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ness of the tungsten layer deposited on the exposed sili- 
con. 

Auger analysis o f a  phosphoric-acid-treated, thermally 
grown oxide failed to reveal phosphorus remaining on the 
surface; the detection limit was below about 10 TM cm -~. 
Similarly, no phosphorus was detected on an unoxidized, 
phosphoric-acid-treated silicon surface. 

Summary 
Selective tungsten films have been deposited using dif- 

ferent insulators important in IC technology to inhibit nu- 
cleation. Nuclei form more readily on nitrogen-containing 
films than on silicon-dioxide films. The presence of 
phosphorus on the surface tends to inhibit nucleation. 
The phosphorus can be added either by a surface treat- 
ment subsequent to insulator formation or during deposi- 
tion of the insulator; however, the inhibiting effect is 
greater in- the latter case. These results demonstrate' that 
proper choice of an insulator and its surface treatment 
immediately before tungsten deposition can allow thicker 
selective tungsten layers to be formed without nucleation 
on the surrounding insulating surfaces. 
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Etching Profiles at Resist Edges 

I. Mathematical Models for Diffusion-Controlled Cases 
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ABSTRACT 

Mathematical models are presented that describe diffusion-controlled etching near resist edges. To understand the 
role of the various physical parameters, a simple maskless one-dimensional model is studied first. The study of a purely 
diffusion-contrnlled case suggests that mathematical models for etching problems may be solved by means of perturba- 
tion techniques that assume relatively small displacements of the etching surface. The perturbation procedure is then 
applied to a two-dimensional problem that involves a mask. Assuming a stationary etchant and diffusion control, it is 
shown that etch rates are largest close to the resist edge. As a result, the etching profile reveals a bulging shape near the 
mask edge, confirming earlier observations reported in the literature. A case with convection is considered next. It is 
shown that the very same bulge that resulted from the analysis of the stationary case may also appear when convection 
plays a role. The perturbation l~rocedure depends upon an important dimensionless parameter ft. Tabulated values of 
this parameter for various etching systems are presented. 

Etching of special forms and profiles using resist pat- 
terns is often of essential importance in device technol- 
ogy. Two typical examples are shown in Fig. 1. Forms 
with symmetrical rounded edges or V-shaped grooves are 
widely used in laser applications. Since the dimensions of 
such structures are on a micron scale, the accuracy and 
reproducibility of the etched profiles are critical. 

Very often, differences in etching kinetics can be 
exploited to achieve specific effects. Etching results de- 
pend markedly on whether the dissolution reaction is 
surface(kinetically)-controlled or diffusion-controlled. For 
example, kinetical]y controlled etching of anisotropic ma- 
terial frequently gives a faceted surface structure (Fig. 
l(a)), characteristic of the crystal properties of the mate- 
rial (1, 2). This results from differences in etch rate of the 
various crystal planes. The geometric aspects of this kind 
of etching can be described by Wulff plots (1). 

In diffusion-controlled etching, on the other hand, the 
dissolution rate is determined by transport of active etch- 
ing components  to the solid surface (or of reaction prod- 
ucts away from the surface). In the limiting case, the sur- 
face reaction proceeds infinitely fast, irrespective of the 
crystallographic orientation. The amount  of active mate- 
rial reaching (or leaving) the surface per unit t ime obvi- 
ously determines the etch rate in this case. Etching might, 

therefore, be expected to be isotropic (2), even in the case 
of anisotropic materials (Fig. l(b)). 

For kinetically controlled processes, the shape of the 
etched surface can, in principle, be deduced directly from 
kinetic and geometric considerations. For diffusion-con- 
trolled dissolution, this is only possible on the basis of a 
complete description of the concentration field in the 
etching solution. In the context of etching, such multidi- 
mensional concentration fields have only recently re- 
ceived any attention (3, 4, 5). However, the form of etched 
structures can only be studied theoretically by consider- 
ing models that refer to more than one dimension. This is 
particularly evident in the case of mask etching, when 
part of the surface is protected by a resist layer. In the vi- 
cinity of the mask edge, the concentration field will be at 
least two-dimensional, as will be the shape of the etched 
surface. 

In this paper, we present a mathematical model for dif- 
fusion-controlled etching of a semi-infinite solid partly 
covered by a protecting mask. It is known that, in such a 
case, the etch rate near the mask edge is considerably en- 
hanced (6, 7, 8). While the role of mass transport in solu- 
tion has been recognized, no previous attempt has been 
made to predict such etched profiles theoretically. This 
is probably due, in part, to the mathematical complexity 
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Fig. 1. Examples of kinetically controlled (a) and diffuslon-con- 
trolled (b) etching of the same material (GaAs). 

of the problem.  To in t roduce  the  physical  parameters  that  
play a role in the  mathemat ica l  descr ipt ion of  e tch ing  pro- 
cesses, we  first use a s imple  one-d imens iona l  diffusion 
mode l  based on the chemical  e tch ing  of GaAs. In the  sub- 
sequen t  two-d imens iona l  mathemat ica l  t reatment ,  the in- 
f luence of  bo th  diffusion and convec t ion  on the e tched 
profile is considered.  

In  the second paper  of this series (9), exper imenta l  re- 
sults for the  e tch ing  of  III-V materials  will be p resen ted  
and compared  with those  pred ic ted  by theory. 

