers/a-quorum-based-framework-for-establishing-control-channels-4b8996l209
https://typeset.io/papers/sequence-based-rendezvous-for-dynamic-spectrum-access-irzqxykzgf
https://typeset.io/papers/jump-stay-based-channel-hopping-algorithm-with-guaranteed-2killcfkl8
https://typeset.io/papers/maximizing-rendezvous-diversity-in-rendezvous-protocols-for-16aqgnjnxp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/etch-efficient-channel-hopping-for-communication-rendezvous-4hopwwe0aw
https://twitter.com/intent/tweet?text=ETCH:%20Efficient%20Channel%20Hopping%20for%20communication%20rendezvous%20in%20dynamic%20spectrum%20access%20networks&url=https://typeset.io/papers/etch-efficient-channel-hopping-for-communication-rendezvous-4hopwwe0aw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/etch-efficient-channel-hopping-for-communication-rendezvous-4hopwwe0aw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/etch-efficient-channel-hopping-for-communication-rendezvous-4hopwwe0aw
https://typeset.io/papers/etch-efficient-channel-hopping-for-communication-rendezvous-4hopwwe0aw

Technical Report WM-CS-2012-03

College of
William & Mary

Department of Computer Science

WM-CS-2012-03

Toward Efficient Channel Hopping for Communication Rendezvous
in Dynamic Spectrum Access Networks

Yifan Zhang, Gexin Yu, Qun Li, Haodong Wang,
Xiaojun Zhu and Baosheng Wang

June 18, 2012

1

1

Toward Efficient Channel Hopping for

Communication Rendezvous in

Dynamic Spectrum Access Networks
Yifan Zhang⋆, Gexin Yu⋆, Qun Li⋆, Haodong Wang†, Xiaojun Zhu‡§ and Baosheng Wang♯§

⋆The College of William and Mary, USA
†Cleveland State University, USA

‡Nanjing University, China
♯National University of Defense Technology, China

Abstract—We present ETCH, efficient channel hopping based
MAC-layer protocols for communication rendezvous in Dynamic
Spectrum Access (DSA) networks. Compared to the existing
solutions, ETCH fully utilizes spectrum diversity in communi-
cation rendezvous by allowing all the rendezvous channels to
be utilized at the same time. We propose two protocols, SYNC-
ETCH, which is a synchronous protocol assuming DSA nodes
can synchronize their channel hopping processes, and ASYNC-
ETCH, which is an asynchronous protocol not relying on global
clock synchronization. Our theoretical analysis and ns-2 based
evaluation show that ETCH achieves better performances of time-
to-rendezvous and throughput than the existing work.

I. INTRODUCTION

DYnamic spectrum access (DSA) is a promising technique

that solves the spectrum scarcity problem and increases

network capacity. In DSA networks, unlicensed users (i.e.,

secondary users) are granted the access to the licensed spec-

trum if it is not being used by the licensed users (i.e., primary

users). As in normal multi-channel communication networks,

communication rendezvous is the first step for a pair of DSA

nodes (i.e., secondary users1) to establish the communications

with each other. In particular, a pair of DSA network nodes

wishing to communicate should first agree on certain control

information, such as data communication channel and data

rate, before they can start the data communication. The chan-

nel on which the nodes negotiate to reach the agreement is

called the control channel. Communication rendezvous for a

pair of nodes is to establish a control channel between them.

The common control channel approach, where a well-known

channel is designated as control channel for all nodes, is

the most straightforward way to establish a control channel

between a pair of DSA nodes. However, it suffers from the

channel congestion problem and is vulnerable to jamming

attacks [1]. Moreover, this approach cannot be applied in DSA

networks because the control channel itself may be occupied

by the primary user and hence become unavailable to the

secondary users. The channel hopping approach, by contrast,

increases control channel capacity and is immune to jamming

attacks by utilizing multiple control channels. In this approach,

all idle network nodes hop on a set of sequences of rendezvous

§This work was done while the author was visiting the College of William
and Mary.

1In this paper, DSA nodes always refer to secondary users of the DSA
network.

channels (i.e., channels that are assigned for the purpose of

control information exchange). When two nodes wishing to

communicate hop to the same channel, this channel will serve

as a control channel between the pair of nodes. The time that

it takes for a pair of nodes to establish the control channel is

called “time-to-rendezvous” or TTR for short.

To establish a control channel in DSA networks through

channel hopping (abbreviation CH), every pair of nodes should

have chance to rendezvous with each other periodically. In

particular, due to the unique property of DSA networks that the

channel availability is dynamic, the control channel established

between any pair of nodes should equally likely be any one of

the rendezvous channels. Otherwise, a pair of nodes would not

be able to communicate if a primary user occupies the chan-

nels on which they rendezvous, even though there may still

exist some other available channels to exchange the control

information. QCH [2] is a recent control channel establishment

protocol specifically designed for DSA networks. It utilizes the

overlap property of quorums in a quorum system to develop

CH sequences such that any two CH sequences are able

to rendezvous periodically. Meanwhile, to accommodate the

dynamics of the channel availability in DSA networks, QCH

guarantees that any two nodes can meet each other as long as

there are rendezvous channels not being occupied by primary

users. While QCH is more suitable for DSA networks scenario

and has better performances than existing CH-based multi-

channel communication protocols, the following two concerns

motivated us to explore for a better scheme.

First, in the scenario where global clock synchronization

is available for DSA nodes to synchronize their channel

hopping processes, QCH is only able to use one rendezvous

channel as control channel in each hopping slot. This approach

neglects the spectrum diversity, which is the most salient

advantage brought by the DSA technique, in control channel

establishment, and thus will potentially lead to severe traffic

collision in a high probability. We propose SYNC-ETCH, a

synchronous ETCH protocol, which efficiently exploits the

spectrum diversity in a way that every rendezvous channel can

serve as a control channel in each hopping slot. In SYNC-

ETCH, while achieving the same goal, two CH sequence

construction algorithms are proposed: two-phase CH sequence

construction [3] and single-phase sequence construction. These

two algorithms are complementary in design. The single-

phase algorithm can guarantee the satisfaction of the even

2

use of rendezvous channels requirement, which states that all

the rendezvous channels should have the same probability to

appear in each constructed CH sequence. This requirement is

important for CH based communication rendezvous protocols,

since if a CH sequence is heavily using a certain rendezvous

channel, the nodes hopping on this sequence will lose contact

with other nodes if the heavily relied channel is taken away by

the primary user. The constraint of the single-phase algorithm

is that it requires the total amount of rendezvous channels to

be an odd number. The two-phase CH sequence construction

algorithm can be applied to DSA networks with an arbitrary

number of rendezvous channel, but it tries (cannot guarantee)

to satisfy the even use of rendezvous channel requirement. As

will be showed later, both of the SYNC-ETCH CH sequence

construction algorithms achieve the optimal average TTR

under the premise that all the rendezvous channels should be

utilized as control channels in every hopping slot.

Second, in the scenario where the channel hopping pro-

cesses of different DSA nodes are not synchronized, QCH

only guarantees two of the rendezvous channels to be used

as control channels. This arrangement also does not take

advantage of spectrum diversity in DSA networks, and may

lead to communication outage when the primary users appear

on the two channels. We propose ASYNC-ETCH, an asyn-

chronous ETCH protocol, which solves the problems by using

all rendezvous channels as control channels.

The contributions of this paper are summarized as follows.

• We formulate the problem of designing channel hopping

based communication rendezvous protocols in DSA net-

works by considering all relevant metrics and require-

ments. We provide an in-depth and systematical analysis

about the principles of designing this type of protocols,

which is valuable for future research in this field.

• We propose an optimal synchronous protocol for commu-

nication rendezvous in DSA networks. The optimality of

this protocol lies in that its average time-to-rendezvous

is shortest under the premise that all the rendezvous

channels should be utilized in every hopping slot. This

approach achieves good time-to-rendezvous while greatly

increasing the capacity of the DSA network at the com-

munication setup stage.

• We propose a novel asynchronous protocol that enables

two DSA network nodes to rendezvous without the exis-

tence of global clock synchronization mechanisms. Our

protocol achieves better time-to-rendezvous and traffic

throughput than the existing schemes.

The rest of the paper is organized as follows. We summarize

the related work in section II. In section III, we formulate

the problem to address and summarize the requirements for

designing channel hopping based communication rendezvous

protocols in DSA networks. We introduce the SYNC-ETCH

protocol and the ASYNC-ETCH protocol in section IV and

section V respectively. We theoretically compare the ETCH

protocols with existing solutions in section VI, evaluate the

performance of the ETCH protocols using ns-2 simulations

in section VII, and finally conclude the paper in section VIII.

II. RELATED WORK

Channel hopping based rendezvous protocols in normal

multi-channel wireless networks. SSCH [4] is a well known

synchronous communication rendezvous protocol for IEEE

802.11 network. In SSCH, each node hops on a sequence of

channels determined by multiple (channel, seed) pairs. The

arrangement of the hopping sequence ensures that any two

nodes have chance to rendezvous with very high probability.

In very small chance that two nodes will never meet, a parity

slot with fixed channel is introduced to allow the two nodes

to communicate. CHMA [5] is another synchronous CH based

rendezvous protocol. It directs all nodes to hop on a common

channel sequence such that any two nodes can communicate

while utilizing all the channels. These protocols for normal

multi-channel wireless networks do not take into account some

important properties of DSA networks, e.g., dynamic availabil-

ity of channels, and thus are not suitable to be applied in DSA

networks. Moreover, these protocols do not consider exploiting

spectrum diversity in each hopping slot. DSA networks usually

have much more spectrum diversity than normal multi-channel

wireless networks. Therefore, exploiting spectrum diversity in

DSA networks will bring much more performance gain.

Spectrum sharing in DSA networks. DSA network re-

search can be divided into the following areas [6]: spectrum

sensing ([7]–[12]), spectrum management ([12], [13]), spec-

trum mobility and spectrum sharing. Our work belongs to

the area of spectrum sharing. In this area, techniques can be

categorized into two classes based on network architecture.

Techniques in the first class assume there is a centralized entity

that is responsible for the spectrum allocation for all the sec-

ondary users in the network. DSAP [14] is a typical solution

that belongs to this category. The second class of spectrum

sharing techniques perform the sharing in a distributed manner.

These techniques can be further divided into two groups

based on the assumption about the existence of a common

control channel. Techniques in the first group (e.g., DOSS

[15]) use common control channels that are available to all

secondary users for spectrum sharing information exchange.

The second group of techniques, which do not rely on common

control channel, allow DSA nodes rendezvous with each other

and exchange spectrum sharing information in a dynamic

manner. Among these techniques, some are based on channel

hopping (detailed next) and some are not. HD-MAC [1] is a

representative distributed technique that ensure rendezvous in

DSA networks not based on channel hopping. In this scheme,

secondary users self-organize into groups based on similarity

of available channels. In each of the groups, a group control

channel, elected by group members, is used to carry control

information of the group nodes. A weakness of HD-MAC

is that it relies on all-channel broadcast to spread spectrum

availability information and control channel votes. Both sender

and receiver of a broadcast message need to rotate on all their

available channels to send or receive the message, which will

take a long time in establishing the group control channel

especially when the number of channels is high.

Channel hopping based rendezvous protocols in DSA

networks. Our work, QCH [2], SeqR [16] and Jump-stay CH

3

[17] are representative CH based rendezvous protocols in DSA

networks. QCH [2] deal with communication rendezvous in

both the synchronous scenario and the asynchronous scenario,

while SeqR [16] and Jump-stay CH [17] only deal with the

asynchronous scenario. Different from the previous work, we

focus on exploiting the spectrum diversity, which is the most

salient advantage of DSA networks, in designing communica-

tion rendezvous protocols (for both scenarios).

III. PROBLEM FORMULATION

A. Problem setting

In a DSA network, there are N (orthogonal) licensed

channels labeled as C0, C1, ..., CN−1 that can be used for

control information exchange. In other words, there are N
rendezvous channels in the DSA network. Any pair of nodes

wishing to communicate with each other should first establish

a control channel between them before data communications.

We assume that there is no centralized entity that globally

controls the allocation of communication channels, so the

control channel establishment between a pair of nodes is

executed in a distributed manner.

In a CH-based solution, idle nodes2 periodically hop on

(i.e., switch their working channel according to) a CH se-

quence, which is a sequence of rendezvous channels. The time

during which a node stays on a channel is defined as a hopping

slot, which is notated as a (slot-index, channel) pair. Thus, a

CH sequence S is notated as

S = {(0, S[0]), (1, S[1]), ..., (i, S[i]), ..., (p− 1, S[p− 1])},

where i ∈ [0, p − 1] is the index of a hopping slot, and

S[i] ∈ {C0, · · · , CN−1} is the rendezvous channel assigned to

the i-th slot of the sequence S. The time it takes for a node to

hop through the entire CH sequence is called a hopping period.

When two nodes hop to the same channel, they can hear from

each other and that channel is established as their control

channel. If more than two nodes hop to the same rendezvous

channel at the same time, they use existing collision avoidance

mechanisms (e.g. RTS/CTS) or retransmission to establish

pairwise control channels between them.

A CH-based solution should take account of the following

requirements in its design.

• Overlap requirement. This requirement requires that any

two CH sequences must overlap at a certain slot to ensure

the rendezvous between the two nodes. Formally, given

two CH sequences S0 and S1, they overlap if there exists

a slot (i, S0[i]) ∈ S0 and a slot (i, S1[i]) ∈ S1 such

that S0[i] = S1[i]. This slot is called an overlapping

slot between S0 and S1, and the rendezvous channel

S0[i] (S0[i] ∈ {C0, · · · , CN−1}) is called an overlapping

channel between S0 and S1. If a rendezvous channel

serves as an overlapping channel between a pair of CH

sequences in the i-th slot, we say that the rendezvous

channel is utilized (as a control channel) in the i-th slot.

• Full utilization of rendezvous channels. This require-

ment requires that any pair of nodes should be able to

utilize every rendezvous channel as their control channel.

2Here idle nodes refer to nodes waiting to initiate a communication with
other nodes and nodes waiting others to connect to them.

This is to ensure the nodes have an opportunity to

communicate with each other even if some of (but not all)

the rendezvous channels are occupied by primary users.

• Even use of rendezvous channels. This requirement

requires that all the rendezvous channels should have the

same probability to appear in each CH sequence. If a

CH sequence heavily relies on a certain channel (i.e.,

the channel is assigned to most of the slots of the CH

sequence), nodes that hop on this CH sequence will lose

contact with most of other nodes when the heavily relied

channel is occupied by the primary user.

