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ness of the tungsten layer deposited on the exposed sili-
con.

Auger analysis of a phosphoric-acid-treated, thermally
grown oxide failed to reveal phosphorus remaining on the
surface; the detection limit was below about 10" cm—2.
Similarly, no phosphorus was detected on an unoxidized,
phosphoric-acid-treated silicon surface.

Summary

Selective tungsten films have been deposited using dif-
ferent insulators important in IC technology to inhibit nu-
cleation. Nuclei form more readily on nitrogen-containing
films than on silicon-dioxide films. The presence of
phosphorus on the surface tends to inhibit nucleation.
The phosphorus can be added either by a surface treat-
ment subsequent to insulator formation or during deposi-
tion of the insulator; however, the inhibiting effect is
greater in the latter case. These results demonstrate that
proper choice of an insulator and its surface treatment
immediately before tungsten deposition can allow thicker
selective tungsten layers to be formed without nucleation
on the surrounding insulating surfaces.
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Etching Profiles at Resist Edges

|. Mathematical Models for Diffusion-Controlled Cases

H. K. Kuiken, J. J. Kelly, and P. H. L. Notten
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

ABSTRACT

Mathematical models are presented that describe diffusion-controlled etching near resist edges. To understand the
role of the various physical parameters, a simple maskless one-dimensional model is studied first. The study of a purely
diffusion-controlled case suggests that mathematical models for etching problems may be solved by means of perturba-
tion techniques that assume relatively small displacements of the etching surface. The perturbation procedure is then
applied to a two-dimensional problem that involves a mask. Assuming a stationary etchant and diffusion control, it is
shown that etch rates are largest close to the resist edge. As a result, the etching profile reveals a bulging shape near the
mask edge, confirming earlier observations reported in the literature. A case with convection is considered next. It is
shown that the very same bulge that resulted from the analysis of the stationary case may also appear when convection
plays a role. The perturbation procedure depends upon an important dimensionless parameter 8. Tabulated values of

this parameter for various etching systems are presented.

Etching of special forms and profiles using resist pat-
terns is often of essential importance in device technol-
ogy. Two typical examples are shown in Fig. 1. Forms
with symmetrical rounded edges or V-shaped grooves are
widely used in laser applications. Since the dimensions of
such structures are on a micron scale, tlie accuracy and
reproducibility of the etched profiles are critical.

Very often, differences in etching kinetics can be
exploited to achieve specific effects. Etching results de-
pend markedly on whether the dissolution reaction is
surface(kinetically)-controlled or diffusion-controlled. For
example, kinetically controlled etching of anisotropic ma-
terial frequently gives a faceted surface structure (Fig.
1(a)), characteristic of the crystal properties of the mate-
rial (1, 2). This results from differences in etch rate of the
various crystal planes. The geometric aspects of this kind
of etching can be described by Wulff plots (1).

In diffusion-controlled etching, on the other hand, the
dissolution rate is determined by transport of active etch-
ing components to the solid surface (or of reaction prod-
ucts away from the surface). In the limiting case, the sur-
face reaction proceeds infinitely fast, irrespective of the
crystallographic orientation. The amount of active mate-
rial reaching (or leaving) the surface per unit time obvi-
ously determines the etch rate in this case. Etching might,

therefore, be expected to be isotropic (2), even in the case
of anisotropic materials (Fig. 1(b)).

For kinetically controlled processes, the shape of the
etched surface can, in principle, be deduced directly from
kinetic and geometric considerations. For diffusion-con-
trolled dissolution, this is only possible on the basis of a
complete description of the concentration field in the
etching solution. In the context of etching, such multidi-
mensional concentration fields have only recently re-
ceived any attention (3, 4, 5). However, the form of etched
structures can only be studied theoretically by consider-
ing models that refer to more than one dimension. This is
particularly evident in the case of mask etching, when
part of the surface is protected by a resist layer. In the vi-
cinity of the mask edge, the concentration field will be at
least two-dimensional, as will be the shape of the etched
surface.

In this paper, we present a mathematical model for dif-
fusion-controlled etching of a semi-infinite solid partly
covered by a protecting mask. It is known that, in such a
case, the etch rate near the mask edge is considerably en-
hanced (6, 7, 8). While the role of mass transport in solu-
tion has been recognized, no previous attempt has been
made to predict such etched profiles theoretically. This
is probably due, in part, to the mathematical complexity



1218

Fig. 1. Examples of kinetically controlled (a) and diffusion-con-
trolled (b) etching of the same material (GaAs).

of the problem. To introduce the physical parameters that
play a role in the mathematical description of etching pro-
cesses, we first use a simple one-dimensional diffusion
model based on the chemical etching of GaAs. In the sub-
sequent two-dimensional mathematical treatment, the in-
fluence of both diffusion and convection on the etched
profile is considered.

In the second paper of this series (9), experimental re-
sults for the etching of III-V materials will be presented
and compared with those predicted by theory.

Chemical Etching
As a simple example, we allow a III-V material AB to
react chemiecally with a molecule X, from agueous solu-
tion in a series of consecutive steps (10)

X X
N / ks \ /
A-B +X,- 1& f; 1
/ N 7 N\
X X
AN A lg / fast
+ 2X, > AX, + BX; [2]
/ AN (in solution)

We assume that the breaking of the first A-B bond at the
surface (step 1) is rate-determining (10). In chemical disso-
lution, the rate constant k, does not depend on the electric
field of the space-charge layer in the solid or of the
double-layer in solution. Consequently, the chemical etch
rate is not changed if an external potential is applied to
the solid (10, 12). The value of k, can, of course, depend on
crystallographic orientation for anisotropic materials. The
dissolution products, AX; and BX,, may be subsequently
hydrolyzed in solution. From reactions [1] and [2], it is
clear that the rate j; at which the solid dissolves depends
on the concentration of X, at the solid surface

j_s = ksc.roz [3]

For the chemical dissolution of ITI-V materials, the model
system in the present work, bifunctional molecules are re-
quired as active etching agent: Br,, I,, and H,0, have been
used for GaAs (10, 11, 13), and HCI for InP (12).