Chemical  Etching 

As a s imple  example ,  we al low a III-V mater ia l  AB to 
react  chemica l ly  wi th  a molecu le  X2 f rom aqueous  solu- 
t ion in a series of  consecu t ive  steps (10) 

X X 

\ A - - B  + X2 ~ [1] 
/ \ / \ 

X X \~ ~/ fast 
+ 2X2 --* AX3 + BX3 [2] 

/ \ (in solution) 

We assume that  the  breaking  of  the  first A-B bond  at the 
surface (step 1) is ra te -de termining  (10). In chemica l  disso- 
lution, the  rate constant  k~ does not  depend  on the electric 
field of  the  space-charge layer in the  solid or of the 
double- layer  in solution. Consequent ly ,  the  chemical  e tch  
rate is not  changed  if  an externa l  potent ia l  is appl ied to 
the  solid (10, 12). The  va lue  of  k~ can, o f  course,  depend  on 
crystal lographic orientat ion for anisotropic  materials.  The 
d issolu t ion  products ,  AX3 and BX~, may  be subsequen t ly  
hydro lyzed  in solution. F r o m  react ions [1] and [2], it is 
clear that  the  rate j~ at wh ich  the solid dissolves  depends  
on the  concen t ra t ion  of  X2 at the solid surface 

j~ = ksc.~% [3] 

Fo r  the  chemica l  d issolut ion of  III-V materials,  the  mode l  
sys tem in the  p resen t  work, b i funct ional  molecules  are re- 
qu i red  as act ive  e tch ing  agent: Br2, I2, and H~O, have been  
used  for GaAs (10, 11, 13), and HC1 for I n P  (12). 

One-Dimensiona l  Model  

In  this section, we develop a one-d imens iona l  mathe-  
mat ical  mode l  for an e tch ing  process  such  as that  de- 
scr ibed above.  In order  to emphas ize  the  influence of the 
var ious  phys ica l  parameters ,  the  e t chan t  is first a s sumed  
to be stationary, i.e., convect ion  effects m'e disregarded.  
Of  course,  in a real e tching process,  where  one considers  
diffusive t ranspor t  th rough a l iquid,  convect ion  can 
hardly  ever  be left out  of considerat ion.  As is shown in 
(14), convec t ion  is negl igible  only dur ing  the very  first 
s tages of  the  process,  w h e n  the  diffusion layer is still very  
thin. 

Convect ion  effects considerably compl ica te  the  mathe-  
mat ical  mode l ing  of  e tch ing  processes.  Indeed,  any rele- 
vant  mode l  will have  to be at least  two-dimensional .  

These  two-d imens iona l  models  will  be considered later. 
Therefore,  the  resul ts  obta ined in this sect ion should be 
seen as the  necessary  initial steps toward  more  sophisti-  
cated models .  

F igure  2 shows a one-d imens iona l  con t inuum that  is 
part ly occupied  by the  solid (AB) to be etched,  the re- 
main ing  part  be ing filled with e tch ing  l iquid.  The contin- 
u u m  is measu red  by the  coordinate  y, wh ich  assumes  the  
va lue  zero at the initial (t = 0) posi t ion of  the  interface. At  
any subsequen t  t ime, the  locat ion of  the  interface is de- 
noted by y = - & Assuming ,  as we did in the  previous  
section, that  it is sufficient to cons ider  the  diffusion of  

only one species (X2), the  concent ra t ion  of  wh ich  will  be 
deno ted  by c (moYm3), we apply  Fick ' s  second law of dif- 
fus ion in the  region y > - 

c~C ~ZC 
- D - -  (t/>0, v > - 6 )  [4] 

0t Oy-' 

where  t is the t ime  and D (m-'/s) is the  diffusion coeffi- 
cient. The  initial condi t ion  is 

c =  c ~ , 6 =  0 a t t  = 0 [5] 

the  first of the  two condi t ions  prevai l ing for all y /> 0. 
Subsequen t ly ,  the bulk concent ra t ion  d'  will be ap- 
p roached  at a sufficiently large dis tance  f rom the inter- 
face, i.e. 

c ~ c '  w h e n  y ~ oo (t > 0) [6] 

The rate of  the  surface reaction,  as descr ibed  by Eq. [3], 
mus t  be equal  to the  flux of the act ive e tch ing  compo-  
nent  at the  surface, i.e. 

ac 
D - - =  k~c a t y  = - 8(0 (t > 0) [7] 

Oy 

Further ,  s ince - d~/dt is the  inward-di rec ted  veloci ty  at 
which  the  interface proceeds  into the  solid, a s imple  mass  
balance shows that  

d~ Oc 
dt = O%~y a t y =  - 6  ( t > 0 )  [8] 

where  o-e is g iven  by 

DMs 
~e -- [9] 

mPs 

Here, M~ is the molecular weight of the solid, p~ is its den- 
sity, and m represents the number of mo]ecules of active 
etching eomponent required to dissolve one molecule of  
the solid. The subscript e is chosen to emphasize that we 
are deal ing with  an e tching system. 