B. Metrics

We use the following three metrics in our numerical analysis

for the proposed ETCH scheme.

• Average rendezvous channel load. This metric mea-

sures the average fraction of nodes that meet in the

same rendezvous channel among all the nodes. Given a

DSA network with M nodes and an average rendezvous

channel load α (0 < α ≤ 1), there are on average

Mα nodes rendezvous in the same channel. A light

rendezvous channel load alleviates traffic collisions and

increases the communication throughput.

• Average time-to-rendezvous. This is the average number

of hopping slots that two nodes need to wait before they

can rendezvous. A smaller average time-to-rendezvous

(TTR) allows nodes to rendezvous and establish a com-

munication link more quickly.

• Rendezvous channel utilization ratio. This is the ratio

of the number of rendezvous channels that can be utilized

as control channels in a hopping slot to the total number

of rendezvous channels. It measures, in a given hopping

slot, the extent that a communication rendezvous protocol

utilizes the spectrum diversity in establishing control

channels. A high rendezvous channel utilization ratio

is helpful to reduce collision and improve the network

capacity at the communication setup stage. This metric

does not apply to the asynchronous case in which the

hopping slot boundaries are not necessarily aligned.

We also use two other metrics, traffic throughput and actual

time-to-rendezvous, to evaluate the practical performance of a

communication rendezvous protocol. We will show that ETCH

outperforms the existing solutions through mathematical anal-

ysis and simulations in section VI and section VII respectively.

C. Assumptions

We have the following assumptions regarding DSA net-

works and the node hardware.

• All the rendezvous channels are known to all the nodes.

Information about rendezvous channels of a DSA network

can be announced by regulation authorities such that all

secondary users wishing to join the network will have

this information.

• Each node is equipped with a single transceiver, which

means a node cannot communicate in multiple channels

at the same time. This assumption is in accordance with

the ability of most commodity wireless devices.

4

• The channel switching overhead is negligible. This as-

sumption is valid because most wireless hardware manu-

facturers claim that the channel switching delay is of the

order of 80-90 µs [18]. This delay is negligible compared

to the length of a slot in a hopping sequence, which is in

the magnitude of 10ms.

IV. SYNC-ETCH

SYNC-ETCH assumes that there exists a synchronization

mechanism to achieve global clock synchronization among

DSA nodes, so that two nodes wishing to communicate with

each other can start channel hopping at the same time.

A newly joined node execute the SYNC-ETCH protocol in

following two steps.

In the first step, the node constructs a set of CH sequences

by using either the two-phase CH sequence construction

algorithm (Section IV-A) or the single-phase CH sequence

construction algorithm (Section IV-B). The two-phase algo-

rithm can be applied to scenarios with arbitrary numbers

of rendezvous channels. It satisfies the overlap requirement

in the first phase, and tries to fulfill the requirement of

even use of rendezvous channels in the second phase. The

single-phase algorithm guarantees the satisfaction of both

requirements in an integral design. Both of the algorithms

achieve the optimal average TTR under the premise that all

the rendezvous channels should be utilized as control channels

in every hopping slot.

The key design goal of both CH sequence construction

algorithms is to fully utilize all the rendezvous channels in

every hopping slot.

Theorem 1: In a DSA network with N rendezvous chan-

nels, for any CH based synchronous communication ren-

dezvous protocols where all the rendezvous channels are

utilized in each hopping slot, the minimum number of hopping

slots of each CH sequence is 2N − 1, and the average TTR

is 2N−1
2 .

Proof: To let all the N rendezvous channels be fully

utilized in each CH time slot, we must arrange at least 2N CH

sequences in a way that N pairs of CH sequences rendezvous

at N different channels. We also must arrange at least 2N −1
hopping slots for each of the 2N CH sequences to allow each

sequence to rendezvous with the rest 2N − 1 CH sequences

(for the overlap requirement). Considering that the rendezvous

time of two randomly selected CH sequences (from the 2N
sequences) is uniformly distributed between slot one and slot

2N − 1, the average TTR is 2N−1
2 .

Theorem 1 reveals that, to fully utilize all the N rendezvous

channels in each hopping slot, there are at least 2N−1 hopping

slots in each CH sequence. As we will show later, both CH

sequence construction algorithms in SYNC-ETCH can achieve

such optimal length of CH sequences.

In the second step, the node starts the CH sequence execu-

tion process (Section IV-C) in a way that the full utilization

of rendezvous channels requirement is satisfied.

We introduce the CH sequence construction algorithms and

the CH sequence execution algorithm in the rest of this section.

S0

S

slot-0 slot-4... ...

D0={(S
0
, S

5
), (S1, S4), (S2, S3)}

S1

S2

S3

D1={(S0, S1), (S2, S4), (S3
, S

5
)}

D2={(S0, S2), (S1
, S

5
), (S3, S4)}

S4

S5

D3={(S0, S3), (S1, S2), (S4
, S

5
)}

D4={(S0, S4), (S1, S3), (S2
, S

5
)}

(b)(a)

Fig. 1. Phase 1 of the two-phase CH sequence construction - rendezvous

scheduling. This figure shows the 5 rendezvous schedules (D0 to D4) of a
DSA network with 3 rendezvous channels (i.e., N = 3). In this network, 6
CH sequences (S0 to S5) are constructed. Each CH sequence has 5 hopping
slots. Rendezvous schedule Di(0 ≤ i ≤ 4) specifies how nodes following
two different CH sequences rendezvous in the slot-i. For instance, in slot-
0, the nodes hopping on CH sequence S0 meet the nodes on S5 in one
of the 3 rendezvous channels, the nodes on S1 meet the nodes on S4 in a
different rendezvous channel, and the nodes on S2 meet the nodes on S3 in
the remaining channel.

S0

slot-0 slot-4... ...

C0 C1 C2 C0 C2

S1

S2

C1 C1 C0 C2 C0

C2 C0 C2 C2 C1

S3

S

C2 C2 C1 C0 C0

C C C C CS4

S5

C1 C0 C1 C1 C2

C0 C2 C0 C1 C1

Fig. 2. Phase 2 of the two-phase CH sequence construction - rendezvous

channel assignment. This figure shows the 6 final CH sequences of a DSA
network with 3 rendezvous channels C0, C1 and C2 (i.e., N = 3). A greedy
algorithm is used to assign the 3 rendezvous channels to each slot (slot-0
to slot-5) of all the 6 CH sequences (S0 to S5) based on the rendezvous
schedules output by the rendezvous scheduling phase. For instance, nodes
following the CH sequence S0 hop on a sequence of channels C0 → C1 →
C2 → C0 → C1 periodically.

A. Two-phase CH sequence construction

1) An overview and an example: The two-phase CH se-

quence construction algorithm constructs a set of CH se-

quences in two phases.

The first phase is called the rendezvous scheduling phase. In

this phase, the algorithm creates a set of rendezvous schedules,

each of which instruct how nodes with different CH sequences

meet with each other in a hopping slot. Given a DSA network

with N rendezvous channels, to fully utilize spectrum diver-

sity, an ideal rendezvous schedule allows N pairs of nodes to

rendezvous at N different channels in a hopping slot, which

is equivalent to arrange for 2N CH sequences (each of which

is used by one participating node) to overlap at different

N channels in a slot. Meanwhile, the rendezvous schedules

should ensure the satisfaction of the overlap requirement, i.e.,

any pair of nodes hopping on different CH sequences can meet

at least once within a hopping period.

The second phase is called the rendezvous channel assign-

ment phase. In this phase, the algorithm fills the rendezvous

channels in the 2N CH sequences based on the rendezvous

schedules generated in the previous phase. This phase tries

to satisfy the design requirement of even use of rendezvous

channels by using a greedy algorithm. At the end of the

rendezvous channel assignment phase, 2N CH sequences are

constructed.

Fig. 1 and Fig. 2 illustrate an example of the two-phase CH

5

sequence construction in a DSA network with three (N = 3)

rendezvous channels. Fig. 1(a) shows the five rendezvous

schedules D0, D1, ..., D4 generated in the rendezvous schedul-

ing phase. Each rendezvous schedule corresponds one of the

five (2N −1) hopping slots of the six (2N) the CH sequences

S0, S1, ..., S5. As we can see, in each of the five hopping slots,

six nodes (selecting different CH sequences) are supported

to rendezvous in three different channels. For example, in

the first slot (i.e., slot-0), where the rendezvous schedule

D0 is used to arrange rendezvous, the node selecting CH

sequence S0 is arranged to rendezvous with the node selecting

CH sequence S5 on one rendezvous channel, while the node

selecting S1 meets with the node selecting S4 on a different

rendezvous channel, and the node selecting S2 meets with

the node selecting S3 on the remaining rendezvous channel.

Fig. 1(b) shows the overall effect of how the six node selecting

different CH sequences rendezvous in different hopping slot.

In each hopping slot in Fig. 1(b), a pair of nodes whose CH

sequences have the same type of shade will meet on the same

rendezvous channel. Please note that the detailed arrangement

about rendezvous channels on which pairs of nodes rendezvous

has not yet been determined in this phase, and is left to the next

phase. As will be presented shortly, our algorithm schedules

the 2N CH sequences to meet in the N different rendezvous

channels in a hopping slot as follows. It selects 2N −2 out of

the first 2N − 1 CH sequences (i.e., S0, · · · , S2N−2) to form

N −1 CH sequences pairs, where each sequence is scheduled

to meet the other sequence from the same pair in the slot-

sl, such that the index sum of each pair of CH sequences is

congruent to sl modulo 2N − 1. The remaining CH sequence

(within S0, · · · , S2N−2) and S2N−1 form the last pair of CH

sequences (shown in blue color in Fig 1(a)) that are scheduled

to meet in the slot-sl.
Fig. 2 shows an example of rendezvous channel assignment

once the scheduling is determined. From the example we

can see that all the rendezvous channels are utilized for

communication in each of the hopping slots, and that each

rendezvous channel appears in each of the CH sequences with

roughly the same probability.

2) Phase 1: rendezvous scheduling: We now formalize the

problem of rendezvous scheduling, the first phase of the two-

phase CH sequence construction process, as follows. Given a

set of 2N CH sequences U = {S0, S1 · · · , S2N−1}, Dsl =
{d0, d1, · · · , dN−1} is called a rendezvous schedule for the

hopping slot indexed in sl if
⋃

Dsl = d0∪d1∪· · ·∪dN−1 = U ,

where di = {Sa, Sb} (0 ≤ i ≤ N − 1) is a pair of CH

sequences that are scheduled to rendezvous in the slot-sl.
According to theorem 1, the optimal rendezvous scheduling

algorithm must construct 2N − 1 different rendezvous sched-

ules, each of which corresponds to a hopping slot, such that

each CH sequence is able to rendezvous with all the other

2N −1 CH sequences in 2N −1 hopping slots. SYNC-ETCH

uses Algorithm 1 to construct the schedules.

In Algorithm 1, rendezvous schedule Dsl (0 ≤ sl ≤
2N − 2), which is the rendezvous schedule for the slot-sl,
is constructed as follows. Within the CH sequences set V =
{S0, · · · , S2N−2}, Sa and Sb are scheduled to rendezvous in

the slot-sl (i.e., {Sa, Sb} ∈ Dsl) if a+ b ≡ sl(mod(2N −1))

Algorithm 1: Rendezvous Scheduling

Data: U = {S0, · · · , S2N−1}: a set of 2N empty CH

sequences, each of which has 2N − 1 slots;

Result: D = {D0, D1, · · · , D2N−2}: 2N − 1 different

rendezvous schedules of U .

1 Initialize D0, D1, · · · , D2N−2 to be empty;

2 for sl← 0 to 2N − 2 do

3 V ← U\{S2N−1};
4 for i← 0 to N − 1 do

5 a← the smallest subscript in V ;

6 if a ≤ sl then

7 b← sl − a;
8 else

9 b← 2N − 1 + sl − a;
10 if a == b then

11 b← 2N − 1;

12 di ← {Sa, Sb};
13 Dsl ← Dsl ∪ {di};
14 V ← V \{Sa, Sb};
15 return D0, D1, · · · , D2N−2;

and a 6= b. For the CH sequence Sa ∈ V that satisfies 2a ≡
sl(mod(2N − 1)), it is scheduled to rendezvous with the CH

sequence S2N−1 in the slot-sl (i.e., {Sa, S2N−1} ∈ Dsl).

We now prove the correctness of Algorithm 1 as follows.

Theorem 2: Algorithm 1 constructs 2N − 1 rendezvous

schedules of U , and all these 2N − 1 rendezvous schedules

are different.

Proof: In order to prove Algorithm 1 constructs 2N − 1
rendezvous schedules, we need to prove given an integer

sl (0 ≤ sl ≤ 2N − 2), Dsl is a rendezvous schedule of U . To

prove this, we need to prove

(1) there is only a number x ∈ [0, 2N − 2] such that

2x ≡ sl (mod (2N − 1)), and

(2) ∀ a, b, c, d ∈ [0, 2N − 2] that satisfy a + b ≡ sl (mod
(2N − 1)) and c + d ≡ sl (mod (2N − 1)), if a 6= c then

b 6= d.

By proving (1) we can guarantee that the CH sequence

S2N−1 only exists in only a CH sequence pair di (0 ≤ i ≤
N − 1) within rendezvous schedule Dsl. From (1), (2) and

the strategy that we always choose the first CH sequence of

di (0 ≤ i ≤ N − 1) from a set of CH sequences that have

never been chosen (i.e. set V in Algorithm 1)(line 5), we can

ensure that
⋃

Dsl = d0 ∪ d1 ∪ · · · ∪ dN−1 = U (i.e. Dsl is a

rendezvous schedule of U).

We prove both (1) and (2) by contradiction. For (1),

suppose there are two different number m and n that satisfy

0 ≤ m < n ≤ 2N − 2 , 2m ≡ sl (mod (2N − 1)) and

2n ≡ sl (mod (2N − 1)), then we can have 2m = sl and

2n = 2N − 1+ sl. A contradiction is found that sl is an even

number because 2m = sl, and sl is an odd number because

2n = 2N − 1 + sl. For (2), without loss of generality, we

suppose a < c. If b = d, then we have a + b = sl and

c+ d = 2N − 1 + sl. By subtracting these two equations we

get c−a = 2N −1 which is impossible because 0 ≤ a < c ≤
2N − 2.