One-Dimensional Model

In this section, we develop a one-dimensional mathe-
matical model for an etching process such as that de-
scribed above. In order to emphasize the influence of the
various physical parameters, the etchant is first assumed
to be stationary, i.e., convection effects are disregarded.
Of course, in a real etching process, where one considers
diffusive transport through a liquid, convection can
hardly ever be left out of consideration. As is shown in
(14), convection is negligible only during the very first
stages of the process, when the diffusion layer is still very
thin.

Convection effects considerably complicate the mathe-
matical modeling of etching processes. Indeed, any rele-
vant model will have to be at least two-dimensional.
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These two-dimensional models will be considered later.
Therefore, the results obtained in this section should be
seen as the necessary initial steps toward more sophisti-
cated models.

Figure 2 shows a one-dimensional continuum that is
partly occupied by the solid (AB) to be etched, the re-
maining part being filled with etching liquid. The contin-
uum is measured by the coordinate ¥, which assumes the
value zero at the initial (t = 0) position of the interface. At
any subsequent time, the location of the interface is de-
noted by y = — 8. Assuming, as we did in the previous
section, that it is sufficient to consider the diffusion of
only one species (X,), the concentration of which will be
denoted by ¢ (mol/m?), we apply Fick’s second law of dif-
fusion in the regiony > - &

de_pEe

PP P =z0,y> -9 (4]

where t is the time and D (m%¥s) is the diffusion coeffi-
cient. The initial condition is

c=c,d=0att=20 [5]

the first of the two conditions prevailing for all y = 0.
Subsequently, the bulk concentration ¢® will be ap-
proached at a sufficiently large distance from the inter-
face, i.e.

¢ — cPwheny - = (t > 0) 6]

The rate of the surface reaction, as described by Eq. [3],
must be equal to the flux of the active etching compo-
nent at the surface, i.e.

ac
D — =kc

aty = - 8(t)
oy

{t>0) (7]
Further, since - d&/dt is the inward-directed velocity at
which the interface proceeds into the solid, a simple mass
balance shows that

dd ac
—_— = g, — ty=-8 (t>0 8
%y aty ( ) [8]
where o, is given by
DM,
g, = —— 9
o, [9]

Here, M, is the molecular weight of the solid, p; is its den-
sity, and m represents the number of molecules of active
etching component required to dissolve one molecule of
the solid. The subscript e is chosen to emphasize that we
are dealing with an etching system.

Diffusion-controlled etching.—The system of Eq. [4]8]
assumes a simpler form in the limit of diffusion-con-
trolled etching. In that case, the surface reaction can be
thought to occur at an infinite rate, i.e., k; = «. The condi-
tion of Eq. [7] can then be replaced by

c=0aty=-5 (t>0) (10]

y

initial position
of interface

" etchant
q» >,

Substrate

-—

Fig. 2. Geometry for one—dlmenslonol etching. Shaded region: sub-
strate or solid. Case depicted refers to a case where a slice of thick-
ness 8 has been etched away.
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The problem defined by Eq. [4]-[6], [8], and [10] is well
known in applied mathematics literature. It was first for-
mulated in connection with the melting of ice. It belongs
to the so-called class of Stefan problems, named after one
of the first investigators of the field (15, 16). The solution
can be written as follows

v/2(Del /2 o
c= cbf e—pzdp/f e~"dp [11]
-y -y

where vy is a constant that is implicitly given by

* 5 1
27872f e dp = — [12]
_y B
and where
D
B=—— [13]
oeC

This dimensionless parameter 8 was first introduced in
connection with etching in Ref. (3). Figure 3 shows y as a
function of 8.

From the presentation of the solution as an integral [11]
with the coordinate y appearing in the upper bound, it
follows that the position of the moving interface (y = — 8)
is obtained by equating upper and lower bounds. In that
case, Eq. [11] assumes the value zero, as it should accord-
ing to Eq. [10]. This yields

5 = 2p(Dt)1* [14]

from which it is seen that the interface displacement is di-
rectly proportional to the square root of the time. The ve-
locity at which the interface moves is defined by [8] and
is inversely proportional to the square root of the time.
This corresponds to the Cottrell equation (17) for current
transients in electrochemical processes. Figure 4 shows,
for a special case, how the concentration profile changes
with time. Figure 5 presents the dependence of the con-
centration profile on B8, as expressed in dimensionless
coordinates.

The dimensionless parameter 8 defined by Eq. [13] ap-
pears to be important in the mathematical description of
etching processes. Referring to Eq. {9], we find that B
may be written as follows

B =

mp,

15
M, (15]

Once the essential chemical or electrochemical reaction
determining a particular etching process is known, one
may calculate 8 from the known values of the physical
quantities that appear on the right-hand side of [15]. We
have done so for a few well-known etching systems, both
chemical and electroless. The results are listed in Table I.
From the values collected in this table, it follows that 8 is
usually a very large parameter.

A useful result follows when B is large. Indeed, from
Fig. 3, the parameter vy is then seen to be of the order of
B~L Since this is the case, Eq. [14] shows that the dis-

0.6
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Fig. 3. Etching depth parameter ¥ (Eq. [14]) as a function of the
etching parameter 8 (Eq. [13] and [15]). (Showing the product y3
produces a better picture than 7y vs. 3.)
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Fig. 4. Sketch showing how the concentration profile develops as
the etching boundary moves inwards. The various stages of the solid
are shown symbolically using different shadings and heights.

placement of the moving boundary is small in compari-
son with the extent of the diffusion field (Fig. 5), as ex-
pressed by the diffusion length (Dt)!.