Diffusion-controlled e tch ing . - -The  sys tem of Eq. [4]-[8] 
assumes  a s impler  form in the l imi t  of  diffusion-con- 
trolled etching.  In that  case, the  surface react ion can be 
t hough t  to occur  at an infinite rate, i.e., k~ = oo. The condi-  
t ion of  Eq.  [7] can then  be rep laced  by 

c =  0 a t y =  - 8 ( t > 0 )  [10] 

initial position 
of interface 

etching surface 

Fig. 2. Geometry for one-dimensional etching. Shaded region: sub- 
strata or solid. Case depicted refers to a case where e slice of thick- 
ness 6 has been etched away. 



V o l .  133,  N o .  6 E T C H I N G  P R O F I L E S  1219 

The p rob lem defined by Eq. [4]-[6], [8], and [10] is wel l  
k n o w n  in appl ied  mathemat ics  l i terature.  It was first for- 
mula ted  in connec t ion  wi th  the  mel t ing  of  ice. It  be longs  
to the  so-called class of  Stefan problems,  n a m e d  after one  
of  the  first invest igators  of the  field (15, 16). The  solut ion 
can be wri t ten  as follows 

c = c b e - , 2dp  e-"-'dp [11] 
--3'  ~ - - 3 "  

where  ~/is a cons tan t  that  is impl ic i t ly  g iven by 

f ~ 1 [12] 
27e 3̀~ e -p~ dp  - fi 

7 

and where  

D 
f l  - [13] 

O'e cb 

This  d imens ion less  parameter  fl was first in t roduced  in 
connec t ion  wi th  e tch ing  in Ref. (3). F igure  3 shows ~ as a 
funct ion of  ft. 

F r o m  the presen ta t ion  of  the  solut ion as an in tegra l  [11] 
wi th  the  coord ina te  y appear ing  in the  upper  bound,  it 
fol lows that  the  posi t ion of  the  mov ing  interface (y = - 6) 
is obta ined  by equa t ing  upper  and lower  bounds.  In  that  
case, Eq.  [11] a s sumes  the  va lue  zero, as it should accord- 
ing to Eq. [10]. This yields 

6 = 27(Dt) ',2 [14] 

f rom which  it is seen that  the  interface d i sp lacement  is di- 
rect ly propor t iona l  to the  square  root  of  the  time. The  ve- 
locity at wh ich  the  interface moves  is defined by [8] and 
is inverse ly  propor t ional  to the  square  root of the t ime. 
This  cor responds  to the  Cottrel l  equa t ion  (17) for cur ren t  
t rans ients  in e lec t rochemica l  processes .  F igure  4 shows,  
fo r  a special  case, how the  concen t ra t ion  profile changes  
wi th  t ime. F igure  5 presents  the  d e p e n d e n c e  of  the  con- 
c~ntrat ion profile on fl, as expres sed  in d imens ion less  
coordinates .  

The  d imens ion less  pa ramete r  B def ined by Eq. [13] ap- 
pears to be  impor tan t  in the  ma thema t i ca l  descr ipt ion of  
e tch ing  processes .  Referr ing to Eq. [9], we find that  fl 
may  be wr i t ten  as fol lows 

f l _  mps [15] 
cb M~ 

Once the  essent ial  chemica l  or e lec t rochemica l  react ion 
de te rmin ing  a par t icular  e tch ing  process  is known,  one 
may  calculate  /~ f rom the  k n o w n  va lues  of the physical  
quant i t ies  that  appear  on the  r ight -hand side of [15]. We 
have  done  so for a few wel l -known e tching systems, bo th  
chemica l  and electroless.  The  resul ts  are l is ted in Table  I. 
F r o m  the  values  col lec ted  in this table, it fol lows that  B is 
usual ly  a ve ry  large parameter .  

A useful  resul t  fol lows w h e n  B is large. Indeed,  f rom 
Fig. 3, the  pa rame te r  ~ is then  seen to be  of  the  order  of  
fl-1. S ince  this is the  case, Eq. [14] shows that  the  dis- 

1 2 3 

Iog~ 

Fig. 3. Etching depth parameter "y (Eq. [14]) as a function of the 
etching parameter fl (Eq. [13] and [15]). (Showing the product ~/fl 
produces a better picture than T vs. ft.) 

ti=1 s 

D-- l O- gm2 /s 

f i2  

. . . . . .  ~o ,~ . . . . . . .  
yO~rn) 

Fig. 4. Sketch showing how the concentration profile develops as 
the etching boundary moves inwards. The various stages of the solid 
are shown symbolically using different shadings and heights. 

placement of the moving boundary is small in compari- 

son with the extent of the diffusion field (Fig. 5), as ex- 

pressed by the diffusion length (Dt)'"-'. 

Perturbation method.--The moving boundary problem 

described above is the only one among those referring to 

physical situations, real or idealized, that can be solved 

exactly (16). This means that, in all other cases, we have 

to resort to approximate methods of solution. Because of 

this, it is of great value that we have found the dimension- 

less parameter fl to be generally much larger than unity, 

which corresponds to relatively small displacements of 

the moving boundary. Any problem satisfying this condi- 

tion may be solved by means of a so-called perturbation 

technique. Here, the first step in this procedure is to as- 

sume that the etching surface stays put in its original po- 

sition, which is at y = 0, and to calculate the resulting dif- 

fusion field. The idea behind this is that the field will 

change only slightly when relatively minor surface dis- 

placements occur. The surface-concentration gradient, in 

particular, is not expected to be affected a great deal by 

these minute boundary shifts. The second step in the per- 

turbation procedure is the substitution of the surface- 

concentration gradient in [8]. Integrating the resulting 

equation, we obtain a good approximation to the surface 

displacement. This procedure may be continued to obtain 

ever better approximations. However, for all practical 

purposes, one may leave it after these first two steps, par- 

ticularly when fl is as large as, or larger than, say, i00. The 

power of the method is clearly demonstrated in the case 

of two-dimensional problems, examples of which will be 

considered next. 