6

Algorithm 2: Rendezvous Channel Assignment

Data: C = {C0, C1, · · · , CN−1}: N rend. channels;

D = {D0, D1, · · · , D2N−2}: 2N − 1 rendezvous

schedules returned by Algorithm 1.

Result: S0, S1, · · · , S2N−1: 2N final CH sequences.

1 for i← 0 to 2N − 1 do

2 seqOC[i]← {C0, C1, · · · , CN−1}; /*Initializing the

outstanding channels of the CH sequence Si.*/
3 for sl← 0 to 2N − 2 do

4 slotOC ← {C0, C1, · · · , CN−1}; /*Initializing the

outstanding channels of the slot-sl.*/

5 for n← 0 to N − 1 do

6 Mark CH sequence pair dn ∈ Dsl as unassigned;

7 while slotOC 6= φ do

8 Pick dn = {Si, Sj} from the unassigned CH

sequence pairs in Dsl such that seqOC[i] +
seqOC[j] is the greatest (if multiple choices exist,

pick the pair that contains the CH sequence with the

smallest index);

9 k ← seqOC[i] ≥ seqOC[j] ? i : j;

10 if slotOC ∩ seqOC[k] 6= φ then

11 c← the channel in slotOC ∩ seqOC[k] with the

smallest index;

12 seqOC[k]← seqOC[k]\{c};
13 else

14 c← the channel in slotOC that appears the fewest

times in Sk (if multiple choices exist, pick the one

with the smallest index);
15 Si ← Si ∪ (sl, c);
16 Sj ← Sj ∪ (sl, c);
17 Mark dn = {Si, Sj} as assigned;

18 slotOC ← slotOC\{c};
19 return S0, S1, · · · , S2N−1;

In order to prove ∀p, q ∈ [0, 2N − 2] (p 6= q), rendezvous

schedule Dp and schedule Dq are different, we need to prove

∀di ∈ Dp(0 ≤ i ≤ N − 1) and ∀dj ∈ Dq(0 ≤ j ≤ N − 1),
di 6= dj . We prove this by contradiction. Suppose there exist

di ∈ Dp and dj ∈ Dq such that di = dj , which means di
and dj contain the same pair of CH sequences. Suppose these

two sequences are Su and Sv , where 0 ≤ u, v ≤ 2N − 1.

Then we have u + v ≡ p (mod (2N − 1)) and u + v ≡
q (mod (2N − 1)), where p, q ∈ [0, 2N − 2] and p 6= q,

which is impossible.

3) Phase 2: rendezvous channel assignment: In the second

phase of the two-phase CH sequence construction process, we

assign rendezvous channels to each of the 2N CH sequences

according to the rendezvous schedules generated in the pre-

vious phase. The goal of the rendezvous channel assignment

phase is two-fold. First, to fully exploit the frequency diversity

of a DSA network in establishing control channels, all the

rendezvous channels should be utilized in each hopping slot.

Second, the assignment tries to satisfy the even use of ren-

dezvous channels requirement presented in Section III-A by

an arrangement that allows each rendezvous channel to have

a roughly equal probability to appear in each CH sequence.

We employ a greedy algorithm (shown in Algorithm 2) to

achieve the goals of rendezvous channel assignment. In Algo-

rithm 2, rendezvous channels are assigned to CH sequences

round by round (lines 3-18). In the sl-th (0 ≤ sl ≤ 2N − 2)
round, the rendezvous channels are assigned to the slot-

sl of all the CH sequences based on the slot’s rendezvous

schedule, Dsl, constructed in the previous phase. For each

hopping slot, the algorithm needs to guarantee that every

rendezvous channel is assigned to a pair of CH sequences

(to achieve the first goal of rendezvous channel assignment).

To keep track of the channel assignment for each slot, the

variable slotOC is used to record the outstanding rendezvous

channels of the current slot, i.e., the rendezvous channels

that have not been assigned to the slot. At the beginning

of each round of channel assignment, slotOC is reset to

the whole set of rendezvous channels (line 4). The algorithm

also tries to make all the rendezvous channels appear in each

CH sequence with a roughly equal probability (to achieve

the second goal of rendezvous channel assignment). To keep

track of the channel assignment for each CH sequence, the

variable seqOC[i] (0 ≤ i ≤ 2N − 1) is used to record the

outstanding rendezvous channels of the CH sequence Si, i.e.,

the rendezvous channels that have not been assigned to the

CH sequence Si. The variables seqOC[i] are initialized to the

whole set of rendezvous channels (lines 1-2).

Before the sl-th round of rendezvous channel assignment

(i.e., the round that assign channels to slot-sl of all the CH

sequences), all the CH sequence pairs in Dsl are initially

marked as “unassigned” (lines 5-6). In the sl-th round of

rendezvous channel assignment, the algorithm checks all the

unassigned CH sequence pairs in Dsl, and selects the pair

{Si, Sj} such that the sum of outstanding channels of Si and

Sj is greatest compared to other unscheduled CH sequence

pairs in Dsl. If there are multiple pairs that produce the same

greatest outstanding channels sum, the pair that contains the

smallest indexed CH sequence is selected (line 8). Then the

algorithm chooses a rendezvous channel to assign to the slot-

sl of both Si and Sj (lines 9-16). This rendezvous channel is

selected as follows. Within the CH sequences Si and Sj , the

one with more outstanding channels is notated as Sk (line 9).

The rendezvous channel is first selected from the intersection

of the slot-sl’s outstanding channels (recorded in slotOC) and

Sk’s outstanding channels (recorded in seqOC[k]) (line 11).

If the intersection is empty, the channel is selected from the

slot-sl’s outstanding channel that appears fewest times in Sk

(line 14). Then this rendezvous channel is assigned to the slot-

sl of both CH sequences of Si and Sj (lines 15-16), and the

CH sequence pair {Si, Sj} is marked as “assigned” (line 17).

The selected rendezvous channel is removed from the current

slot’s outstanding channels set (line 18). It is also removed

from Sk’s outstanding channels if has not been assigned to

Sk before the assignment (line 12).

Fig. 2 shows the result of rendezvous channel assignment in

a DSA network with 3 rendezvous channels, C0, C1 and C2.

CH sequences S0 to S5 are the final CH sequences constructed

by the two-phase CH sequence construction process. From

the example we can see that all the rendezvous channels

are utilized for communication in each of the hopping slots,

7

and that each rendezvous channel appears in each of the CH

sequences with roughly the same probability.

B. Single-phase CH sequence construction

1) An overview and an example: In a DSA network with N
rendezvous channels, similar to the two-phase algorithm, the

single-phase CH sequence construction algorithm constructs

2N CH sequences, each of which has 2N − 1 hopping slots,

such that the following two requirements are satisfied. First,

every CH sequence meets with all the other 2N − 1 CH

sequences each at a time in a hopping slot. Second, all the

rendezvous channels are utilized for CH sequence rendezvous

in every hopping slot. The improvement of the single-phase

algorithm over the two-phase algorithm is that it can guarantee

to satisfy a third requirement that every rendezvous channel

has the same probability to appear in each CH sequence (i.e.,

the even use of rendezvous channels requirement). For in-

stance, in a DSA network with three rendezvous channels, the

even use of rendezvous channels requirement expects there are

two rendezvous channels appearing twice and the remaining

channel appearing once in the five hopping slots of every

CH sequence. However, in the six CH sequences constructed

by the two-phase algorithm (shown in Figure 2), channel

C2 and C1 appear three times in the CH sequence S2 and

S4 respectively. By contrast, the single-phase algorithm can

guarantee the even use of rendezvous channels requirement.

The single-phase CH sequence construction algorithm views

the rendezvous among the CH sequences within a hopping

period as a colored graph G. To satisfy the three requirements

above, the colored graph G should have the following prop-

erties. First, there are 2N vertices in G:

|V (G)| = 2N, (1)

where V (G) denotes the vertex set of the graph G. Each vertex

corresponds to one of the 2N CH sequences. Second, the edges

in G have N different colors:

C(G) = {c0, ..., cN−1}, (2)

where C(G) denotes the color set on edges in the graph G.

Each color corresponds to a rendezvous channel. If two CH

sequences rendezvous in a certain channel, the corresponding

pair of vertices in G are connected by an edge with the

corresponding color. Third, since every CH sequence should

rendezvous with all the other 2N − 1 sequences exactly once

in a hopping period, the graph G should satisfy

∀v ∈ V (G), d(v) = 2N − 1, (3)

where d(v) denotes the degree of vertex v. In other words, the

graph G should be a 2N -vertex complete graph K2N . Fourth,

since all the rendezvous channels should appear in every CH

sequence, the color degree of each vertex, which is the number

of colors on the edges incident to the vertex, should be N :

∀v ∈ V (G), δ(v) = N, (4)

where δ(v) is the number of colors on edges incident to the

vertex v. Fifth, since each of the N rendezvous channel should

have the same probability to appear in every CH sequence (i.e.,

the even use of rendezvous channels requirement), among the

N different colors on the 2N − 1 edges incident to a vertex

v, there should be one color to appear once and the remaining

N − 1 colors to appear twice, which is the best scenario

satisfying the even use of rendezvous channels requirement:

∀v ∈ V (G) (∃ci ∈ C(G) (δci(v) = 1 &&
δcj (v) = 2, ∀j ∈ [0, N − 1], j 6= i)), (5)

where δci(v) is the number of edges colored with ci that are

incident to the vertex v. Figure 4(a) shows an example of the

graph G for a DSA network with 5 rendezvous channels (i.e.,

N = 5). The graph G in the example is a 5-colored 10-vertex

complete graph K10. In this graph, each of the 5 colors has an

even probability to appear on the 9 edges that are incident to

each vertex (i.e., one color appears once and each of the rest

four colors appear twice), which is the best case of satisfying

the even use of rendezvous channels requirement.

The graph G with the properties (1) to (5) tells how each

of the 2N CH sequence meets with each other in the N
rendezvous channels within a hopping period. The single-

phase CH sequence construction algorithm needs to further

specify how the CH sequences rendezvous with each other in

each of the 2N − 1 hopping slots. To fully exploit the spec-

trum diversity, our algorithm ensures that all the rendezvous

channels can be utilized as control channel in every hopping

slot. This is achieved by decomposing the graph G into 2N−1
different perfect rainbow matchings, each of which instructs

how the 2N CH sequences rendezvous in a hopping slot. In

graph theory, a matching in a graph G is a set of edges of

G without common vertices, a perfect matching in G is a

matching that covers all the vertices of the graph G [19],

and a rainbow matching in G is a matching where edges

have distinct colors [20]. Therefore, in our case, a perfect

rainbow matching (notated as PRM) in a N -colored 2N -

vertex complete graph G is an edge set that contains N disjoint

edges of G colored with the N distinct colors:

PRM = {Ê | V (Ê) = V (G) &&
∀ei ∈ Ê (∀v ∈ V (ei) (v /∈ V (ej), ∀ej ∈ Ê, j 6= i)) &&

∀ei, ej ∈ Ê, i 6= j (C(ei) 6= C(ej))} (6)

where V (Ê) denotes the set of vertices of the edge set Ê,

V (ei) denotes the two vertices on the edge ei, and C(ei)
denotes the color on the edge ei. Given two perfect rainbow

matching PRMi and PRMj , they are different if and only if

the there is no common edges in them:

PRMi and PRMj are different iff

∀ei ∈ E(PRMi), ej ∈ E(PRMj) (ei 6= ej), (7)

where E(PRMi) denotes the edge set in the perfect rainbow

matching PRMi. In our example, the 5-colored 10-vertex

complete graph G shown in Figure 4(a) can be decomposed

into 9 different PRMs shown in Figure 3(1), Figure 3(6a-1)

to (6a-4), and Figure 3 (6b-1) to (6b-4) respectively. Each of

these PRMs is the rendezvous schedule for one hopping slot

within a hopping period. The final CH sequences (shown in

Figure 4(b)) are constructed based on these 9 different PRMs.

In the following, we will show that, for a DSA network

with N rendezvous channels, where N is an odd number

greater than two, our single-phase CH sequence construction

8

() (b)(a) (b)

Fig. 4. For a DSA network with 5 rendezvous channels (i.e., N = 5), (a)
is the N -colored 2N -vertex complete graph G that shows how the 2N CH
sequence rendezvous with each other within a hopping period, and (b) shows
the final 2N CH sequences.

algorithm can form a graph G with the properties of (1) to

(5), and decompose the graph G into 2N − 1 different perfect

rainbow matchings (i.e., properties of (6) and (7)).

2) An intuitive description of the algorithm: For a DSA net-

work with N rendezvous channels, where N is an odd number

greater than two, the single-phase CH sequence construction

algorithm constructs the 2N CH sequences as follows.

The initial state: We treat the 2N CH sequences to be

constructed as 2N vertices in a graph G, and assign different

colors to each of the N rendezvous channels. Initially, the

graph G only contains the 2N vertices and no edges. Our

goal is to add colored edges to G to make it an N -colored

2N -vertex complete graph K2N with the properties (1) to (5),

and then decompose the K2N into 2N − 1 different perfect

rainbow matchings (i.e., properties (6) and (7)).

In the following, we notate the 2N CH sequences

as S0 · · ·S2N−1, and the N rendezvous channels as

C0, · · · , CN−1. We will take a DSA networks with 5 ren-

dezvous channels (i.e., N = 5) as an example throughout this

subsection. Figure 3(0) shows the initial state of the graph G
in the example.

Step #1 - forming the first perfect rainbow matching of

K2N : In the first step, we form the first PRM by connecting

vertex Si with vertex Si+1 by using an edge with the color

of channel C i
2

, where i is an even number in the range of

[0, 2N − 1]. The PRM tells how the 2N CH sequences

rendezvous with each other in the hopping slot-0. In our

example, Figure 3(1) shows the state of the graph G after

the step #1 is applied. It is a PRM of a 2N -vertex complete

graph K2N , which specifies that in the hopping slot-0, CH

sequences S0 and S1, S2 and S3, S4 and S5, S6 and S7, S7

and S8 rendezvous in channel C0 to C4 respectively.

Step #2 - shrinking the 2N vertex graph G to KN : In

the second step, we shrink the 2N -vertex graph G to an N -

vertex N -colored complete graph KN as follows. First, we

combine every connected vertex pair in the first PRM of

K2N (i.e., {Si, Si+1}, where i = 2a, a ∈ [0, N − 1]) into a

new vertex (notated as Si,i+1), and connect the new vertices

to each other to form a N -vertex complete graph KN . Second,

we give each vertex in KN the color of the edge connecting the

corresponding vertex pair in the first PRM of K2N . Figure

3(2) shows the state of the graph G after the step #2 is applied.