Perturbation method.—The moving boundary problem
described above is the only one among those referring to
physical situations, real or idealized, that can be solved
exactly (16). This means that, in all other cases, we have
to resort to approximate methods of solution. Because of
this, it is of great value that we have found the dimension-
less parameter 8 to be generally much larger than unity,
which corresponds to relatively small displacements of
the moving boundary. Any problem satisfying this condi-
tion may be solved by means of a so-called perturbation
technique. Here, the first step in this procedure is to as-
sume that the etching surface stays put ir its original po-
sition, which is at y = 0, and to calculate the resulting dif-
fusion field. The idea behind this is that the field will
change only slightly when relatively minor surface dis-
placements occur. The surface-concentration gradient, in
particular, is not expected to be affected a great deal by
these minute boundary shifts. The second step in the per-
turbation procedure is the substitution of the surface-
concentration gradient in [8]. Integrating the resulting
equation, we obtain a good approximation to the surface
displacement. This procedure may be continued to obtain
ever better approximations. However, for all practical
purposes, one may leave it after these first two steps, par-
ticularly when @ is as large as, or larger than, say, 100. The
power of the method is clearly demonstrated in the case
of two-dimensional problems, examples of which will be
considered next.

Two-Dimensional Model

Etching in a stagnant medium.—It is the purpose of
this section to show how the perturbation technique may

c/ct

-0.8 00 0

5 10 15
yAD)" /2
Fig. 5. Sketch showing normalized (c/c®) concentration profiles as
functions of the distance from the initial position of the interface (y)
rendered di less by of the diffusion length (Dt)!%. Pic-
ture shows that the ratio of the etching depth and the diffusion-layer
thickness becomes smaller and smaller as 3 increases.
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Table I. 8 values for some typical etching systems
Rate-determining
Solid Etchant Species Concentration m B Reference
GaAs K. Fe(CN); pH 14 Fe(CN)g— 0.1M 6 2200 9
K Fe(CN); pH 12 OH- 0.01M 10 37000 9), (26)
HCL:H,0,:H,0
= 80 H,0, 0.46M 32 240 9)
= 160:4:1 H,0, 0.24M 3s 460 (9)
InP Br,y/CH,0H Br, 0.1M 3= 1000 @27
HClVacetic acid HCl 1.0M 3 100 (12)
Fe FeCly/HC1 Fes* 0.1M 2 2800 3)
Al K;Fe(CN); pH 14 Fe(CN)&~ 0.1M 3 300 (28)
SiQ, HF/NH.F HF 1.0M 6 230 (29)

@ Values assumed (not known experimentally).

be applied to a two-dimensional problem. Disregarding
convection for the moment, we apply Fick’s second law
of diffusion in two dimensions

_(2_0_ =D (B_C + 9 C)
at dx? y*?
where t is the time, and x and y constitute a Cartesian
coordinate system that will be defined presently. It is
again assumed that the etching process is fully deter-
mined by the diffusive transport of the active etching
component, the concentration of which is denoted by c.

The problem involves a semi-infinite solid etched by a
solution that fills the remaining (semi-infinite) part of
space (see Fig. 6). The surface of the solid is partly cov-
ered with a mask that prevents contact with the etchant.
This mask is assumed to be semi-infinite. Along the re-
maining part of the solid boundary, the etchant is in con-
tact with the solid. The coordinate x measures distance
along the bounding plane. At an initial time t = 0, the in-
terface is in the plane y = 0. However, owing to the etch-
ing process itself, the interface is not stationary. At later
times, it will be found somewhere below the plane y = 0.
It is the object of the mathematical model to predict the
shape of the interface at any time beyond t = 0.

It should be emphasized that the notion of “infinity” is
merely a mathematical abstraction. What is really meant
by this term is that the system observed is large in com-
parison with a length characterizing the etching process.
In a purely time-dependent diffusive system, this length
is the diffusion length (Dt)*2. For the system considered
here, a typical value of D is 10-* m¥/s. If such a purely dif-
fusive system could be maintained for the duration of the
actual etching process, which lasted, say, a thousand sec-
onds, the diffusion length would be of the order of one
millimeter. In that case, a system with a size of only a few
centimeters could be considered as infinitely large. Of
course, when convection plays a role, a different charac-
teristic length will have to be used.

We need boundary conditions in addition to the field
Eq. [186]. First, ¢ — ¢ at distances far away from the solid
boundary. The same conditions holds everywhere in y >
0 at t = 0. Since there is no chemical reaction of any kind
on the mask, the normal gradient of ¢ must be zero there,

[16]

mask

\ TY
t
x n
gch®

e

5(x,t)

e

initial position of
the interface

Fig. 6. Geometrical configuration for the etching of a semi-infinite
medium covered with a semi-infinite mask. Picture shows the tentative
shape of the interface after etching.

i.e.,, dc/dy = 0. This condition also applies at the underside
of the mask when this has been etched free. It should be
noted that, in our model, the mask is assumed to be in-
finitely thin. This is a valid idealization when etching
depths are considered that are much larger than the ac-
tual thickness of the mask.

To complete our set of boundary conditions we must
consider what happens at the interface. The interface is
represented by

y=—38x1) [17]

where 3 is a non-negative function. At any given time t >
0, this function will be different from zero in the region

(18]

where x = — x,(t) is the position at which the interface
meets the underside of the mask. Clearly, as etching pro-
ceeds, this point will move more and more to the left, i.e.,
x,(t) is also a monotonically increasing function of the
time. Next, we expect that, for any fixed value of x satis-
fying Eq. [18], the function 8 will be monotonically in-
creasing with time.