Two-Dimens iona l  Model  

Et ch i ng  in  a s t a g n a n t  m e d i u m . - - - I t  is the purpose  of  
this sect ion to show h o w  the  per tu rba t ion  t echn ique  may  

- 0 5  O0 0 5  10 15 

y/(D. t)~/2 /2  

Fig. 5. Sketch showing normalized (c/c b) concentration profiles as 
functions of the distance from the initial position of the interface (y) 
rendered dimensionless by means of the diffusion length (Dr) '~2. Pic- 
ture shows that the ratio of the etching depth and the diffusion-layer 
thickness becomes smaller and smaller as fl increases. 
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Table I. f l  values for some typical etching systems 

Rate-determining 
Solid Etchant Species Concentration m fl Reference 

GaAs K3Fe(CN)s pH 14 Fe(CN)63- 0.1M 6 2200 (9) 
K3Fe(CN)6 pH 12 OH- 0.01M 10 37000 (9), (26) 

HCl:H~O2:H~O 
= 80:4:1 H202 0.46M 3 a 240 (9) 

= 160:4:1 H202 0.24M 3 a 460 (9) 

InP Br]CH3OH Br: 0.1M 3 a 1000 (27) 
HC1/acetic acid HC1 1.0M 3 100 (12) 

Fe FeC1JHC1 Fe ~§ 0.1M 2 2800 (3) 

A1 KsFe(CN)6 pH 14 Fe(CN)~ ~- 0.1M 3 300 (28) 

S i O :  HF/NH4F HF 1.0M 6 230 (29) 

a Values assumed (not known experimentally). 

be  app l i ed  to a t w o - d i m e n s i o n a l  p r o b l e m .  D i s r e g a r d i n g  
c o n v e c t i o n  for  t he  m o m e n t ,  we  app ly  F ick ' s  s e c o n d  law 
of  d i f fus ion  in  two d i m e n s i o n s  

( ~'-'c a2c t 
ac _ D .~x._~ + [16] 
at ay ~ / 

w h e r e  t is t he  t ime,  a n d  x a n d  y c o n s t i t u t e  a Car t e s i an  
c o o r d i n a t e  s y s t e m  tha t  will  be  de f ined  presen t ly .  I t  is 
aga in  a s s u m e d  t h a t  t he  e t ch i ng  p roces s  is ful ly deter-  
m i n e d  by  t he  d i f fus ive  t r a n s p o r t  of  t he  ac t ive  e t ch ing  
c o m p o n e n t ,  t h e  c o n c e n t r a t i o n  of w h i c h  is d e n o t e d  by  c. 

The  p r o b l e m  invo lves  a semi- inf in i te  sol id e t c h e d  by  a 
so lu t ion  t h a t  fills t he  r e m a i n i n g  (semi- inf ini te)  pa r t  of  
space  (see Fig. 6). T he  sur face  of  the  sol id is pa r t ly  cov- 
e r ed  w i th  a m a s k  t h a t  p r e v e n t s  c o n t a c t  w i t h  the  e t chan t .  
Th i s  m a s k  is a s s u m e d  to b e  semi- inf in i te .  A long  t h e  re- 
m a i n i n g  pa r t  of  t he  sol id b o u n d a r y ,  t he  e t c h a n t  is in  con-  
tac t  w i t h  t he  solid. T he  c o o r d i n a t e  x m e a s u r e s  d i s t ance  
a long  t he  b o u n d i n g  plane .  At  an  in i t ia l  t i m e  t = 0, the  in- 
te r face  is in  t he  p l a n e  y = 0. However ,  owing  to t he  e tch-  
ing p roces s  i tself ,  t h e  in te r face  is no t  s ta t ionary .  At  l a t e r  
t imes ,  i t  wi l l  be : foUnd  s o m e w h e r e  be low t h e  p l ane  y = 0. 
I t  is t h e  ob jec t  Of t he  m a t h e m a t i c a l  m o d e l  to  p red ic t  t he  
s h a p e  of  t h e  i n t e r f ace  at  any  t i m e  b e y o n d  t = 0. 