Step #3 - decomposing KN into N−1
2 different 2-

Algorithm 3: 2-factorization of complete graph KN

Data: KN formed after step #2, the N vertices of KN

are {S0,1, · · · , S2N−2,2N−1};
Result: N−1

2 2-factors of KN : TF1, · · · , TFN−1
2

.

1 for d← 1 to N−1
2 do

2 TFd ← φ;

3 for each edge (Si,i+1, Sj,j+1) ∈ E(KN) do

4 if
|i−j| % N

2 == d then

5 Add edge (Si,i+1, Sj,j+1) and its vertices to TFd;

6 return TF1, · · · , TFN−1
2

;

factors: In graph theory, a 2-factor of a graph G is spanning

subgraph of G, where the degree of each vertex in the

subgraph is 2. Algorithm 3 decomposes KN into N−1
2 2-

factors. In the algorithm, each edge of KN and its vertices

are put into N−1
2 graphs, TF1, · · · , TFN−1

2
, depending on the

subscript difference between the two vertices: given an edge

e = (Si,i+1, Sj,j+1) ∈ E(KN), where i < j, the edge e and

its vertices are put into the graph TFd (1 ≤ d ≤ N−1
2) if

either j−i
2 or i+2N−j

2 equals to d (line 5).

Theorem 3: Each graph TFd (1 ≤ d ≤ N−1
2) decomposed

from KN using Algorithm 3 is a 2-factor of the complete

graph KN .

Proof: According to the algorithm, among all the edges

that are incident to each S2i,2i+1 ∈ V (KN) (0 ≤ i ≤ N − 1),
only the edge (S2i,2i+1 , S(2(i+d))%2N,(2(i+d)+1)%2N) and

the edge (S2i,2i+1 , S(2(i−d))%2N,(2(i−d)+1)%2N) and their

associated vertices are added to the graph TFd. Since d 6= 0
and d 6= N

2 , we have (2(i+d))%2N 6= (2(i−d))%2N , which

means the two edges added to TFd are different. Therefore,

V (TFd) equals to V (KN), and the degree of each vertex in

TFd is 2. Thus, TFd is a 2-factor of the complete graph KN .

Simple calculation can easily confirm that the 2-factor TFd

is either a Hamiltonian cycle of KN if d and N is coprime,

or GCD(N, d) disjoint N
GCD(N,d) -cycles (i.e., cycles with

N
GCD(N,d) edges), where GCD(N, d) is the greatest common

divisor of N and d, otherwise.

It is obvious that the N−1
2 2-factors are different, since each

edge of KN can only belong to one 2-factor.

In our example, Figure 3(3a) and Figure 3(3b) are the two

2-factors of the complete graph K5 obtained after the step #2.

They are both Hamiltonian cycles of K5. In Appendix-A, we

show a more general example where there exists a 2-factor of

KN being a spanning subgraph of disjoint cycles.

Step #4 - rainbow-coloring 2-factors of KN : In the fourth

step, we color each of KN ’s 2-factors using all the N colors

such that each edge will have a different color, which is a

process called “rainbow-coloring”.

Algorithm 4 shows the rainbow-coloring algorithm. In this

algorithm, the color to put on a edge is the color of another

vertex that is different from the two vertices of the edge.

Specifically, the color to put on the edge (Si,i+1, Sj,j+1) is

the color of either the vertex S i+j

2 ,
i+j

2 +1 (if i+j
2 is an even

number) or the vertex S i+j+2N
2 %2N,

i+j+2N
2 %2N+1 (if i+j

2 is an

odd number). We have the following two theorems about the

9

(0) (1) (2) (3a) (3b)

slot-0

(0) (1) (2) (3a) (3b)

(4a) (5a) (6a-1) (6a-2) (6a-3) (6a-4)

slot-1 slot-2 slot-3 slot-4

(4b) (5b) (6b-1) (6b-2) (6b-3) (6b-4)

slot-5 slot-6 slot-7 slot-8

Fig. 3. The six steps of the intuitive description of the single-phase CH sequence construction algorithm for a DSA network with 5 rendezvous channels
(i.e., N = 5). (0) is the initial state of the graph G; (1) shows how the the first PRM is formed in the step #1; (2) shows how the graph G is shrank to K5

in the step #2 based on the first PRM ; (3a) and (3b) are the two 2-factors of K5 obtained in the step #3; (4a) and (4b) show the rainbow-coloring of the
two 2-factors of K5 in the step #4; (5a) and (5b) show how the two rainbow-colored 2-factors of K5 are expanded back to the two 4-factors in K10 in the
step #5; (6a-1) to (6a-4) and (6b-1) to (6b-4) are respectively the final 4 PRMs decomposed from the two rainbow-colored 4-factors of K10.

Algorithm 4: Rainbow-coloring a 2-factor of KN

Data: A 2-factor TF obtained in step #3;

Result: Rainbow-coloring the 2-factor such that every

edge’s color is different from the colors of its

two vertices.

1 for each edge e = (Si,i+1, Sj,j+1) ∈ TF do

2 if i+j
2 is an even number then

3 Put the color of vertex S i+j

2 ,
i+j

2 +1 on the edge e;

4 else

5 Put the color of vertex S i+j+2N
2 %2N,

i+j+2N
2 %2N+1

on the edge e;

rainbow-coloring algorithm.

Theorem 4: The coloring process is a rainbow-coloring

process (i.e., after the coloring process, the colors on the N
edges of each 2-factor are different).

Proof: Prove by contradiction. Suppose there exist

two different edges e1 = (Si,i+1, Sj,j+1) and e2 =
(Sm,m+1, Sn,n+1) in the the 2-factor TFd (d ∈ [1, N−1

2]) that

have the same color. Since e1 and e2 are not the same, without

loss of generality, let us assume i 6= m, i > j and m > n.

Since e1 and e2 have the same color, they correspond to the

same vertex in KN . Without loss of generality, let us assume
i+j
2 is an even number, then we have i+j

2 = m+n
2 (∗).

Meanwhile, since e1 and e2 belong to the same 2-factor

TFd, we have i−j
2 = m−n

2 = d (∗∗).

From (∗) and (∗∗) we have i = m, which is contradictory

to i 6= m. Therefore, all the colors on the edges in the 2-factor

TFd are different.

Theorem 5: Put the N−1
2 2-factor together (which forms the

complete graph KN), the colors on the N−1 edges incident to

a vertex Si,i+1 are different, and these colors are also different

from the color of the vertex Si,i+1.

Proof: Prove by contradiction. Suppose among the N−1
edges that are incident to the vertex Si,i+1, there exist two

edges that have the same color, and these two edges are

e1 = (Si,i+1, Sj,j+1) and e2 = (Si,i+1, Sk,k+1). Because

e1 and e2 have the same color, they correspond to the same

vertex. Without loss of generality, let us assume i+j
2 is an

even number. Then we have i+j
2 = i+k

2 ⇒ j = k, which is

impossible since e1 and e2 are not the same. Therefore, the

colors on the N−1 edges that are incident to the vertex Si,i+1

are all different.

Theorem 6: Put the N−1
2 2-factor together (which forms the

complete graph KN), the colors on the N − 1 edges incident

to a vertex Si,i+1 are different from the color of the vertex

Si,i+1.

Proof: This is equivalent to prove that for an edge e =
(Si,i+1, Sj,j+1), the color of the edge e is different from the

colors on both of its two vertices.

Without loss of generality, let us assume i+j
2 is an even

number. If the color of e is the same as the color on the vertex

10

Algorithm 5: Single-phase CH sequence construction

Data: N rendezvous channels C0, · · · , CN−1, where N
is an odd number;

Result: 2N CH sequence S0, · · · , S2N−1, each of which

has 2N − 1 slots.

1 S0, · · · , S2N−1 ← φ;

2 for i← 0 to N − 1 do

3 S2i ← S2i ∪ (0, Ci);
4 S2i+1 ← S2i+1 ∪ (0, Ci);
5 for d← 1 to N−1

2 do

6 sl← 1 + 4(d− 1);
7 for a← 0 to GCD(N, d)− 1 do

8 i← 2a;

9 for c← 0 to N
GCD(N,d) − 1 do

10 if
i+(i+2d)%2N

2 is an even number then

11 u← i+(i+2d)%2N
4 ;

12 else

13 u←
i+(i+2d)%2N+2N

2 %2N

2 ;

14 if c == 0 then

15 AddSlot(i, d, u, 0, 0, sl);
16 AddSlot(i, d, u, 0, 1, sl + 1);

17 AddSlot(i, d, u, 1, 0, sl + 2);

18 AddSlot(i, d, u, 1, 1, sl + 3);

19 else if c == 1 then

20 AddSlot(i, d, u, 1, 0, sl);
21 AddSlot(i, d, u, 0, 1, sl + 1);

22 AddSlot(i, d, u, 1, 1, sl + 2);

23 AddSlot(i, d, u, 0, 0, sl + 3);

24 else if c == 2 then

25 AddSlot(i, d, u, 1, 1, sl);
26 AddSlot(i, d, u, 0, 1, sl + 1);

27 AddSlot(i, d, u, 0, 0, sl + 2);

28 AddSlot(i, d, u, 1, 0, sl + 3);

29 else if c is an odd number then

30 AddSlot(i, d, u, 0, 0, sl);
31 AddSlot(i, d, u, 0, 1, sl + 1);

32 AddSlot(i, d, u, 1, 1, sl + 2);

33 AddSlot(i, d, u, 1, 0, sl + 3);

34 else

35 AddSlot(i, d, u, 1, 1, sl);
36 AddSlot(i, d, u, 0, 1, sl + 1);

37 AddSlot(i, d, u, 0, 0, sl + 2);

38 AddSlot(i, d, u, 1, 0, sl + 3);

39 i← (i+ 2d)%2N ;

40 return S0, · · · , S2N−1;

Si,i+1 or the color on the vertex Sj,j+1, we have i+j
2 = i or

i+j
2 = j, which implies i = j. This is impossible because

Si,i+1 and Sj,j+1 are two different vertices. Therefore, the

color of edge e cannot be the same as the color on either of

its vertices.

In our example, Figure 3(4a) and Figure 3(4b) show the

rainbow-coloring for the two 2-factors of K5.

Step #5 - expanding the rainbow-colored 2-factors of KN

back to 4-factors of K2N : Here we expand each 2-factor of

Algorithm 6: Subfunction AddSlot() of Alg. 5

1 void AddSlot(i, d, u, a, b, sl) {
2 Si+a ← Si+a ∪ (sl, Cu) ;

3 S(i+2d)%2N+b ← S(i+2d)%2N+b ∪ (sl, Cu);
4 }

KN back to a 4-factor of the 2N -vertex complete graph K2N .

For each edge e = (Si,i+1, Sj,j+1) in a 2-factor of KN , we

expand it to a monochromatic complete bipartite graph K2,2:

MCBi,j = (Vi + Vj , Eij), (8)

where Vi and Vj are the vertex pairs {Si, Si+1} and

{Sj , Sj+1} in the original 2N -vertex graph G, and Eij is

the edge set of K2,2. Additionally, we give all the 4 edges in

Eij the same color as that on the edge e = (Si,i+1, Sj,j+1) in

KN . After this process, every 2-factor in KN is expanded to a

4-factor in K2N . Since the N−1
2 2-factors of KN are different,

we have obtained N−1
2 different 4-factors of K2N .

Theorem 7: The N−1
2 different 4-factors of K2N together

with the first PRM obtained in the step #2 form the N -colored

2N -vertex complete graph K2N that has the properties of (1)

to (5).

Proof: For the reasons that 1) the N−1
2 4-factors are

obtained by expanding each edge of the N−1
2 2-factors of

KN to a complete bipartite graph K2,2 and 2) each pair of

unconnected vertices in a K2,2 will be connected by an edge

in the first PRM obtained in the step #1, we can conclude

that the N−1
2 4-factors together with the first PRM form a

2N -vertex complete graph K2N (i.e., the properties (1) and

(3)).

For the reasons that 1) the coloring process of the 2-factors

of KN is a rainbow coloring process (i.e., Theorem 4) and

2) the color of each monochromatic complete bipartite graph

(MCB) is taken from the corresponding edge of the 2-factor

of KN , we can conclude that all the N colors appear on K2N

(i.e., the property (2)).

For the reasons that 1) the colors on the N−1 edges incident

to a vertex Si,i+1 of KN are different (i.e., Theorem 5), 2)

these colors are also different from the color of the vertex

Si,i+1 (i.e., Theorem 6) and 3) the color of the vertex Si,i+1

is the same as the color on the edge (Si, Si+1) of K2N (i.e.,

the step #2), we can conclude that all the N colors appear on

the 2N − 1 edges that are incident to the vertex Si (which is

also true for Sj)(i.e., the property (4)).

For the reasons that 1) the colors on the N−1 edges incident

to a vertex Si,i+1 of KN are different (i.e., Theorem 5) and

2) each edge in KN is expanded to two edges in K2N , we

can conclude that each of the N − 1 colors appears twice

on the edges that are incident to the vertex Si (also true for

Si+1). Furthermore, for the reasons that 1) the color on the

vertex Si,i+1 is different from the previous N − 1 colors (i.e.,

Theorem 6) and 2) the color of the vertex Si,i+1 is the same

as the color on the edge (Si, Si+1) of K2N (i.e., the step #2),

we can conclude that the color on Si,i+1 appear once on the

edges that are incident to the vertex Si (also true for Si+1).

Therefore, the property (5) is satisfied.

11

(λ0[0],λ1[1]), (λ1[0],λ2[1]), (λ2[0],λ0[1])

(λ1[1],λ2[1]), (λ2[0],λ0[0])

(λ1[0],λ2[0]), (λ2[1],λ0[0])

(λ0[0],λ1[0]), (λ1[1],λ2[0]), (λ2[1],λ0[1])

(λ0[1],λ1[1]),

(λ0[1],λ1[0]),

1:

3:

4:

2:

Fig. 5. Dividing the edges of a CMCB that contains 3 MCBs, i.e.,
CMCB = {λ0, λ1, λ2}, into four groups such that all the edges in each
group have no common vertex.

In our example, Figure 3(5a) and Figure 3(5b) show the two

4-factors of K10 that are converted from the two 2-factors of

K5. These two 4-factors and the first PRM obtained in the

step #2 (i.e., Figure 3(2)) together form the complete graph

K10 with the properties of (1) to (5) (Figure 4(a)).