We shall consider here the simpler case of infinite reac-
tion rate k,, i.e.

c=0 at

x> — x4(t)

y =3t (18]

Clearly, the process is then diffusion controlled. The sec-
ond condition corresponds to Eq. [8]. It describes the dis-
placement of the boundary as a function of the concentra-
tion gradient. In more than one dimension, this condition
is more complicated. The relevant analysis leading up to
this condition is presented in the Appendix. Substituting
h = — 8(x, t) in Eq. [A-5], we have

dc 9%
+—£——> aty = — 6(x, 1)

L) ( ac
20
¢ dx ox [20]

Tt ey

The problem defined by Eq. [16], [19], and [20] and by
the other relevant boundary conditions mentioned in the
text was considered in (3), and an asymptotic solution
valid for 8 > 1 was derived. However, the presentation of
(3) emphasizes the applied mathematics aspects of the
problem, so that the solution may not be directly accessi-
ble to the etching world. This is why we reconsider this
problem here to emphasize the physical aspects of the
analysis. Moreover, a knowledge of this solution is indis-
pensable for a good understanding of the convective-
diffusive case to be considered in the subsection that fol-
lows. Although it will be unavoidable to use some of the
mathematics of (3), this will be kept to a minimum here.

The perturbation idea suggests that we might try to
solve the present problem by first assuming & to be zero
for all ¢t and ax > 0. The next step is then to solve the re-
sulting diffusion problem in the region with fixed bound-
aries (y > 0). Here, it is essential to realize that, during the
first perturbation step, condition [19] is prescribed on y =
0 with x > 0.
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This problem was solved in Ref. (3, 18). Because the in-
terface is kept at its original position, the solution will be
referred to as the reduced state. One of the more impor-
tant results obtained in (3) is an expression for the normal
concentration gradient at the interface, i.e.

e __© f( x2) ty=0 (x>0 [2L
5y o= '\8pr) YT @ [21]

where

1) = = Ko + [ oK) + Ky

0

(22]

The K-functions in Eq. [22] are modified Bessel func-
tions (19).

A sketch of the function f is given in Fig. 7. From this
figure, it is seen that f tends to a constant value when z >
1, i.e., when x is much larger than the diffusion length
(D)2, which is far enough to the right of the mask edge.
When the concentration gradient no longer depends upon
x, the etching surface is expected to move downwards
uniformly, i.e., as a plane surface. Using the asymptotic
form of f and substituting {21} in [20], we obtain, with
48/ox = 0

ds o.ch

Tdt  (nDp® (23]

This may be integrated, subject to the initial conditions 8
=0att =0, to give

1 2

5= —
B,n.l,:!

(Dtyr2 [24]
which is the same as Eq. [14] for large values of B. This
serves to show that etching is one-dimensional far enough
from the mask edge, as expected.

When the argument of f is not particularly large, Fig. 7
shows that the normal gradient of ¢ becomes larger, as we
approach the mask edge. However, since we are consider-
ing small downward displacements, in full agreement
with our perturbation assumptions, this will result in an
etching profile that is only slightly curved. Therefore,
88/ox < 1 along most of the etching profile. As a result we
may still approximate [20] by

25

F
150 / %0t

14+ 21c-12
%2
05+ f (80’() 12
0 ! L !
0 05 1 15 2

x (Dt)-"72

Fig. 7. Functions f (Eq. [22]) and F (Eq. [27]). These functions are
proportional to surface mass transfer (f) and surface displacement (F)
as predicted by the reduced state (see paragraph that includes Eq.
[21]).
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aty = [25]

to obtain a first-order displacement of the etching sur-
face. Integrating this equation, subject to 8 = 0 at ¢t = 0,
using Eq. [21], we obtain after some manipulation

_ (Dt)l,z xz
b~—% F(m) [26]
where

F(z) = 2" mi;%f— [27]

This function is also presented in Fig. 7. Once again, this
figure shows that the etching depth becomes uniform
when x > (Dt)*2. When x ~ (Dt)"2, the argument is of or-
der unity. Figure 7 and Eq. [26] show then that the etch-
ing depth is still of the order of the diffusion length di-
vided by B, rendering a shallow etching profile. On the
other hand, when the mask edge is approached so closely
that x < (Dt)"?, the argument of F is almost zero. It can be
shown that

3.4

F(z) ~ Eg—xz*“ + 1.047 214 + ... D<z<l

[28]
where « = I'(1/4)7—** ~ 0.651 is a constant that will ap-
pear more often in the present analysis (in Ref. (3) it is de-
noted by o). This shows that, sufficiently close to the
mask edge, the perturbation analysis, as we have applied
it up to this point, breaks down. Clearly, one can no
longer speak of small downward displacements of the
etching surface when, at a given position x, the down-
ward displacement & is of the same order of magnitude as
x itself. To see what values of x satisfy this condition, we
substitute x for § in Eq. [26]. Then, using Eq. [28] (leading
term only), we find

x 1 /a2~
W of the order of F (Dt) [29]
where some constants that are not essential in an order-
of-magnitude analysis have been omitted. From [29], we
conclude that the straightforward perturbation method
breaks down when

x is of the order of 8—*? (Dt)* [30]

Since the dimensionless parameter 8 is much larger than
unity, the region defined by [30] is much smaller than the
diffusion length.