I t  s h o u l d  be  e m p h a s i z e d  t h a t  t he  n o t i o n  of  " in f in i ty"  is 
mere ly  a m a t h e m a t i c a l  abs t rac t ion .  Wha t  is real ly m e a n t  
by  th i s  t e r m  is t h a t  t he  s y s t e m  o b s e r v e d  is large  in com-  
pa r i son  w i t h  a : l e n g t h  cha rac t e r i z ing  t h e  e t c h i n g  process .  
In  a pu re ly  t i m e - d e p e n d e n t  d i f fus ive  sys tem,  th i s  l e n g t h  
is t he  d i f fu s ion  l e n g t h  (Dt) 1'~. For  t he  s y s t e m  c o n s i d e r e d  
here ,  a typ ica l  va lue  of  D is 10 -" m2/s. I f  s u c h  a p u r e l y  dif- 
fus ive  s y s t e m  cou ld  be  m a i n t a i n e d  for t he  d u r a t i o n  of  t he  
ac tua l  e t c h i n g  process ,  w h i c h  las ted ,  say, a t h o u s a n d  sec- 
onds ,  t h e  d i f fus ion  l e n g t h  w o u l d  be  of  t h e  o rde r  of  one  
mi l l imete r .  In  t h a t  case,  a s y s t e m  w i t h  a size of on ly  a few 
c e n t i m e t e r s  cou ld  be  c o n s i d e r e d  as inf in i te ly  large. Of 
course ,  w h e n  c o n v e c t i o n  p lays  a role, a d i f f e ren t  charac-  
te r i s t ic  l e n g t h  wil l  h a v e  to be  used.  

We n e e d  b o u n d a r y  c o n d i t i o n s  in  a d d i t i o n  to the  field 
Eq.  [16]. Firs t ,  c ~ c b at  d i s t ances  far away  f rom t he  sol id 
b o u n d a r y .  T h e  s a m e  c o n d i t i o n s  h o l d s  e v e r y w h e r e  in  y > 
0 at  t = 0. S i n c e  t h e r e  is no  c h e m i c a l  r eac t i on  of any  k i n d  
on  t he  mask ,  t he  n o r m a l  g r a d i e n t  of c m u s t  b e  zero t h e r e  

mask 

Y.. x = - x o ( t ) ~ A  e,- ~ .  / . / / / /  I 
~ / /  5(x.t} 

initial position of 
the interface 

Fig. 6. Geometrical configuration for the etching of a semi-infinite 
medium covered with a semi-infinite mask. Picture shows the tentative 
shape of the interface after etching. 

i . e . ,  Oc /ay  = O. This  c o n d i t i o n  also app l ies  at  t he  u n d e r s i d e  
of  t he  m a s k  w h e n  th i s  has  b e e n  e t c h e d  free. I t  s h o u l d  be  
n o t e d  tha t ,  in  our  mode l ,  t he  m a s k  is a s s u m e d  to be  in- 
f initely th in .  Th i s  is a val id  idea l iza t ion  w h e n  e t c h i n g  
d e p t h s  are c o n s i d e r e d  t h a t  are m u c h  la rger  t h a n  the  ac- 
tua l  t h i c k n e s s  of  t he  mask .  

To c o m p l e t e  our  set  of  b o u n d a r y  c o n d i t i o n s  we m u s t  
cons ide r  w h a t  h a p p e n s  at  t he  in ter face .  The  in te r face  is 
r e p r e s e n t e d  by  

y = - 6(x, t) [17] 

w h e r e  6 is a n o n - n e g a t i v e  func t ion .  At  any  g iven  t i m e  t > 
0, th i s  f u n c t i o n  will  be  d i f fe ren t  f rom zero in the  reg ion  

x > - x0(t) [18] 

w h e r e  x = - xo ( t )  is t he  pos i t i on  at  w h i c h  t h e  in t e r f ace  
mee t s  t he  u n d e r s i d e  of t he  mask .  Clearly,  as e t c h i n g  pro- 
ceeds,  th i s  po in t  wil l  m o v e  m o r e  a n d  m o r e  to the  left, i.e., 
xo( t )  is also a m o n o t o n i c a l l y  i n c r e a s i n g  f u n c t i o n  of  t h e  
t ime.  Next ,  we  e x p e c t  tha t ,  for any  f ixed v a l u e  of  x satis- 
fy ing  Eq. [18], t he  funct ion .  5 will  be  m o n o t o n i c a l l y  in- 
c r eas ing  w i t h  t ime.  

We shal l  c o n s i d e r  he re  t he  s i m p l e r  case  of  inf in i te  reac- 
t ion  ra te  k ,  i . e .  

c = 0 at  y = - 6(x, t) [19] 

Clearly,  t h e  p roces s  is t h e n  d i f fus ion  con t ro l l ed .  The  sec- 
ond  c o n d i t i o n  c o r r e s p o n d s  to Eq. [8]. I t  desc r ibes  t h e  dis- 
p l a c e m e n t  of  t he  b o u n d a r y  as a f u n c t i o n  of  t he  concen t r a -  
t ion  g rad ien t .  In  m o r e  t h a n  one  d i m e n s i o n ,  t h i s  cond i t i on  
is more  compl i ca t ed .  The  r e l e v a n t  ana lys i s  l ead ing  up  t o  
th i s  c o n d i t i o n  is p r e s e n t e d  in t he  A p p e n d i x .  S u b s t i t u t i n g  
h = - 6(x, t) in  Eq. [A-5], we h a v e  