Step #6 - decomposing the 4-factors of K2N into perfect

rainbow matchings in K2N : Finally, we decompose each of

the 4-factors of K2N obtained in the step #5 into 4 different

PRMs such that the properties (6) and (7) are satisfied.

In the previous step, each edge (Si,i+1, Sj,j+1) in a 2-factor

TFd (d ∈ [1, N−1
2]) of KN is expanded to a monochro-

matic complete bipartite graph MCBi,j . Furthermore, re-

call that TFd is either a Hamiltonian cycle of KN (when

GCD(N, d) = 1) or a set of GCD(N, d) disjoint N
GCD(N,d) -

cycles (when GCD(N, d) 6= 1), where GCD(N, d) is the

greatest common divisor of N and d. Therefore, the 4-factor

FFd of K2N , which is expanded from the 2-factor TFd of

KN , is a spanning graph of K2N consisting of either one

chained monochromatic complete bipartite graph (notated as

CMCB) (when GCD(N, d) = 1) or a set of GCD(N, d)
disjoint CMCBs (when GCD(N, d) 6= 1).

Since a monochromatic complete bipartite graph MCBi,j

connects two pairs of unconnected vertices {Si, Si+1} and

{Sj , Sj+1}, each CMCB in the 4-factor FFd (d ∈ [1, N−1
2])

of K2N can be expressed as

< λ0, λ1, · · · , λn−1, λ0 >, (9)

where n = N
GCD(N,d) is the number of MCBs contained in

the CMCB, and λp (p ∈ [0, n− 1]) is the p-th unconnected

vertex pair in the CMCB: {S2pd%2N , S(2pd+1)%2N}. For

example, for the first 4-factor FF1 of K10 shown in Figure

3(5a), we have λ0 = {S0, S1}, λ1 = {S2, S3}, λ2 = {S4, S5},
λ3 = {S6, S7} and λ4 = {S8, S9}. Meanwhile, for the

second 4-factor FF2 of K10 shown in Figure 3(5b), we have

λ0 = {S0, S1}, λ1 = {S4, S5}, λ2 = {S8, S9}, λ3 = {S2, S3}
and λ4 = {S6, S7}.

Given a CMCB in a 4-factor expressed in formula (9),

we divide the edges of the CMCB into 4 groups as follows.

For the 4 edges of each MCB, we put them into 4 groups

respectively such that edges in the same group share no

common vertex. Figure 5 and Figure 6 show the way we divide

the edges. Figure 5 shows the case that the CMCB has 3

MCBs, and Figure 6 shows the case that the CMCB has

more than 3 MCBs. In these two figures, λp[0] and λp[1] are

the first and the second vertex of the vertex pair λp (p ∈ [0, 1])
respectively.

If a 4-factor of K2N contains one CMCB (when

GCD(N, d) = 1), the four edge groups obtained by using

the dividing method shown in Figure 6 are the 4 different

PRMs. If the 4-factor contains several disjoint CMCBs

(when GCD(N, d) 6= 1), we put the i-th (1 ≤ i ≤ 4) edge

group of each CMCB into the same group to form a PRM .

Therefore, each 4-factor of K2N leads to 4 different PRMs,

and the N−1
2 different 4-factors of K2N produce 2N − 2

different PRMs. Adding the first PRM obtained in the step

#1, we now have 2N − 1 different PRMs of K2N . Each of

these PRMs instructs the 2N CH sequences rendezvous in

one of the 2N − 1 hopping slots of a hopping period.

Since the edges in the same PRM share no common vertex

and the colors of the K2N ’s MCBs are different, the property

(6) is satisfied. Meanwhile, since each edge is assigned to only

one PRM , the 2N−1 PRMs are different (i.e., the property

(7) is satisfied).

In our 5-rendezvous channel network example (i.e., N = 5),

using the dividing method in Figure 6, the first 4-factor of

K10 (Figure 3(5a)) is decomposed into four different PRMs

shown in Figure 3 (6a-1) to (6a-4), and the second 4-factor of

K10 (Figure 3(5b)) is decomposed into another four different

PRMs shown in Figure 3 (6b-1) to (6b-4). Based on the 9

PRMs (i.e., Figure 3(2), Figure 3 (6a-1) to (6a-4) and Figure

3 (6b-1) to (6b-4)), we construct the final 2N CH sequences

shown in Figure 4(b).

3) The complete algorithm: The complete single-phase CH

sequence construction algorithm is given in Algorithm 5 with

its subfunction AddSlot() shown in Algorithm 6. Given

a DSA network with N rendezvous channels, the algorithm

outputs 2N CH sequences, each with 2N − 1 hopping slots,

such that the following three conditions are satisfied. First,

within the 2N − 1 hopping slots, every CH sequence meets

with all the other 2N−1 sequence each at a time in a hopping

slot. Second, there are exactly two CH sequences hopping to

the same rendezvous channel in a hopping slot. Third, in a CH

sequence, each of the N rendezvous channels has the same

probability to appear in the 2N − 1 hopping slots.

The algorithm essentially integrates the six intuitive steps

described previously. Lines 2 to 4 of the algorithm schedule

how the 2N CH sequences meet with each other in the slot-0,

which is equivalent to forming the first PRM in step #1. Each

iteration of the for-loop (lines 6 to 39) outputs rendezvous

schedules for 4 hopping slots, which correspond to the 4

PRMs decomposed from a 4-factor of K2N . Each iteration

of the for loop (lines 8 to line 39) correspond to dividing the

edges of a CMCB into 4 groups (i.e., step #6). Lines 10 to

13 decides the channel to assigned, which correspond to the

rainbow-coloring of 2-factors of KN in step #4.

C. CH sequence execution

At the completion of constructing CH sequences by using

either the two-phase CH sequence construction algorithm or

the single-phase CH sequence construction algorithm, the

newly joined node obtains a set of CH sequences, which

are the same as those that any other nodes construct. Then

the node synchronizes to the existing nodes using the global

synchronization mechanism, and starts the channel hopping

process described as follows. The node randomly selects a

CH sequence to hop on. After hopping through all the slots, it

performs the random CH sequence selection again and starts

hopping on the newly chosen CH sequence. The node repeats

12

1:

3:

4:

2: (λ0[0], λ1[1]), (λ1[0], λ2[1]), (λ2[0], λ3[1]),

(λ1[1], λ2[1]), (λ2[0], λ3[0]),

(λ1[0], λ2[0]), (λ2[1], λ3[0]),

(λ0[0], λ1[0]), (λ1[1], λ2[0]), (λ2[1], λ3[1]),

(λ0[1], λ1[1]),

(λ0[1], λ1[0]),

(λ4 λ5[1]), ... ,[1],

(λ3[0], λ4[1]), (λ4 λ5[1]), ... ,[0],

(λ3[1], λ4[1]), (λ4 λ5[0]), ... ,[0],

(λ3[1], λ4[0]), (λ4 λ5[0]), ... ,[1],

(λ3[0], λ4[0]), (λ λ

(λ λn−1

(λn−2 λn−1

(λ λ

[0],

[0],

[1],

[1],

[0]),

[1]),

[1]),

[0]),

(λn−1 λ

0(λn−1 λ

0(λn−1 λ

(λ λ

[1],

[0],

[0],

[1],

[1])

[1])

[0])

[0])0

0

n−2

n−2

n−1n−2

n−1 n−1

Fig. 6. Dividing the edges of a CMCB = {λ0, · · · , λn−1, λ0}, where n is the number of MCBs in the CMCB and n is greater than 3, into four
groups such that all the edges in each group have no common vertex.

this process while it is idle. The reason for the node to re-select

a CH sequence after a hopping period is to make sure that any

pair of nodes are able to rendezvous in different rendezvous

channels. Since the selection of CH sequence is random,

the requirement of full utilization of rendezvous channels is

satisfied. When a rendezvous channel’s primary user appears,

the nodes on that channel should yield using the channel,

wait until a hopping slot, in which the rendezvous channel

is available, is reached, and resume the hopping process.

V. ASYNC-ETCH

Our study of the communication rendezvous so far is based

on the assumption that there exists a global synchronization

mechanism to synchronize the hopping processes of the nodes.

In this section, we investigate the design of CH based com-

munication rendezvous without leveraging the synchronization

mechanism. Without synchronization, a pair of nodes wish-

ing to communicate with each other start channel hopping

at a random time. Consequently, their CH sequences are

most probably misaligned and SYNC-ETCH cannot guarantee

channel overlap for rendezvous. We develop an asynchronous

scheme, ASYNC-ETCH, to address the issue.

ASYNC-ETCH follows the similar steps: the CH sequence

construction and CH sequence execution. ASYNC-ETCH con-

structs the CH sequences in a similar fashion as SeqR [16]

but employs a novel enhancement: it constructs multiple CH

sequences rather than only one as in SeqR. The arrangement of

having multiple sequences brings two benefits. First, multiple

sequences reduce the chance that two nodes select the same

CH sequence. As we will show later, it takes less time for

two nodes to rendezvous when they select different sequences.

Second, with multiple sequences, participating nodes have

more chances to rendezvous with each other within a hopping

period. We show that a pair of nodes using ASYNC-ETCH

that select two different CH sequences are guaranteed to

rendezvous in N slots (where N is the number of rendezvous

channels) within a hopping period no matter how the hopping

processes of the pair of nodes are misaligned.

A. An overview and an example

In a DSA network with five (N) rendezvous channel, the

nodes first construct a set of four (N − 1) CH sequences,

S0, S1, S2 and S3, as shown in Fig. 7. As we can see from

the lower part of the figure, each CH sequence consists of

five (N) frames, each of which contains 11 (2N + 1) slots: a

pilot slot followed by two five-slot (N -slot) subsequences. The

arrangement of the pilot slots is displayed in the the upper left

part of the figure where pilot slot sequences A0, A1, A2, A3

are used in CH sequences S0, S1, S2 and S3, respectively.

The arrangements for A0 to A3 are derived by the method

of addition modulo the prime number five (N) with different

addends from one to four respectively. The construction of

subseq-0 C0 C1 C2 C3 C4A0 0 1 2 3 4

subseq-1 C0 C2 C4 C1 C3

subseq-2 C0 C3 C1 C4 C2

A1

A2

2 4 1 3

3 1 4 2

0

0

subseq-3 C0 C4 C3 C2 C1A3
4 3 2 10

pilot slot
normal slot

a frame (2N+1 slots)

(N=5)

subseq-0C3 subseq-0subseq-0C0 subseq-0 subseq-0C1 subseq-0 subseq-0C2 subseq-0 subseq-0C4 subseq-0

subseq-1C1 subseq-1subseq-1C0 subseq-1 subseq-1C2 subseq-1 subseq-1C4
subseq-1 subseq-1C3 subseq-1

subseq-2C4 subseq-2subseq-2C0 subseq-2 subseq-2C3 subseq-2 subseq-2C1 subseq-2 subseq-2C2 subseq-2

S0

S1

S2

subseq-3C2 subseq-3subseq-3C0 subseq-3 subseq-3C4 subseq-3 subseq-3C3 subseq-3 subseq-3C1 subseq-3S3

Fig. 7. CH sequences of a DSA network with 5 rendezvous channels.

the four subsequences (shown in the upper right part of the

figure) also follows the channel assignment order determined

in A0 to A3. As we will prove later, the above CH sequence

construction guarantees that any pair of nodes (selecting two

different sequences) rendezvous in N slots within a hopping

period regardless how much channel hopping misalignment

between the two nodes. Each ASYNC-ETCH CH sequence

has 55 slots (N ∗ (2N + 1)).

After finishing the CH sequences construction, the nodes

start the same CH hopping execution as in SYNC-ETCH: each

of them randomly selects a CH sequence to start, and randomly

reselects another one to continue after hopping on the old one

for a hopping period. By doing this, we ensure that any pair

of nodes can rendezvous in different channels, which satisfies

the requirement of full utilization of rendezvous channels. This

arrangement also eliminates the unfairness that nodes selecting

the same CH sequence have less chance to rendezvous than

nodes selecting different CH sequences.

B. CH sequences construction

Algorithm 7 describes the construction of the N − 1 CH

sequences in ASYNC-ETCH. To ease our presentation, we

assume the number of rendezvous channels, N , is a prime

number. We hold the discussion of a general case (where N
is not prime) till Section V-D.

Given N rendezvous channels, ASYNC-ETCH first derives

N − 1 integer sequences A0 through AN−2 (which will be

used as indices for later channel assignment) by applying

addition modulo the prime number N (lines 1 to 4). Note that

all the integer sequences are derived with different addends.

In lines 5 to 7, the algorithm constructs N − 1 CH sub-

sequences, subSeq0 to subSeqN−2, whose channel indices

are the same as the integer sequences A0 through AN−2

respectively. Next, the algorithm constructs the CH sequence

Si (0 ≤ i ≤ N−2) by concatenating five frames of Si together

(line 8 to 15). Each frame of Si consists of a pilot slot followed

by a pair of subSeqi. Slots in subSeqi are referred as normal

slots. The channels in Si’s pilot slots, combined together, are

exactly channels appearing in subSeqi in the same order. From

Algorithm 7, it is easy to see that ASYNC-ETCH fulfills the

requirement of even use of the rendezvous channels.

13

Algorithm 7: Async. CH sequence Construction

Data: C = {C0, · · · , CN−1}: N rendezvous channels (N
is prime).

Result: S0, · · · , SN−2: N − 1 final CH sequences.

1 for i← 0 to N − 2 do

2 Ai[0]← 0;
3 for j ← 1 to N − 1 do

4 Ai[j]← (Ai[0] + j(i+ 1)) mod N ;

5 for i← 0 to N − 2 do

6 for j ← 0 to N − 1 do

7 subSeqi[j]← CAi[j];
8 for i← 0 to N − 2 do

9 k ← 0;

10 for j ← 0 to 2N2 +N − 1 do

11 if j mod (2N + 1) == 0 then

12 Si ← Si ∪ (j, subSeqi[
j

2N+1]); // pilot slot

13 else

14 Si ← Si ∪ (j, subSeqi[k]); // normal slot

15 k ← (k + 1) mod N ;

16 return S0, S1, · · · , SN−2;

C. Proof of rendezvous

In ASYNC-ETCH, the TTR between a pair of nodes is

related to the fact that whether the two nodes select the same

CH sequence or two different ones. Here we provide the

theoretical analysis to determine the TTR performance in the

above two situations. In particular, we prove that the two nodes

have at least one overlapped CH slot within a hopping period

in the former case, and they can rendezvous at least N times

in the latter one.