To resolve this apparent difficulty, we must consider
the full problem defined by Eq. [16], [19], and [20] and the
other relevant boundary conditions in a relatively small
region around the tip of the mask, the spatial extent of
which is approximately that given by Eq. [30]. To that
end, we introduce the scaled variables

X Y

LB Dy Y B e

8
= 2,3

AR = ptpss B
which blow up the aforementioned small region. The
transformation of Eq. [31] could be considered as a math-
ematical magnifying glass. This way of looking at it is ex-
pressed pictorially in Fig. 8a and 8b. To be able to solve
the field equations within the corner region around the
tip of the mask (Fig. 8b), the original boundary condition
at “infinity,” which requires that ¢ — ¢", no longer
applies. Referring to our earlier metaphor, we might say
that the bulk of the etchant is far outside the range of the
magnifying glass (Fig. 8a). Indeed, bulk conditions are
reached at distances of at least a few diffusion lengths
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y(Dt)72 and
c—cb
- C=0onY =- AX) [36]

© X
/7k cleb-w (D)4 V2 ry?-x

e

W x(Dt)-"2

Y|

C~){\/\/X2+YZ—X

Fig. 8. The magnification of the corner region. This serves to show
how the behavior of the reduced state close to the origin {(a) deter-
mines the actual etching in the mask-edge region (b).

from the mask edge, whereas the size of the subregion is
only of the order given by Eq. [30]. The conditions at the
rim of the blown-up region are fully determined by the
behavior of the reduced state (see text preceding Eq. [21])
close to the origin (Fig. 8a). This behavior may again be
deduced from (3)

c~c"—K—\/(\/x2+y'~’ - [32]

It is interesting to note that [32] does indeed satisfy
both the boundary condition on the mask and that on the
stationary interface. Indeed, when x > 0, then ¢, as given
by Eq.[32], is zero for y = 0, which is condition [19] for & =
0. Also, dc/dy = 0 holds when x < 0 and y = 0, which is the

mask condition.

" When the coordinate transformations of Eq. [31] are
substituted in Eq. [32], it is easily seen that the field un-
der the magnifying glass, the corner region of Ref. (3), is
adequately described by the blown-up variable

C=—pw [33]
c
The proper boundary conditions for C are then

dC/aY = 0 (both sides of the mask) [34]

C—>K\/(\/X2+Y2—X) when X2+ Y2 > 1  [35]

Further, the displacement of the moving boundary, 4, is
now governed by the full Eq. [20]. This equation must be
recast in terms of the scaled variables X, Y, C, and A using
Eq. [31] and [33]
dA aC
A-X ax 2 (
Although the boundary conditions are now far more
complicated than those for the reduced problem, the gov-
erning differential equation is simpler than Eq. [16]. It is
shown in (3) that the concentration field is quasi station-
ary in the corner region. It is governed by Laplace’s equa-
tion

aC dA)

9C ) nY=—a [37
5 " ox ax) o [37]

#C  &C
T+ =9 3
axr | oY? [38]

Consequently, the problem defined by Eq. [34]{38] does
not depend explicitly on time. Moreover, it does not con-
tain any dimensionless physical parameters. The depen-
dence upon B, in particular, has been scaled out. There-
fore, the solution for the free boundary, Y = — A, when
found, applies to all relevant cases.

It is shown in (3) how a unique numerical solution for A
may be obtained. The shape of the interface is given in
Fig. 9. Furthermore, a pointwise representation is given in
Table II. Of course, this solution for the interface applies
in the magnified region. When the distance from the
mask edge is no longer small in comparison with the dif-
fusion length, Eq. [26] should be used. We refer to (3) for a
method by which a smooth transfer from one solution to
the other can be realized.

Some further important results are quoted here directly
from (3). Denoting the lowest position of the etching
prOﬁIe by (-’L‘, y) = (xhu!gea ybulge)a we have

Lhutge ™ 0-370(Dt)1'218_“3; Ybuige ~ 0-720(Dt)1'2B_2'3 [39]

Further, the underetching (see Fig. 6 and Eq. [18]) is given
by
x, ~ 0.543(Dt)28-2? [40]

From Eq. [39] and [40], we obtain the important result

etch factor — 1Yl _ 33 (41]

Lo

From the foregoing presentation it is clear that the shape
of the etched profile remains unaltered during the entire
etching process. However, as time proceeds, the profile
in the corner region grows in proportion to the square
root of the time, the magnification center being the tip of
the mask.

The influence of convection.—We shall discuss the
influence of convection in etching systems by studying a
very simple model example. First, we shall assume that
the velocity field in the liquid is given, i.e., that it exists

!

-05

Y = ya)t)*'/zﬁZ/}

X = x(hy) %g2s3

—

as 1 15

ko

25

Fig. 9. The shape of the etch-
ing profile in the mask-edge re-
gion, as predicted by theory.
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Table L. Position of the interface in purely time-dependent diffusion

X = x(Dt)-1* g6 Y = y(Dy)-1# gee

—0.543 0
-0.535 —0.104
—-0.508 —-0.206
—0.466 -0.303
—-0.407 —-0.395
—-0.333 -0.479
-0.242 —-0.551
—0.139 —-0.613
—-0.022 ~-0.662
0.106 —0.696
0.244 -0.715
0.391 -0.719
0.544 -0.712
0.703 —-0.693
0.867 —-0.665
1.036 -0.635
1.209 —-0.602
1.389 —0.568
1.576 -0.536
1.769 -0.507
1.971 —0.480
2.40 -0.431
2.87 -0.391
3.37 —0.359
3.91 —-0.330
4.50 —0.306
6.12 —-0.259
8.00 -0.224
10.12 ~0.198
12.50 -0.175
15.12 —-0.160
18.0 —0.144
larger X -0.614 X-1#

independently of the etching process itself. This is a valid
assumption when the etchant is stirred on purpose, as in
jet or spray etching. On the other hand, even when very
strict precautions are taken to ensure that the etchant re-
mains stationary, etching itself induces stirring. Tempera-
ture or concentration differences caused by the etching
process lead to density gradients, and these in turn give
rise to the phenomenon of natural convection. Such
flows have been studied in electrochemistry (20), crystal
growth (21), and centrifugal etching (22). We shall not con-
sider these more complicated situations here.