- ~ e  + a t  y = - ~ ( x ,  t )  [ 2 0 ]  
Ot Ox  O x  

The  p r o b l e m  def ined  by  Eq. [16], [19], a n d  [20] a n d  by  
t he  o the r  r e l e v a n t  b o u n d a r y  c o n d i t i o n s  m e n t i o n e d  in t he  
t e x t  was  c o n s i d e r e d  in  (3), a n d  a n  a s y m p t o t i c  so lu t ion  
va l id  for  fl >> 1 was  der ived .  However ,  t he  p r e s e n t a t i o n  of  
(3) e m p h a s i z e s  t he  app l i ed  m a t h e m a t i c s  a spec t s  of  the  
p r o b l e m ,  so t h a t  t he  so lu t ion  m a y  no t  be  d i rec t ly  accessi -  
b le  to the  e t c h i n g  world.  Th i s  is w h y  we r e c o n s i d e r  th i s  
p r o b l e m  he re  to e m p h a s i z e  t he  p h y s i c a l  a spec t s  of  the  
analysis .  Moreover ,  a k n o w l e d g e  of  th i s  so lu t ion  is indis-  
p e n s a b l e  for  a good  u n d e r s t a n d i n g  of  t h e  convec t ive -  
d i f fus ive  case to be  c o n s i d e r e d  in t h e  s u b s e c t i o n  t h a t  fol- 
lows. A l t h o u g h  it  will  be  u n a v o i d a b l e  to u se  some  of  t he  
m a t h e m a t i c s  of  (3), t h i s  will  b e  k e p t  to a m i n i m u m  here.  

The  p e r t u r b a t i o n  idea  sugges t s  t h a t  we m i g h t  t ry  to 
solve t he  p r e s e n t  p r o b l e m  by  first a s s u m i n g  ~ to be  zero 
for  all t a n d  x > 0. T h e  n e x t  s t ep  is t h e n  to solve t he  re- 
su l t ing  d i f fus ion  p r o b l e m  in t he  r e g i o n  w i t h  f ixed b o u n d -  
ar ies  (y > 0). Here ,  it is e s sen t i a l  to real ize  that ,  d u r i n g  t he  
first  p e r t u r b a t i o n  s tep,  c o n d i t i o n  [19] is p r e s c r i b e d  on  y = 
0 w i th  x > 0. 
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This p rob l em was so lved  in Ref. (3, 18). Because  the  in- 
terface is kep t  at its original  posi t ion,  the  solut ion wil l  be  
referred to as the  r educed  state. One of  the  more  impor-  
tant  results  ob ta ined  in (3) is an express ion  for the  normal  
concent ra t ion  gradient  at the  interface,  i.e. 

ac c b ) a t y = 0  ( x > 0 )  [21] 
0y (Dr) "2 

where  

f(z) - ~-'~-k-k-k-k-k-k-k-~ (e-  K,,4(z) + e-ffK1,4(p) + K;~,4(p))dp) 

[223 

The K-funct ions in Eq. [22] are modif ied  Bessel  func- 
t ions (19). 

A ske tch  of  the  func t ion  f is g iven  in Fig. 7. F r o m  this 
figure, it is seen that  f t ends  to a cons tant  va lue  when  z >> 
1, i.e., w h e n  x is m u c h  larger  than  the  diffusion length  
(Dt) ̀ '2, wh ich  is far e n o u g h  to the  r ight  of  the mask edge. 
When the  concent ra t ion  gradient  no longer  depends  upon  
x, the e tch ing  surface is expec ted  to m o v e  downwards  
uniformly,  i.e., as a plane surface. Us ing  the  asymptot ic  
form of f and subs t i tu t ing  [21] in [20], we obtain,  wi th  
~6/~x = 0 

d8 % d  ~ 
- - -  [23] 

dt (TrDt) ''2 

This may be integrated, subject to the initial conditions 6 

= 0 a t t  = 0, tog ive  

1 2 
6 - fl ~r',' (Dt)l" [24] 

which  is the  same as Eq. [14] for large values  of  ft. This 
serves to show that  e tch ing  is one-d imens iona l  far enough  
f rom the mask  edge,  as expected .  

When the  a r g u m e n t  o f f  iS not  par t icular ly  large, Fig. 7 
shows that  the  normal  gradient  of  c b e c o m e s  larger,  as we  
approach  the  mask  edge. However ,  s ince we are consider-  
ing small  d o w n w a r d  d isp lacements ,  in full ag reemen t  
wi th  our  pe r tu rba t ion  assumpt ions ,  this will  resul t  in an 
e tching profile that  is only sl ightly curved.  Therefore,  
88/Sx < 1 a long mos t  of  the e tch ing  profile. As a resul t  we 
may  still a p p r o x i m a t e  [20] by 

2.5 

1.5 

0.5 

..2~_1/2 

i i i 

0 0.5 1 1.5 2 
x (Dt) -lf2 

Fig. 7. Functions f (Eq. [22]) and F (Eq. [27]). These functions are 
proportional to surface mass transfer (f) and surface displacement (F) 
as predicted by the reduced state (see paragraph that includes Eq. 
[ 2 1  ]) .  