Let us first rewrite the definition of rotation closure property

from QCH [2] as follows.

Definition 1: Given a CH sequence S with p slots and a

non-negative integer d, R(S, d) = {(i,R(S, d)[i]) | R(S, d)[i]
= S[(i+d) mod p]} is called a rotation of S with distance d.

Definition 2: A CH sequence S with p slots is said to have

the rotation closure property with a degree of overlapping m
if ∀d ∈ [0, p− 1], |S ∩R(S, d)| ≥ m.

For instance, considering a CH sequence with three hopping

slots, S = {(0, C0), (1, C0), (2, C1)}, the two possible rota-

tions are R(S, 1) = {(0, C0), (1, C1), (2, C0)} and R(S, 2) =
{(0, C1), (1, C0), (2, C0)}. It is obvious that S has the rotation

closure property with a degree of overlapping 1.

Different from the prior work in SeqR [16], ASYNC-ETCH

constructs multiple CH sequence rather than a single one.

We provide the following definition to distinguish one CH

sequence from another.

Definition 3: Two CH sequences, S0 and S1, each with p
slots, are said be different if ∀d ∈ [0, p− 1], S1 6= R(S0, d).

It is obvious that the N − 1 CH sequences constructed by

Algorithm 7 are different, since the subsequences, which are

the building blocks of the CH sequences, are different.

We first analyze the case that two nodes select the same CH

sequence.

Lemma 1: For two nodes periodically hopping on a CH

sequence that has the closure property with a degree of

overlapping m, they can rendezvous in at least m
2 slots within

a hopping period no matter how their hopping processes are

misaligned.

Proof: This lemma has been proved in QCH [2].

Theorem 8: For two nodes that select the same CH se-

quence constructed by Algorithm 7, they can rendezvous in

at least 1 slot within a hopping period no matter how their

hopping processes are misaligned.

Proof: We need to prove that for any CH sequence

Si (0 ≤ i ≤ N − 2) returned by Algorithm 7, Si has the

rotation closure property with a degree of overlapping 2, which

combined with Lemma 1 can lead to this theorem. Specifically,

we need to prove ∀d ∈ [1, p − 1], ∃a 6= b ∈ [0, p − 1]
such that Si[a] = R(Si, d)[a] and Si[b] = R(Si, d)[b], where

p = 2N2 +N is the number of slots of Si.

If d mod (2N +1) = 0 (i.e., the 0-th slot of both R(Si, d)
and Si are both pilot slots), then all subSeqi in both Si and

R(Si, d) are aligned, there are 2N2 different overlappings.

If d mod (2N + 1) 6= 0 (i.e., the 0-th slot in R(Si, d) is a

normal slot while the 0-th slot in Si is a pilot slot), then we

find the 2 overlappings as follows.

First, ∀m,n ∈ [0, N − 1] (m 6= n), we have Si[m(2N +
1)] 6= Si[n(2N + 1)] (since the 0-th slot in Si is a pilot

slot) ⇒
⋃

Si[p(2N + 1)] = {C0, · · · , CN−1}, where p =
0, · · · , N − 1, and R(Si, d)[m(2N + 1)] = R(Si, d)[n(2N +
1)] ∈ {C0, · · · , CN−1} (since the 0-th slot in R(Si, d) is a

normal slot). Then there must exist a p ∈ [0, N − 1] such that

Si[p(2N + 1)] = R(Si, d)[p(2N + 1)].
Second, for k = 2N + 1 − d mod (2N + 1), the k-th

slot in R(Si, d) is a pilot slot while the k-th slot in Si is

a normal slot. Similar to the previous case, we can conclude

that there exits an p ∈ [0, N−1] such that Si[p(2N+1)+k] =
R(Si, d)[p(2N + 1) + k].

To determine the rendezvous performance when two nodes

select two different CH sequences, we first give the definition

of integer sequences derived by the method of addition modulo

a prime number with different addends, and prove its overlap

property.

Definition 4: Two integer sequences, A = {a0, · · · , aN−1}
and B = {b0, · · · , bN−1} where N is a prime number, are said

to be derived by the method of addition modulo the prime

number N with different addends m and n if ai = (a0 +
im) mod N , bi = (b0 + in) mod N , where 0 ≤ a0, b0 ≤
N − 1, 1 ≤ i ≤ N − 1 and 1 ≤ m 6= n ≤ N − 1.

Lemma 2: Given two integer sequences derived by the

method of addition modulo a prime number with differ-

ent addends m and n, A = {a0, · · · , aN−1} and B =
{b0, · · · , bN−1}, there must exist an integer t ∈ [0, · · · , N −1]
such that at = bt.

Proof: Prove by contradiction. Suppose ∀t ∈ [0, · · · , N−
1], at 6= bt. Construct a integers sequence C =
{c0, · · · , cN−1}, where ci = ai−bi (0 ≤ t ≤ N−1). It is easy

to see that ∀ci, cj ∈ C (0 ≤ i 6= j ≤ N−1), ci 6= cj , otherwise

we can get a0−b0+i(m−n) ≡ a0−b0+j(m−n) (mod N)⇒
m − n is multiple times of N , which is impossible since

1 ≤ m 6= n ≤ N −1. Because at 6= bt ∀t ∈ [0, · · · , N −1], C
contains N different integers that are in the range of [1, N−1],
which is a contradiction.

14

Theorem 9: For two nodes that select two different CH

sequence constructed by Algorithm 7, there must be at least

N overlapping slots within a hopping period between the

two CH sequences no matter how their hopping processes are

misaligned.

Proof: Suppose Si and Sj are two different CH sequences

selected by the two nodes, we prove this theorem in the

following two cases.

(1) The slot boundaries of Si and Sj are aligned during the

hopping processes of the two nodes. In this case, we have two

further sub-cases as follows.

First, pilot slots in Si overlap with pilot slots in Sj . In

this case, all subSeqi in Si exactly overlap with all subSeqj
in Sj . Since integer sequences {Ai[0], · · · , Ai[N − 1]} and

{Aj [0], · · · , Aj [N − 1]}, which are the subscript sequences

of subSeqi and subSeqj respectively, are derived by the

method of addition modulo the prime number N with different

addends, there exists one overlapping between a sub-sequence

pair by Lemma 2. So there are 2N overlapping slots between

Si and Sj within a hopping period.

Second, pilot slots in Si do not overlap with pilot slots in

Sj . If the 0-th slot in Si (a pilot slot) is aligned with the k-th

(0 ≤ k ≤ N − 1) slot of the first subSeqj in a frame of Sj ,

then the first subSeqi in all the frames of Si overlap with N
contiguous normal slots in Sj . If the 0-th slot in Si (a pilot

slot) is aligned with the k-th (0 ≤ k ≤ N − 1) slot of the

second subSeqj in a frame of Sj , then the first subSeqj in all

the frames of Sj overlap with N contiguous normal slots in Si.

In either case, there exists at least one overlapping slot in each

frame of both Si and Sj because of Lemma 2 and the fact that

the sequences of normal slots in Si and Sj are developed by

addition modulo prime the number N with different addends.

So there are at least N overlapping slots between Si and Sj

within a hopping period.

(2) The slot boundaries of Si and Sj are misaligned during

the hopping processes of the two nodes. Suppose the first β
(0 < β < 1) portion of the 0-th slot in Sj overlaps with the

l-th slot (0 ≤ l ≤ 2N2+N) in Si, then the rest 1−β portion

of the 0-th slot in Sj overlaps with the l′-th slot in Si, where

l′ = (l + 1) mod (2N2 +N). Suppose the m-th slot in each

frame of Sj is an overlapping slot if the boundaries of the 0-th

slot in Sj and the l-th slot in Si were aligned, and the n-th slot

in each frame of Sj is an overlapping slot if the boundaries of

the 0-th slot in Sj and the l′-th slot in Si were aligned, then

in each frame of Sj , Sj overlaps with Si in the first β portion

of the m-th slot and in the last 1− β portion of the n-th slot.

In other words, there is at least one overlapping slot in each

frame of both Si and Sj . So there are at least N overlapping

slots between Si and Sj within a hopping period.

D. Additional discussion

Our previous analysis is based on the assumption that N
is a prime number. To address the practical issue when N is

not a prime number in a certain DSA network, we can make

the following adjustment to easily remove the assumption.

ASYNC-ETCH picks the smallest prime number that is greater

than the number of rendezvous channels as the parameter N
for Algorithm 7, and maps the excessive rendezvous channels

subseq-0 C0 C1 C2 C3 C0

subseq-1 C0 C2 C0 C1 C3

subseq-2 C0 C3 C1 C0 C2

subseq-3 C0 C0 C3 C2 C1

A0 0

A1

A2

A3

1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

0

0

0

A’0 0

A’1

A’2

A’3

1 2 3 0

2 0 1 3

3 1 0 2

0 3 2 1

0

0

0

Fig. 8. ASYNC-ETCH CH sequences construction in a DSA network with
4 rendezvous channels.

down to the actual rendezvous channels. Fig. 8 demonstrates

an example of ASYNC-ETCH CH sequences construction

in a DSA network with 4 rendezvous channels C0 to C3.

ASYNC-ETCH first constructs 4 integer sequences A0 to A3

using addition modulo a prime number 5 with addends 1

to 4 respectively. Then it converts the integer sequences Ai

to A′
i (0 ≤ i ≤ 3) by replacing number 4 with number

0 in Ai (0 ≤ i ≤ 3). Then the ASYNC-ETCH CH sub-

sequences will be constructed according to integer sequences

A′
i (0 ≤ i ≤ 3). The drawback of this method is that

some rendezvous channels are assigned more times to the

CH sequences. Therefore, for DSA networks using ASYNC-

ETCH, we recommend to assign a prime number of channels

for control information exchange.

VI. COMPARISONS

In this section, we theoretically compare ETCH with QCH

[2] and SeqR [16], which are two existing CH based solutions

for communication rendezvous in DSA networks.

In QCH, three versions of communication rendezvous pro-

tocols are designed. M-QCH and L-QCH are two synchronous

versions that assume clocks are synchronized between nodes,

and A-QCH is the asynchronous version that is used without

such an assumption. The design goal of M-QCH is to mini-

mize time-to-rendezvous between two CH sequences, while

L-QCH’s goal is to minimize the number of nodes that

rendezvous in the same channel. SeqR is a DSA network

communication rendezvous protocol without assuming global

clock synchronization. SeqR does not have a synchronous

version. We divide the comparisons into two group. In the first

group, we compare SYNC-ETCH with M-QCH and L-QCH,

all of which assume the existence of global clock synchro-

nization. In the second group, we compare three asynchronous

protocols: ASYNC-ETCH, A-QCH and SeqR.

We compare the two groups of communication rendezvous

protocols on the three metrics introduced in section III-B: av-

erage rendezvous channel load, average TTR and rendezvous

channels utilization ratio. Note that the choice of the CH

sequence construction algorithm in the SYNC-ETCH protocol,

i.e., the two-phase algorithm or the single-phase algorithm,

makes no difference on the protocol’s theoretical performances

on the three metrics, because we do not consider the impacts

of the appearances of primary users in these theoretical com-

parisons. We will evaluate how the appearances of primary

users have impacts on the performances of the SYNC-ETCH

protocol using different CH construction algorithms later in

Section VII-B.

Table I summarizes the comparison results, where N is

the number of rendezvous channels of the DSA network. In

the synchronous protocols group, we pick parameters for L-

QCH such that it produces the same number of CH sequences

15

TABLE I
COMPARISONS BETWEEN COMMUNICATION RENDEZVOUS PROTOCOLS

Avg. Rend. Average Rend. channels

channel load TTR utilization ratio

M-QCH 2

3

3

2

1

N

L-QCH ≈ 1√
2N−1

2N−1

2

1

N

SYNC-ETCH 1

N

2N−1

2
1

A-QCH 1

2
≥ 9

2
N/A

SeqR 1

N

N
2
+N

2
N/A

ASYNC-ETCH 1

N

2N
2
+N

N−1
≈ 2N N/A

as SYNC-ETCH for the purpose of fair comparison. SYNC-

ETCH outperforms M-QCH and L-QCH on the metrics of

average rendezvous channel load and rendezvous channels

utilization ratio, because in every hopping slot it efficiently

utilizes all rendezvous channels in establishing control chan-

nels, while there is only one channel can be used as control

channel in each hopping slot with M-QCH and L-QCH. Thus

theoretically, SYNC-ETCH experiences less traffic collisions

and achieves higher throughput than QCH. For the metric of

average TTR, M-QCH achieves the best theoretical perfor-

mance. However, it has a very large average load on each

rendezvous channel (23 of all the network nodes use the same

rendezvous channel), which will cause a high probability

of traffic collisions and further make the time-to-rendezvous

performance of M-QCH worse than its theoretical value in

practice.

In the asynchronous protocols group, A-QCH has the worst

performance in terms of average rendezvous channel load,

because it only ensures two of the rendezvous channels can

be used as control channels while both ASYNC-ETCH and

SeqR utilize all the rendezvous channels in control channel

establishment. Moreover, A-QCH cannot provide a bounded

TTR. SeqR, which constructs only one CH sequence, can only

guarantee one overlapping slot in a hopping period. So the

average TTR for SeqR is half of the number of slots in the CH

sequence (i.e., N2+N
2). For ASYNC-ETCH’s performance on

the metric of average TTR, we make the following analysis:

we proved in section V-C that for the cases that when two

nodes select the same CH sequence and when they select two

different CH sequences, they are respectively guaranteed to

meet in at least 1 slot and at least N slot within a hopping

period. Since ASYNC-ETCH generates N − 1 different CH

sequences and the CH sequence selection is random, on

average there are 1
N−1 + (N−2)N

N−1 = N − 1 guaranteed

overlapping slots in a hopping period. So the average TTR

for ASYNC-ETCH is 2N2+N
N−1 ≈ 2N .

VII. PERFORMANCE EVALUATION

We evaluate ETCH’s performance by simulation experi-

ments. In section VII-A, we compare ETCH with the existing

CH based communication rendezvous protocols. In Section

VII-B, we compare the two algorithms of SYNC-ETCH for

CH sequence construction, i.e., the two-phase algorithm and

the single-phase algorithm.