A further simplification is offered by the fact that the
diffusive processes that tend to equalize existing velocity
gradients are much stronger than those smoothing out
concentration differences. As a result, concentration pro-
files are much sharper and more restricted in width than
those of the velocity. To put it differently, if the full varia-
tion of the concentration from its bulk value at the etch-
ing surface (which is zero in this paper) occurs over a dis-
tance §,, the concentration boundary-layer thickness, then
the velocity variations across this layer will only be mini-
mal. For instance, at the solid wall (mask or interface), the
velocity will have to be zero. Far enough from the wall,
the velocity assumes a bulk value that is determined by
the stirring conditions. However, at a distance 8, from the
wall, the velocity will have reached a level that is only a
fraction of that of the bulk. As a result, a linearized veloc-
ity profile may be assumed to exist over the range &,
from the wall into the etchant. This is the so-called
Levéque approximation, which has been discussed exten-
sively in the literature (23).

Simplifying our intended model still further, we shall
assume that this linearized velocity profile is virtually in-
dependent of the coordinate that measures distance along
the solid boundary. Referring to Fig. 8, this means a ve-
locity field independent of the coordinate x. As long as
the etching surface remains at its original position (y = 0),
one can easily imagine such a velocity field to exist over
some length, both toward the negative and the positive
sides of the tip of the mask (x = 0, y = 0). However, when
a profile has been etched, it is obvious that a complicated
flow field will be set up in the underetched region (Fig.
10). It is our intention to show that, even in these circum-
stances, the linearized velocity model may sometimes be
applied.
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oncoming

uniform-shear flow

Fig. 10. A tentative view of the flow behavior of the etchant in the

mask-edge region when a uniform shear flow is presented from the
left. The radius a is defined by Eq. [56].

Under the simplified assumptions spelled out above,
the transport of the active etching component is governed
by

2 aZ
ua—c=D<aC_+ c,) [42]
ox dx? oYy’
where
U = U g [43]

is the linearized version of the velocity component in the
x-direction. We use the geometry of Fig. 6. In Eq. [43], u,
is the maximum velocity occurring in the system. Further
8, is a measure of the thickness of the layer across which
the velocity changes from zero to this maximum value
(Fig. 11). Of course, Eqg. [42] is used only when y =< §, i.e.,
within the concentration boundary layer. We have as-
sumed that §./8, < 1. In fact, it is shown in the literature
(23, 24) that

8./8, ~ Sc—13 [44]
where the Schmidt number Sc is given by
Sc = v/D [45]

Since the kinematic viscosity v of a typical aqueous
etchant is ~10-% m%s, we have Sc ~ 10%, so that the ratio
[44] is indeed small.

As explained in (23), Eq. [44] is, strictly speaking, valid
only when the velocity field and the concentration field
have developed over the same distance, i.e., starting from
the same point. In general, and certainly in the case we
consider here, the velocity field is already fully devel-
oped in the region around the mask edge. If, as we shall
assume, the direction of flow is from left to the right in
Fig. 8, a fully developed velocity profile is presented at x

= 0, whereas the concentration field only just begins

on

V4
y

Fig. 11. Sketch showing the velocity profile along the etching sur-
face (u) as a function of the normal coordinate (y). In the case de-
picted, the etching depth (8) is much shallower than the thickness of
the convection-diffusion layer (8.), which in its turn is always much
thinner than the velocity layer (3,).
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there. Under such conditions the ratio 5.8, may be much
smaller than that given by Eq. [44].

The etching problem to be solved now is that governed
by Eq. [42] and all the boundary conditions defined in
the previous section. Of course, owing to the fact that the
etching boundary moves, there is a time-dependent ele-
ment in this problem that requires the addition of the
term dc/ot to the left side of [42]. However, since the
motion of the boundary is very slow in comparison with
the velocity of the etchant, this effect corresponds to a
negligible quasi-stationary contribution. We shall again
solve this problem with a perturbation technique, assum-
ing that the concentration field may be calculated with
the interface remaining at its original position in the
plane y = 0 (Fig. 6). This is again referred to as the re-
duced state.

Introducing a characteristic length | based upon the
physical parameters of Eq. [42]

= ( ’f) [46]

we may define dimensionless variables as follows
X=xz/1,Y = y/l,A=81C=c/c" [47]

The reduced problem is now formulated by the equation

Y ===+ — [48]
aX X3 aY?
with the boundary conditions
ac U
atY =0
C=0 if X>0 [50]

and

C—~1 at infinity [51]

The solution to the problem defined by Eq. [48]-[51]
can be found in (25). A particularly useful result that can
be obtained from that reference is an expression for the
concentration gradient at the boundary Y = 0 for X > 0. In
that paper this gradient is denoted by the function g(X).
When we substitute this function in [20], remembering
that for small displacements of the moving boundary, the
term dc/dy = -1 §C/9X = cbl-! q(X) dominates the right
side, we may use Eq. [25] instead, and an expression for &
follows immediately

b,
6= = ot [52]
This shows that the etch rate is directly proportional to
the time, as it should when fully developed conditions
prevail.

It is also shown in (25) that q(X) becomes unbounded
when X tends to zero, i.e., when the immediate neighbor-
hood of the tip of the mask is approached. The behavior
of g(X) for small values of X reads

gX) ~ 0.44 X1 [53]

As before, it will be reasonable to say that the straight-
forward perturbation procedure breaks down when 3 be-
comes of the same order of magnitude as x, i.e.