08 8c 
Ot o'~ 0--y- at y = 0 [25] 

to obta in  a first-order d i sp lacement  of  the  e tch ing  sur- 
face. In tegra t ing  this equat ion,  subject  to 6 = 0 at t = 0, 
us ing Eq. [21], we  obtain  after some  manipula t ion  

(Dt) .... F / x~ ~ 
6 fi ~ ) ~ [26] 

where  

F(z) = z':'- f~ f(q) d ~ q [27] 

This  func t ion  is also p resen ted  in Fig. 7. Once  again, this 
figure shows that  the  e tching dep th  becomes  uni form 
w h e n  x ~> (Dt)"h When x ~ (D0"L the  a rgumen t  is of or- 
der  unity. F igure  7 and Eq. [26] show then  that  the  etch- 
ing depth  is still of  the  order  of  the  diffusion length  di- 
v ided  by fi, r ender ing  a shal low e tch ing  profile. On the  
o ther  hand,  w h e n  the mask  edge  is approached  so closely 
that  x < (Dr) I'2, the  a rgumen t  o f F  is a lmos t  zero. It can be 
shown that  

2 :~, 4 
F ( z ) - - - 3 - - ~ z  ,4 + 1.047z ~,4 + . . .  ( 0 < z  ~ 1) 

[28] 

where K = F(I/4)~ -~,~ - 0.651 is a constant that will ap- 

pear more often in the present analysis (in Ref. (3) it is de- 

noted by a). This shows that, sufficiently close to the 

mask edge, the perturbation analysis, as we have applied 

it up to this point, breaks down. Clearly, one can no 

longer speak of small downward displacements of the 

etching surface when, at a given position x, the down- 

ward displacement 8 is of the same order of magnitude as 

x itself. To see what values of x satisfy this condition, we 

substitute x for 6 in Eq. [26]. Then, using Eq. [28] (leading 

term only), we find 

x l (x'~ .... 
(Dr)----W-,_ of the order of --~ \~-] [29] 

where some constants that are not essential in an order- 

of-magnitude analysis have been omitted. From [29], we 

conclude that the straightforward perturbation method 

breaks down when 

x is of the  order  of  fi-~.3 (Dt)~.=, [30] 

S ince  the  d imens ion less  parameter  fl is m u c h  larger  than  
unity, the  region def ined by [30] is m u c h  smal ler  than  the 

diffusion length.  
To resolve  this apparen t  difficulty, we must  cons ider  

the  full  p rob lem defined by Eq. [16], [19], and [20] and the  
o ther  re levant  boundary  condi t ions  in a relat ively small  
region a round  the  tip of the  mask,  the  spatial  ex ten t  of  
wh ich  is approx imate ly  that  g iven  by Eq. [30]. To that  
end,  we in t roduce  the  scaled var iables  

x y 
X = fi~,~ Y = fi~.'~ - -  

(Dt)L,' (Dt),, ~' 

6 
h(X) : fi-',:~ [31] 

(Dt) '~ 

wh ich  b low up the  a fo remen t ioned  smal l  region. The  
t ransformat ion  of Eq. [31] could  be cons idered  as a math- 
ematica]  magn i fy ing  glass. This  way of  looking at it is ex- 
pressed  pictorial ly in Fig. 8a and 8b. To be  able to solve 
the  field equa t ions  wi th in  the corner  region around the  
tip of  the  m a s k  (Fig. 8b), the original  boundary  condi t ion  
at "infinity,"  which  requires  that  c ~ c h, no longer  
applies.  Referr ing  to our  earl ier  metaphor ,  we migh t  say 
tha t  the  bu lk  of  the  e t chan t  is far outs ide  the  range  of  the  
magn i fy ing  glass (Fig. 8a). Indeed,  bu lk  condi t ions  are 
r eached  at d is tances  of at least  a few diffusion lengths  
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Fig. 8. The magnification of the corner region. This serves to show 
how the behavior of the reduced state close to the origin (a) deter- 
mines the actual etching in the mask-edge region (b). 

f rom the  mask  edge, whereas  the size of  the  subreg ion  is 
only  of  the  order  g iven  by Eq. [30]. The condi t ions  at the  
r im of the  b lown-up  region are fully de t e rmined  by the  
behav ior  of  the  r educed  state (see tex t  p reced ing  Eq. [21]) 
close to the origin (Fig. 8a). This  behavior  m a y  again be 
d e d u c e d  f rom (3) 

c - c ~ K ~/(X/Y -~ + y'-' - x) [32] 
( D t )  ~'4 

It  is in te res t ing  to note  that  [32] does  indeed  satisfy 
both  the  boundary  condi t ion  on the  mask  and that  on the  
s tat ionary interface.  Indeed,  w h e n  x > 0, then  c, as g iven  
by Eq. [32], is zero for y = 0, which  is condi t ion  [19] for 3 = 
0. Also, ae/oy = 0 holds  w h e n  x < 0 and y = 0, which  is the  
mask  condi t ion.  

When the  coord ina te  t ransformat ions  of  Eq. [31] are 
subs t i tu ted  in Eq. [32], it is easi ly seen that  the field un- 
der  the  magni fy ing  glass, the  corner  region of  Ref. (3), is 
adequa te ly  desc r ibed  by the b lown-up  var iable  

C = ~ B '''~ [33] 
C b --  

The p roper  boundary  condi t ions  for C are then  

OC/OY = 0 (both sides of  the  mask)  [34] 

C ~ K ~ / ( ~ / X  2 + y2 _ X)  w h e n  X 2 + Y~ >> 1 [35] 

and 

C = 0 o n Y = -  a(X) [36] 

Further ,  the  d i sp lacement  of  the  m o v i n g  boundary ,  h, is 
now governed  by the  full  Eq. [20]. This  equa t ion  mus t  be 
recast  in te rms  of  the  sealed var iables  X, Y, C, and h us ing 
Eq. [31] and [33] 