A. Comparing ETCH to the existing CH based communication

rendezvous protocols

1) Methodology: We evaluate ETCH by comparing it to

QCH and SeqR in the ns-2 simulator. We divide the eval-

uation into two portions based on the assumption about the

existence of global clock synchronization. In section VII-A2,

we compare the performances of SYNC-ETCH (using the two-

phase algorithm for CH sequence construction), M-QCH and

L-QCH. In section VII-A3, we compare the performances of

ASYNC-ETCH with A-QCH and SeqR.

In the evaluation, we modify the ns-2 simulator to make it

be able to perform multi-channel wireless communication sim-

ulations based on the Hyacinth project [21]. In our simulations,

there are a varying number of nodes in a 500m× 500m area,

where each of the nodes is in all other nodes’ communication

ranges. The length of a hopping slot is set to 100 ms. We

establish Constant Bit Rate (CBR) flows, where the packet

size is set to 800 bytes and the packet rate is 125 packets/sec,

from each node to all other nodes. These flows are started

and stopped randomly during the simulation such that there

is no more than one flow from the same node is activated

simultaneously (because there is only one transceiver equipped

with each node). Hyacinth’s manual routing protocol is used in

routing packets between the nodes. We disable the RTS/CTS

function in the simulator, and rely on the retransmission

mechanism to deal with packet collisions. In the simulations,

the DSA network has 5 rendezvous channels (i.e., N = 5),

each of which can possibly be used by the primary user. To

simplify the simulation, we suppose all the secondary users

are within the communication range of the primary user. The

appearances of the primary user is simulated as follows. We

first decide whether the primary user shows or not by flipping

a coin. If the primary user appears, we randomly disable a

rendezvous channel for a random period of time. Otherwise

all the rendezvous channels are made to be available to the

nodes also for a random period of time. We repeat this process

during the entire simulation.

2) Synchronous communication rendezvous protocols: We

conduct two simulation experiments to study the performances

of the synchronous protocols on traffic throughput and actual

time-to-rendezvous (TTR). In each experiment, we run the

simulation for ten rounds with different number of secondary

users (from 5 to 50 with a step length of 5) in each round.

Fig. 9 shows the traffic throughput performances of the three

synchronous protocols. Part (a) of this figure shows the actual

throughput while part (b) illustrates the improvement ratio

curves of SYNC-ETCH over L-QCH and M-QCH. SYNC-

ETCH has a lower throughput than L-QCH and M-QCH

when there are 5 secondary users in the network. This is

because in CH sequences of L-QCH and M-QCH, rendezvous

channels are randomly assigned to those non-frame-channel-

slots, which may give a pair of nodes using L-QCH or M-QCH

extra slots to rendezvous in other than the frame-channel-slot.

And this is also because there are no or little collisions in

this case. However, when the number of secondary users is

equal or greater than 10, SYNC-ETCH achieves higher traffic

throughput than L-QCH and M-QCH, especially when the

16

(a) Traffic throughput (b) Throughput ratio

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
ra

ti
o

Number of users

SYNC−ETCH / L−QCH
SYNC−ETCH / M−QCH

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f
d

el
iv

er
ed

 p
ac

k
et

s

Number of users

SYNC−ETCH
L−QCH

M−QCH

Fig. 9. Throughput performances of the synchronous protocols.

(a) Actual time−to−rendezvous (TTR) (b) Actual TTR ratio

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5 10 15 20 25 30 35 40 45 50

A
c
tu

a
l

T
T

R
 r

a
ti

o

Number of users

SYNC−ETCH / M−QCH
SYNC−ETCH / L−QCH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

5 10 15 20 25 30 35 40 45 50

A
c
tu

a
l

T
T

R
 (

m
il

li
se

c
.)

Number of users

M−QCH
SYNC−ETCH

L−QCH

Fig. 10. TTR performances of the synchronous protocols.

nodes-channels ratio is in the range of 3 to 6 (i.e. when there

are 15 to 30 nodes in the DSA network). In this case, traffic

collision dominates the factors that influence the throughput

performance. With both L-QCH and M-QCH, nodes are al-

ways compete for one rendezvous channel as control channel

leaving all other rendezvous channels unused in a hopping

frame, which causes a high probability of collisions when

the nodes-channels ratio is bigger than 1. On the contrary,

SYNC-ETCH schedules rendezvous among its CH sequences

such that all the rendezvous channels can be utilized in every

hopping slot. This approach greatly reduces traffic collisions

and hence increases throughput. Furthermore, it can be also

noticed in Fig 9 that the throughput performance of the three

synchronous protocols converges as the nodes-channels ratio

approaches 10. This is because collisions dominate traffics in

each rendezvous channel with all the synchronous protocols.

In this case, it is suggested to assign more rendezvous channels

to accommodate such a high number of secondary users.

Fig. 10 part (a) shows the TTR performances of the three

synchronous protocols, and part (b) demonstrates the TTR

ratios of SYNC-ETCH over L-QCH and M-QCH. The TTRs

of the three protocols increase as the number of secondary

users grows because of the increasing traffic collisions. Al-

though M-QCH achieves the best TTR performance among the

three as analyzed in section VI, it does not get the theoretical

TTR performance boost over SYNC-ETCH as analyzed in

Section VI. Theoretically, M-QCH performs 3 times better

than SYNC-ETCH in TTR, because it has an average TTR of

1.5 while SYNC-ETCH’s value is 4.5. However, the simulation

results shows that SYNC-ETCH’s actual TTR is only 1.5 times

of M-QCH’s actual TTR on average. The reason of M-QCH’s

TTR performance degradation in the simulation experiment

is because the nodes using M-QCH experience more severe

traffic collisions that those using SYNC-ETCH.

From the above two simulations it can be seen that SYNC-

ETCH achieves the best balance between traffic throughput

and TTR among the three synchronous protocols.

3) Asynchronous communication rendezvous protocols:

In this subsection, we compare the throughput and the

(a) Traffic throughput (b) Actual time−to−rendezvous

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 5 10 15 20 25 30 35 40 45 50

N
u

m
b

er
 o

f
d

el
iv

er
ed

 p
ac

k
et

s

Number of users

ASYNC−ETCH
A−QCH

SeqR

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

5 10 15 20 25 30 35 40 45 50

A
ct

u
al

 T
T

R
 (

m
il

li
se

c.
)

Number of users

ASYNC−ETCH
A−QCH

SeqR

Fig. 11. Throughput and TTR of the asynchronous protocols.

F
(ε
S

)

A
v

er
ag

ed
 n

o
rm

al
iz

ed

ev
en

n
es

s
sc

o
re

F
(ε
S

)
n

o
rm

al
iz

ed
 e

v
en

n
es

s
sc

o
re

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 o
f

th
e

Number of rendezvous channels (i.e., N)

Number of rendezvous channels (i.e., N)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10 20 30 40 50 60 70 80 90 100

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 20 30 40 50 60 70 80 90 100

Fig. 12. Channel appearance evenness score of the two-phase CH sequence
construction algorithm. (The evenness score of the single-phase algorithm is
always 1).

TTR performances between the three asynchronous protocols:

ASYNC-ETCH, A-QCH and SeqR.

Fig. 11 shows the performances of the three asynchronous

protocols. In Fig. 11 part (a), the traffic throughput perfor-

mances are shown. ASYNC-ETCH performs constantly better

than the other two protocols in this metric. This is because

ASYNC-ETCH is able to utilize all the rendezvous channels

as control channels while A-QCH uses only two of them.

Meanwhile, ASYNC-ETCH improves on SeqR such that it

achieves a shorter average TTR, which contributes to the

throughput performance boost over SeqR. Fig. 11 part (b)

shows the actual TTR performances of the three protocols. It

is not surprised that ASYNC-ETCH performance better than

SeqR, because ASYNC-ETCH’s average TTR is shorter than

that of SeqR (see Table I for details). For A-QCH, we construct

CH sequences such that they have an average TTR of 4.5,

which is the best that A-QCH is able to achieve. Even so,

ASYNC-ETCH still performs better than A-QCH.

B. Comparing the two algorithms for CH sequence construc-

tion in SYNC-ETCH

In the SYNC-ETCH protocol, we have proposed two algo-

rithms for CH sequence construction. The two-phase algorithm

can be applicable to DSA networks with an arbitrary number

of rendezvous channels. However, it is unable to guarantee

the even use of rendezvous channels requirement. The single-

phase algorithm improves on its two-phase counterpart in that

it guarantees, under the premise that N (i.e., the number of

the rendezvous channels) is an odd number, all the rendezvous

channels appear in each constructed CH sequence with the

same probability.

To quantize how even the N rendezvous channels (i.e.,

C0, · · · , CN−1) appear in a CH sequence S, we define the

“evenness score” of S regarding rendezvous channel appear-

17

F(εS)Formalized evenness score

 0.26

 0.31

 0.36

 0.41

 0.46

 0.51

 0.56

 0.88 0.9 0.92 0.94 0.96 0.98 1

R
e
n

d
e
z
v

o
u

s
m

is
s

ra
ti

o

Fig. 13. Rendezvous miss ratio vs. channel appearance evenness score.

ance probability as

εS =

√

∑N−1
i=0 (ai −

|S|
N
)2

N
,

where |S| is the number of hopping slots of S, and ai is the

number of hopping slots of S in which channel Ci appears.

We further convert εS into a normalized score N(εS), which

is the range of [0, 1] and can be expresses as

N(εS) = 1−
εS − εbest

εworst − εbest
.

In N(εS), εbest and εworst are the evenness scores of the

best case and the worst case of fulfilling the even use of

rendezvous channels requirement respectively. In the best case,

each of the N rendezvous channels appears in S with the

same the same probability, while in the worst case, a single

channel appears in all the hopping slots of S. For instance,

with the SYNC-ETCH protocol where there are 2N − 1
hopping slots in a CH sequence, the best case that a CH

sequence S satisfies the even use of rendezvous channels

requirement is that a rendezvous channels appears once in S
while each of the remaining N − 1 channels appears twice

in S. The evenness score of the best case is calculated as

εbest =

√

(1− 2N−1
N

)2+(N−1)(2− 2N−1
N

)2

N
. In the worst case, all

the 2N − 1 slots is assigned with the same CH sequence.

Accordingly, the evenness score of the worst case is calculated

as εworst =

√

((2N−1)− 2N−1
N

)2+(N−1)(0− 2N−1
N

)2

N
.

Low normalized evenness score of a CH sequence S in-

dicates that S uses one or several rendezvous channels more

than the remaining channels, which causes the nodes selecting

S to have higher probability to experience communication

outages if the primary users of those heavily relied channels

show up. In SYNC-ETCH, every CH sequence constructed by

the single-phase algorithm has a normalized evenness score

of 1, which is the optimal case of fulfilling the even use of

rendezvous channels requirement. To evaluate how well the

two-phase algorithm satisfies this requirement, we calculate

the average value and the corresponding standard deviation of

the evenness scores of the 2N CH sequences constructed by

the two-phase algorithm. Figure 12 shows the results of the

cases where the value of N ranges from 3 to 99. The top

graph of Figure 12 plots the average value of the evenness

scores, and the bottom graph plots the corresponding standard

deviations. We can see from the results that the two-phase

algorithm still achieves an average normalized evenness score

that is larger than 0.9 when N is greater than 10, and that the

averaged score increases as N increases.

We further perform an experiment to evaluate how the

normalized evenness scores of CH sequences affect the per-

formances of the communication rendezvous protocol. In the

experiment, we let a node A that is stick to a fixed CH

sequence Si rendezvous with another node B for 2N − 1
times, where the node B selects a different CH sequence

Sj (j 6= i) at each time. We disable γ (0 < γ < 1) of

the rendezvous channels that are used most frequently in Si.

The node A fails to rendezvous with the node B at a time

if the overlapping channel between Si and Sj is disable. We

then calculate “rendezvous miss ratio” of the CH sequence Si

as the ratio between the number of times when a rendezvous

attempt fails and the total number of rendezvous attempts (i.e.,

2N − 1). Figure 13 (b) plots the relationship between the

normalized evenness score and the rendezvous miss ratio of a

CH sequence constructed by the two-phase algorithm S when

N = 33 and γ = 0.3. Under the same settings, the rendezvous

miss ratio of a CH sequence constructed by the single-phase

algorithm is 0.27.

VIII. CONCLUSION

We have presented ETCH, efficient channel hopping based

communication rendezvous protocols for DSA networks.

ETCH protocols include SYNC-ETCH and ASYNC-ETCH.

SYNC-ETCH, which assumes global clock synchronization,

efficiently utilizes all the rendezvous channels in establishing

control channels all the time. ASYNC-ETCH is able to make a

pair of nodes rendezvous without being synchronized. Using a

combination of theoretical analysis and simulations, we show

that ETCH protocols perform better than the existing solutions

for communication rendezvous in DSA networks.

REFERENCES

[1] J. Zhao, H. Zheng, and G. H. Yang, “Distributed coordination in dynamic
spectrum allocation networks,” in IEEE DySPAN, December 2005.

[2] K. Bian, J. Park, and R. Chen, “A quorum-based framework for
establishing control channels in dynamic spectrum access networks,”
in ACM Mobicom, June 2009.

[3] Y. Zhang, Q. Li, G. Yu, and B. Wang, “ETCH: Efficient Channel
Hopping for communication rendezvous in dynamic spectrum access
networks,” in INFOCOM, 2011.

[4] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: slotted seeded channel
hopping for capacity improvement in IEEE 802.11 ad hoc wireless
networks,” in ACM Mobicom, September 2004.

[5] A. Tzamaloukas and J. J. Garcia-Luna-Aceves, “Channel-Hopping Mul-
tiple Access,” in IEEE ICC 2000, 2000.

[6] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt gen-
eration/dynamic spectrum access/cognitive Radio Wireless Networks: A
Survey,” COMPUTER NETWORKS JOURNAL (ELSEVIER), 2006.

[7] A. Sahai, N. Hoven, and R. Tandra, “Some Fundamental Limits on
Cognitive Radio,” in Allerton Conference on Communication, Control,

and Computing, 2004.

[8] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues
in spectrum sensing for cognitive radios,” in Asilomar Conference on

Signals, Systems, and Computers, 2004.

[9] A. Fehske, J. Gaeddert, and J. Reed, “A new approach to signal
classification using spectral correlation and neural networks,” in IEEE

DySPAN, 2005.

[10] A. Ghasemi and E. Sousa, “Collaborative spectrum sensing for oppor-
tunistic access in fading environments,” in IEEE DySPAN, 2005.