1 Dt

E——— 54
T [54]
where we have v-ad Eq. [13], [47], [52], and [53]. Conse-
quently, the dimensions of the corner region are defined
by

X of the order of

X ofthe order of B-23(Dtysl—*%L A [55]
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In the dimensional plane, this defines a region with a ra-
dius of the order of (see Fig. 10)

(x? + Yy ~ lAg a [56]

Although Eq. [55] is quite similar to Eq. [30], there is an
important difference between the analysis of this section
and that of the previous one. In the foregoing section, the
concentration field was diffusive; its spatial extent was
determined by the diffusion length everywhere and at all
times. Therefore, and since B8 » 1, the region defined by
[30], as expressed by the transformation of Eq. [31], is al-
ways a small subregion within the whole field (Fig. 8).
The problem defined by Eq. [48]{51], on the other hand,
refers to a spatial domain that does not grow in time,
sinece steady-state conditions have been assumed from the
outset. Within such a stationary field, the subregion sug-
gested by [55] or [56] may indeed be small at first. How-
ever, as soon as A = 1, i.e., when Dt is of the order of BI?,
one may no longer speak of a subregion. Once again refer-
ring to our earlier metaphor: the magnifying glass loses
its power after some time.

Assuming that the etching time is still small enough for
Eq. [55] to define a proper subregion, we proceed by in-
troducing the transformation

X, ¥, 5(0) = eA~'(X, ¥, AX) [57]
which blows up the (X, Y) domain along the same lines as
shown in Fig. 8. The dimensionless numerical constant e

will be determined in the course of the analysis. Next, it
can be shown from the analysis of (25) that

T~ 0.62 \/(\/Y-’ +Y:-X) [58]
when X, + (Y, < 1 (the constant 0.62 ~ 0.44 \/2). Equa-
tions [35], [67], and [58] suggest that we introduce

K e

&R, T) = 1AV, Y

X, 062 € A~ CX, Y) [59]

in addition to [57]. Substituting Eq. [57] and [59] in Eq.

[48]-[50] and [58], we obtain the following set of equations
and boundary conditions

#C  #C - 9C
AR Ay [60]
X2 Y2 aX
oC .
——— =0 on the mask (both sides) [61]
oY
€=0 on Y=-A [62]

and

c'—>K\/(\/x2+Y—’~)E) when X2+ ¥V >1 [63]

Moreover, transforming Eq. [20] with the aid of Eq. [47]
and [57], we may derive

. - dA 3062 _ /oC 4C dA

A—X——~—=———€‘“<—~+“~— =

dx 2k Y X dX

The availability of the free constant € in Eq. [64] enables

us to render the coefficient of the right side of [64] equal
to 2, as in Eq. [37]

) sy

( il )g 125

e=[— ) =

3(0.62) ’ (65]
The system of equations and boundary conditions

[60]-[64] is almost the same as that of Eq. [34]-[38]. The

only difference still remaining is that between Eq. [38]

and [60]. However, as long as A < 1,i.e., when

Dt < gi [66]

the right side of [60] may be disregarded, and a complete
analogy between the analysis of the present and the previ-
ous sections follows with regard to the behavior near the
mask edge.
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The results of the present analysis may now be summa-
rized. As long as [66] is valid, the etching profile in the
corner region around the mask edge will be approxi-
mately that given by Fig. 9 and Table II, where the wrig-
gled variables of this section may be identified with the
variables denoted by capitals in the previous section. The
etch factor will be 1.33, as before. Furthermore, the posi-
tion of the bulge will be at

Tyuge = 0.296(D1)31=13B=25;
Youtge = —0A576(Dt)‘-"3i—"3ﬁ"‘3'3 [67]

Of course, outside the mask-edge region, the etching
depth determined in the present section [52] is totally dif-
ferent from that given by [26] for a purely diffusive field.
Whereas, in purely diffusive transport, the bulge near the
tip of the mask will never disappear, since the ratio of
etching depths near the mask and far away from it is al-
ways of the order of 8", this special behavior of the etch-
ing profile will become less and less marked as time pro-
ceeds in the case of convective-diffusive transport.
Indeed, taking the ratio of yyu. (Eq. [67]) and & (Eq. [52]),
we obtain the following order-of-magnitude expression

|ybulge|

_ ~ [23R13 Dt)y—13 68
8(X order unity) AHDY [68]

As long as Eq. [66] is valid, this ratio is large, which
shows that a bulge will be seen near the mask edge. At
longer times, the mask-edge region merges more and
more with the field elsewhere, and the complete problem
has to be solved. This means that the convection term can
then no longer be disregarded in the mask region. The
complete Navier-Stokes system must then be tackled to
calculate the influence of convection.

Conclusions

In this paper, we have shown that it is possible to de-
vise simple mathematical models which predict certain
etching results that have been observed in practice. On
the basis of a straightforward one-dimensional model, we
have demonstrated that a dimensionless parameter 8 (Eq.
[13] and [15]) determines particular etching processes to a
large extent. We estimated the value of 8 for a number of
example systems and found this parameter to be always
much larger than unity. From this, we deduced that the
displacement of the etching boundary is relatively slow.
This fact suggested that etching models can be solved by
so-called perturbation techniques, by which one may cal-
. culate the concentration field assuming the interface to
remain fixed at its original position. From this, we were
able to obtain a first-order displacement of the interface.

The perturbation technique was then applied to a math-
ematical model that we devised for the etching of a semi-
infinite solid that was partly covered with a mask. Sev-
eral observations reported in the literature (6, 7, 8) show
that etch rates may be much higher near the resist edge
than further away from this edge. In all cases, these pro-
cesses were diffusion-controlled. Although it was sug-
gested at first that surface diffusion of adsorbed ions
along the mask might be responsible, a rough model (7)
showed that enhanced bulk diffusion near the edge must
be the true cause. This observation is now confirmed by
our more sophisticated time-dependent model, which ac-
tually leads to a description of the resulting curved inter-
face. This calculated interface (Fig. 9 and Table II) reveals
a relatively deep trough in the immediate vicinity of the
resist edge.

When convection is totally absent, the etch rate near the
mask edge is larger than that far away from the edge by a
factor that is of the order of 8“*. Therefore, although the
etch rate decreases as 8 increases, the ratio of etch rates
increases with 8. Therefore, if one wishes to etch out a cir-
cular area from a thin substirate, one might save active
etching component by increasing the value of 8. This
could be achieved by lowering the concentration c. Of
course, one will have to pay for this by having to wait
longer for the final result. It should be realized that this
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observation is valid only as long as the diffusion length is
small in comparison with the diameter of the region to be
etched out.

Since convection can hardly ever be suppressed in
practice — on the contrary, it is almost invariably a domi-
nant factor — we investigated its influence on etching
near the mask edge. Again, we found a bulging shape of
the interface near the mask edge. Moreover, for suffi-
ciently shallow etching results, the shape was shown to
be exactly the same as that derived for the case of a quies-
cent etchant. This is of importance experimentally. It
shows that slight convection levels can be allowed that all
lead to a single definite result, viz., that observed in a sta-
tionary etchant.

Although a qualitative agreement has now been shown
to exist between actual experimental observations and
our mathematical model, it still remains to be seen
whether the predicted shape (Fig. 9) can be confirmed
experimentally. This will be the subject of our next paper
9).

Manuscript received April 22, 1985.
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APPENDIX
The Moving Boundary Condition in More Than One Dimension

Let us consider Fig. A-1, which shows two correspond-
ing contiguous parts of the moving boundary at the times
t and t + At, respectively, where At is assumed to be a
small time increment. The moving boundary is denoted
by y = h(x, t). According to the sketch as given in the
figure, the etchant is to be found above the moving
boundary, and the solid below it. If the velocity of the
moving boundary in the direction of the inward normal n
is denoted by v,, the moving boundary condition in its
simplest form relates this velocity to the normal gradient
of ¢ as follows

Jac
Uy = = O —

on [A-1]

The minus sign must be chosen, since we have assumed
that ¢ is the concentration of the active etching compo-
nent. Indeed, the moving boundary being a sink with re-
spect to the active component, the concentration will be
lowest there. As a result, the gradient will be positive in
the direction of negative n.

By considering the tangent of the moving boundary at
A (see Fig. A-1), we may express the normal gradient in
terms of the derivative with respect to x and y as follows

ac ac dx Jc 0y dc . Jac
am  ex on  dy on ——a;snub—@cosqs [A-2]
with
tan ¢ oh A-3
an ¢ = — -
ax [ ]

The length of section AB is approximately equal to
—(oh/at)At. Hence, the normal velocity of the moving
boundary is given by

h{x,t)

hix,t+At)

Fig. A-1. Sketch to be used in the derivation of the etching bound-
ary condition of Eq. [A-10].
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o ~ AC _ ABcos¢ _  oh cos b
AL At at

From Eq. [A-1]-{A-4], we may finally deduce

[A-4]

_ g ah) t y=hx1 [AS5]
oy ox ax/) U= hiz, )

—_—= -0

dh (ac

at

as the moving boundary condition in two dimensions.
Considering the problem in three dimensions, i.e., as-

suming y = h(x, z, t), where z is the coordinate normal to

both x and y, we may derive similarly

dc oh
ax ox
dc oh

—— ) at = h(zx, z, t)
0z az> v (

dh ( ac
—_— = -, | —
ot oy

[A-6]
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Etching Profiles at Resist Edges

Il. Experimental Confirmation of Models Using GaAs

P. H. L. Notten, J. J. Kelly, and H. K. Kuiken
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

ABSTRACT

Etching experiments have been carried out with GaAs in order to check mathematical models developed for diffu-
sion-controlled dissolution at resist edges. Both electroless and chemical etchants were used, and their chemistry is
briefly considered. An interesting method of controlling the electroless dissolution rate of GaAs by means of a diffu-
sion-controlled oxidation reaction is reported. The excellent agreement between calculated and measured etched
profiles demonstrates the validity of the mathematical model. The influence of natural convection and of convection
induced by gas evolution is reported, and the results are compared with theory.

In Part I (1) a mathematical model was presented to de-
scribe diffusion-controlled etching at resist edges. Both
the form of the etched profiles and the characteristics of
the etching kinetics at the edges are predicted by the
model.

In the present paper we attempt to verify the model ex-
perimentally. In order to do this, we need etching systems
that meet two main requirements (1). (i) The etch rate on
all crystal planes of the solid must be determined by
mass-transport in the solution, i.e., the rate constant for
the rate-determining step of the dissolution process must
be sufficiently large to ensure a very low surface concen-
tration of the rate-determining species, even at the
slowest etching plane. (ii) The dimensionless etching pa-
rameter B, introduced in Part I to describe the dissolution
process, must be large (=100).

Etching methods not involving an external current or
voltage source can be divided into two classes: electroless
and chemical (2). Electroless etching occurs at a well-
defined mixed potential that is determined by two poten-
tial-dependent electrochemical reactions; at this poten-

tial, the rates of dissolution of the solid and reduction of
the oxidizing agent in the solution are equal. Chemical
dissolution is observed with bifunctional molecules that
are capable of forming new bonds with two neighboring
surface atoms simultaneously. The etch rate, in this case,
does not depend on the surface concentration of charge
carriers in the solid and is not influenced by an exter-
nally applied potential (3).

As a model system in the present work, the etching of
GaAs, which is very important for device applications,
was considered. This material can be dissolved with both
electroless and chemical etchants. In order to decide on
how to comply with the requirements of the mathemat-
ical model, we examined the chemistry of possible etch-
ing systems. Apart from the two requirements described
above, the precise etching mechanism is important in
determining the etched profiles. For this reason, we first
consider briefly the mechanism of electroless and chemi-
cal dissolution of GaAs. Results obtained experimentally
with suitable etchants are then described and compared
with those predicted by theory.