[11] S. Shankar, “Spectrum Agile Radios: Utilization and Sensing Architec-
tures,” in IEEE DySPAN, 2005.

[12] B. Wild and K. Ramchandran, “Detecting Primary Receivers for Cog-
nitive Radio Applications,” in IEEE DySPAN, 2005.

[13] H. Zheng and L.Cao, “Device-centric Spectrum Management,” in IEEE

DySPAN, 2005.

18

[14] V. Brik, E. Rozner, S. Banarjee, and P. Bahl, “DSAP: a protocol for
coordinated spectrum access,” in IEEE DySPAN, 2005.

[15] L. Ma, X. Han, and C. Shen, “Dynamic open spectrum sharing MAC
protocol for wireless ad hoc networks,” in IEEE DySPAN, 2005.

[16] L. A. DaSilva and I. Guerreiro, “Sequence-Based Rendezvous for
Dynamic Spectrum Access,” in IEEE DySPAN, October 2008.

[17] Z. Lin, H. Liu, X. Chu, and Y.-W. Leung, “Jump-stay based channel-
hopping algorithm with guaranteed rendezvous for cognitive radio
networks,” in INFOCOM, 2011.

[18] Maxim 2.4GHz 802.11b Zero-IF Transceivers, Maxim Integrated
Products. [Online]. Available: http://pdfserv.maxim-ic.com/en/ds/
MAX2820-MAX2821.pdf

[19] Wikipedia, Matching (graph theory), http://en.wikipedia.org/wiki/
Matching (graph theory).

[20] T. D. LeSaulnier, C. Stocker, P. S. Wenger, and D. B. West, “Rainbow
Matching in Edge-Colored Graphs,” Electr. J. Comb., 2010.

[21] “Hyacinth: An IEEE 802.11-based Multi-channel Wireless Mesh Net-
work,” http://www.ecsl.cs.sunysb.edu/multichannel/.

APPENDIX A

Here we give a more general example about the single-

phase CH sequence construction process. In this example, we

consider a DSA network with 9 rendezvous channels (i.e.,

N = 9), where eventually 18 CH sequences are constructed,

each with 17 hopping slots.

Figure 14 shows the initial state of the graph G, the step

#1 and #2 in the intuitive description of the single-phase CH

sequence construction algorithm. (a) shows the initial state of

the graph G, where the 18 vertices S0, · · · , S17 correspond

to the 18 CH sequences to construct. It also shows that each

of the 9 rendezvous channels, C0, · · · , C8, has been assigned

a unique color. (b) shows the first perfect rainbow matching

(PRM) of 18-vertex complete graph K18 obtained in the

step #1. The first PRMs tells how the 18 CH sequences

rendezvous with each other in slot-0 by fully utilizing all the

9 rendezvous channels. (c) and (d) show how the 18-vertex

graph G is shrank to a 9-vertex complete graph K9 in the

step #2 according to the first PRM obtained in the step #1:

Two vertices Si and Si+1 are combined to a new vertex Si,i+1

if vertex Si and vertex Si+1 are adjacent in the first PRM ,

and the new vertex Si,i+1 is assigned the color as that of the

edge connecting Si and Si+1 in the first PRM (Figure (c)).

Then the 9-vertex complete graph K9 is formed on the 9 new

vertex (Figure (d)).

Figure 15 shows the result of the step #3 in the intuitive

description of the single-phase CH sequence construction

algorithm - decomposing KN into N−1
2 different 2-factors. In

this figure, (a), (b) (c) and (d) are four different 2-factors of

K9 that are obtained by using vertex subscript difference (i.e.,

the parameter d in the description) 1, 2, 3 and 4 respectively.

Since 1, 2, and 4 are all coprime with N , (a), (b) and (d) are

three different Hamiltonian cycles of K9. (c) is a spanning

subgraph of K9 containing a set of 3 3-cycles.

Figure 16 shows the result of the step #4 in the intuitive

description of the single-phase CH sequence construction

algorithm - rainbow-coloring the N−1
2 2-factors of K9. In this

step, each of the four 2-factors of K9 shown in Figure 15 is

rainbow-colored using Algorithm 4.

Figure 17 shows the result of the step #5 in the intuitive

description of the single-phase CH sequence construction

algorithm - expanding the N−1
2 rainbow-colored 4-factors of

k9 back to the corresponding 4-factors in K18. In this step,

each of the four rainbow-colored 2-factors of K9 shown in

Figure 16 are expanded back to a corresponding 4-factor in

K18 by converting each connected vertex pair in a 2-factor

of K9 to a monochromatic complete bipartite graph K2,2 (the

color is the same as in the original edge in K9).

Figure 18 to Figure 21 show the result of the step #5

in the intuitive description of the single-phase CH sequence

construction algorithm - decomposing the N−1
2 4-factors of

K2N into 2N − 2 perfect rainbow matchings. The total 16

PRMs shown in these four figures tell how the 18 CH

sequences rendezvous with each other in slot-1 to slot-16

respectively by fully utilizing all the 9 rendezvous channels

in each hopping slot.

Figure 22 shows the final 18-vertex complete graph K18 and

the final 18 CH-sequences. The 16 PRMs shown in Figure

18 to Figure 21 and the first PRM (shown in Figure 22 (a))

together form the final 18-vertex complete graph K18 (shown

in Figure 22 (b)). The final 18 CH sequences (shown in Figure

22 (c)) is constructed based on the 17 PRMs, each of which

tells how the 18 CH sequences rendezvous with each other in

a different hopping slot by fully utilizing all the 9 rendezvous

channels.

19

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C8 (Black)

C0 (Green)

C1 (Blue)

C2 (Red)
C3 (Cyan)
C4 (Magenta)
C5 (Yellow)

C6 (Brown)
C7 (Pink)

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C8 (Black)

C0 (Green)

C1 (Blue)

C2 (Red)
C3 (Cyan)
C4 (Magenta)
C5 (Yellow)

C6 (Brown)
C7 (Pink)

(Green)

(Blue)

(Red)

(Black)

(Pink)

(Brown) (Cyan)

(Magenta)(Yellow)

S0,1

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

1C

2C

3C

4C5C

6C

7C

8C

0C

(a) (b)

slot−0

(c) (d)

Fig. 14. The initial state of the graph G, the steps #1 and #2 in the intuitive description of the single-phase CH sequence construction algorithm in a DSA
network with 9 rendezvous channels (i.e., N = 9). (a) is the initial state of the graph G; (b) shows the first PRM of the complete graph K18 obtained in
the step # 1; The first PRMs tells how the 18 CH sequences rendezvous with each other in slot-0 by fully utilizing all the 9 rendezvous channels; (c) and
(d) show how the 18-vertex graph G so far is shrank to a 9-vertex complete graph K9 in step #2.

S0,1

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

(a) (b) (c) (d)

Fig. 15. Step #3 in the intuitive description of the single-phase CH sequence construction algorithm. In this step, the 9-vertex complete graph K9 shown
in Figure 14 (d) is decomposed into four different 2-factors of K9 shown in (a) to (d) respectively. (a), (b) and (d) are three different Hamiltonian cycles of
K9. (c) is a spanning subgraph of K9 containing a set of 3 3-cycles.

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

(Red)

(Cyan)

(Blue) (Black)

(Magenta) (Yellow)

(Pink)

(Brown)

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

(Black) (Blue)

(Cyan)

(Red)(Pink)

(Green)

(Brown)

(Magenta)(Yellow)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

(Yellow)(Magenta)

(Blue)

(Red)

(Cyan) (Brown)

(Pink)

(Black)

(Green)

2,3S
(Blue)

4,5S
(Red)

6,7S

(Cyan)

8,9S

(Magenta)

10,11S

(Yellow)

12,13S

(Brown)

14,15S

(Pink)

16,17S

(Black)

S0,1

(Green)

(Red)

(Yellow)

(Brown)

(Pink)

(Black)

(Green)

(Blue)

(Cyan)

(Magenta)

(a) (d)(c)(b)

Fig. 16. Step #4 in the intuitive description of the single-phase CH sequence construction algorithm. In this step, each of the four 2-factors of K9 shown
in Figure 15 is rainbow-colored using Algorithm 4.

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S
(Green)

(Blue)

(Red)

(Cyan)

(Magenta) (Yellow)

(Brown)

(Pink)

(Black)

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

(Green)

(Blue)

(Red)

(Cyan)

(Magenta)(Yellow)

(Brown)

(Pink)

(Black)

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

(Green)

(Red)

(Magenta)

(Yellow)

(Pink)

(Brown)
(Cyan)

(Blue) (Black)

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

(Green)

(Blue)

(Red)
(Cyan)

(Magenta)

(Yellow)

(Brown)

(Pink)

(Black)

(a) (b) (c) (d)

Fig. 17. Step #5 in the intuitive description of the single-phase CH sequence construction algorithm. In this step, each of the four rainbow-colored 2-factors
of K9 shown in Figure 16 are expanded back to a corresponding 4-factor in K18.

20

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7SC1

C2

C3

C5

C6

C7

C4

C8

C0

slot−1

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S
C0

C1

C2

C3

C4 C5

C6

C7

C8

slot−2

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C4
C5

C6

C7

C8

slot−3

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C4
C5

C6

C7

C8

slot−4

(1) (2) (3) (4)

Fig. 18. The four different perfect rainbow matchings decomposed from the 4-factor of K18 shown in Figure 17 (a). These four PRMs tell how the 18
CH sequences rendezvous with each other in slot-1 to slot-4 respectively by fully utilizing all the 9 rendezvous channels in each hopping slot.

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C4

C7

C8

C5

C6

slot−6

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0
C1

C2

C3

C4
C5

C6

C7

C8

slot−7

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1
C2

C3

C4C5

C6

C7

C8

slot−8

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C4C5

C6

C7

C8

slot−5

(1) (2) (3) (4)

Fig. 19. The four different perfect rainbow matchings decomposed from the 4-factor of K18 shown in Figure 17 (b). These four PRMs tell how the 18
CH sequences rendezvous with each other in slot-5 to slot-8 respectively by fully utilizing all the 9 rendezvous channels in each hopping slot.

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C5

C6

C7

C8

C4

slot−9

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0
C1

C2

C3

C4
C5

C6

C7

C8

slot−10

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C4 C5

C6

C7

C8

slot−11

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0C1

C2

C3

C4 C5

C6

C7

C8

slot−12

(2) (3) (4)(1)

Fig. 20. The four different perfect rainbow matchings decomposed from the 4-factor of K18 shown in Figure 17 (c). These four PRMs tell how the 18
CH sequences rendezvous with each other in slot-9 to slot-12 respectively by fully utilizing all the 9 rendezvous channels in each hopping slot .

21

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C4

C5

C6 C7

C8

slot−14

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2

C3

C4

C5

C6

C7

C8

slot−13

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C2
C3

C4

C5

C6

C7

C8

slot−15

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C1

C4

C5

C6

C7

C8

C3

C2

slot−16

(1) (2) (3) (4)

Fig. 21. The four different perfect rainbow matchings decomposed from the 4-factor of K18 shown in Figure 17 (d). These four PRMs tell how the 18
CH sequences rendezvous with each other in slot-13 to slot-16 respectively by fully utilizing all the 9 rendezvous channels in each hopping slot.

0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C0

C2

C3

C4C5

C6

C7

C8 C1

slot−0 0S 1S

10S

2S17S

3S

8S

9S

4S

5S

6S

11S

12S

13S

14S

15S

16S

7S

C8 (Black)

C0 (Green)

C1 (Blue)

C2 (Red)
C3 (Cyan)
C4 (Magenta)
C5 (Yellow)

C6 (Brown)
C7 (Pink)

2S

3S

1S

0S

4S

5S

6S

8S

9
S

10
S

11S

12S

13S

14S

15S

16S

17S

7S

slot−16

C2

C3

C3

C4

C4

C5

C5

C6

C6

C7

C7

C8

C8

C5

C4

C5

C6

C6

C7

C8

C7

C8

C0

C1

C0

C1

C3

C2

C3

C4

C2

C5

C4

C6

C7

C7

C0

C8

C6

C5

C3

C4

C2

C3

C1

C2

C0

C1

C8

C4

C5

C5

C6

C7

C6

C7

C8

C0

C8

C0

C2

C1

C2

C1

C3

C4

C3

C4

C5

C6

C5

C6

C7

C7

C8

C8

C0

C0

C1

C1

C2

C2

C3

C3

C4

C1

C8

C2

C0

C1

C3

C2

C4

C3

C5

C6

C4

C7

C5

C6

C8

C0

C7

C1

8

C2

C0

C3

C1

C4

C2

C5

C3

C6

C4

C7

C5

C8

C6

C0

C7

C

C8

C1

C0

C2

C1

C3

C4

C2

C5

C3

C4

C6

C5

C7

C8

C6

C0

C7

C8

C1

C0

C2

C3

C1

C2

C4

C3

C5

C4

C6

C5

C7

C6

C8

C7

C0

C6

C3

C7

C4

C8

C5

C6

C0

C7

C1

C8

C2

C0

C3

C1

C4

C2

C5

C6

C3

C7

C4

C8

C5

C0

C6

C1

C7

C2

C8

C3

C0

C4

C1

C5

C2

C3

C6

C4

C7

C5

C8

C6

C0

C7

C1

C8

C2

C3

C0

C4

C1

C5

C2

C3

C6

C4

C7

C5

C8

C0

C6

C1

C7

C2

C8

C0

C3

C1

C4

C2

C5

C2

C7

C3

C8

C4

C0

C5

C1

C2

C6

C3

C7

C4

C8

C5

C0

C6

C1

C2

C7

C3

C8

C4

C0

C5

C1

C6

C2

C7

C3

C8

C4

C0

C5

C1

C6

C7

C2

C8

C3

C0

C4

C1

C5

C2

C6

C7

C3

C8

C4

C0

C5

C1

C6

C7

C2

C8

C3

C0

C4

C1

C5

C6

C2

C3

C7

C4

C8

C5

C0

C6

C1

C0

slot−0

C0

C1

C1

C2

(a) (b) (c)

Fig. 22. The final 18-vertex complete graph K18 and the final 18 CH-sequences. The 16 PRMs shown in Figure 18 to Figure 21 and the first PRM
(shown in (a)) together form the final 18-vertex complete graph K18 (shown in (b)). The final 18 CH sequences (shown in (c)) is constructed based on the 17
PRMs, each of which tells how the 18 CH sequences rendezvous with each other in a different hopping slot by fully utilizing all the 9 rendezvous channels.