X d h  OC 
A -  -dX - = 2 ( - ~ +  OC T ~ - d d ~ ) o n Y = - A  [37] 

Al though  the  boundary  condi t ions  are n o w  far more  
compl ica ted  than  those  for the r educed  problem,  the  gov- 
erning different ial  equa t ion  is s imple r  than  Eq. [16]. It  is 
shown in (3) that  the  concent ra t ion  field is quasi  station- 
ary in the  corner  region. It  is governed  by Laplace ' s  equa- 
t ion 

O~C O~C 
- -  + = 0 [ 3 8 ]  

OX'-' O Y-' 

Consequent ly ,  the  p rob lem defined by Eq. [34]-[38] does 
not  d e p e n d  expl ic i t ly  on time. Moreover ,  it does  not  con- 
tain any d imens ion less  physical  parameters .  The  depen-  
dence  upon  fl, in particular,  has been  sealed out. There-  
fore, the solut ion for the  free boundary ,  Y = - A, when  
found,  applies  to all re levant  eases. 

It is shown in (3) h o w  a un ique  numer i ca l  solut ion for h 
may  be obtained.  The  shape of  the  in terface  is g iven in 
Fig. 9. Fu r the rmore ,  a poin twise  representa t ion  is g iven in 
Table  II. Of  course,  this solut ion for the  in terface  applies  
in the magni f ied  region. When the d is tance  f rom the 
mask  edge  is no longer  small  in compar i son  wi th  the  dif- 
fusion length,  Eq. [26] should be used. We refer  to (3) for a 
me thod  by which  a smooth  t ransfer  f rom one solut ion to 
the  o ther  can be realized. 

S o m e  fur ther  impor tan t  results  are quo ted  here  direct ly  
f rom (3). Deno t ing  the  lowest  pos i t ion of  the  e tch ing  
profile by (x, y) = (Xbulge,  Ybulge), we have  

Xbulge ~ 0.370(D0"2fl-"3; Ybulge - -  - -  0-720(Dt)l'~B-'-"a 
[39] 

Further ,  the unde re t ch ing  (see Fig. 6 and Eq. [18])is g iven  
by 

xo ~ 0.543(Dt)l"-'fi -~'a [40] 

F r o m  Eq. [39] and [40], we Obtain the  impor t an t  resul t  

e tch  factor  - lYbuJgel 1.33 [41] 
X0 

F r o m  the  foregoing  presenta t ion  it is clear that  the  shape 
of  the  e tched  profile remains  una l te red  dur ing  the  ent i re  
e tch ing  process.  However ,  as t ime  proceeds ,  the  profile 
in the corner  region grows in p ropor t ion  to the square  
root of the  t ime,  the  magnif icat ion center  be ing  the  t ip of  
the mask.  

The  i n f l u e n c e  o f  c o n v e c t i o n . - - W e  shall  discuss  the 
inf luence of  convec t ion  in e tch ing  sys tems  by s tudying  a 
very  s imple  mode l  example .  First,  we shall  a s sume  that  
the veloci ty  field in the  l iquid  is given,  i.e., that  it exis ts  

Fig. 9. The shape of the etch- 
ing profile in the mask-edge re- 
gion, as predicted by theory. 

- 0,,5 

y = y(D[)-Y2~2/3 
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Table II. Position of the interface in purely time-dependent diffusion 

X = x ( D t )  -~r~ [3 ~ Y = y (Dt ) - ' r - '  fl'-'~ 

-0.543 0 
-0.535 -0.104 
-0.508 -0.206 
-0.466 -0.303 
-0.407 -0.395 
-0.333 -0.479 
-0.242 -0.551 
-0.139 -0.613 
-0.022 -0.662 

0.106 -0.696 
0.244 -0.715 
0.391 -0.719 
0.544 -0.712 
0.703 0.693 
0.867 -0.665 
1.036 -0.635 
1.209 -0.602 
1.389 -0.568 
1.576 -0.536 
1.769 -0.507 
1.971 -0.480 
2.40 -0.431 
2.87 0.391 
3.37 -0.359 
3.91 -0.330 
4.50 -0.306 
6.12 -0.259 
8.00 -0.224 

10.12 -0.198 
12.50 0.175 
15.12 -0.160 
18.0 -0.144 

larger X -0.614 X -~r-' 

i n d e p e n d e n t l y  of  t h e  e t c h i n g  p roces s  itself.  Th i s  is a va l id  
a s s u m p t i o n  w h e n  t h e  e t c h a n t  is s t i r red  on  pu rpose ,  as in  
j e t  or sp ray  e t ch ing .  On t he  o the r  h a n d ,  e v e n  w h e n  ve ry  
s t r ic t  p r e c a u t i o n s  a re  t a k e n  to e n s u r e  t h a t  the  e t c h a n t  re- 
m a i n s  s ta t ionary ,  e t c h i n g  i t se l f  i n d u c e s  s t i r r ing.  T e m p e r a -  
t u r e  or c o n c e n t r a t i o n  d i f f e rences  c a u s e d  b y  t he  e t c h i n g  
p roces s  lead to dens i t y  g r a d i e n t s ,  a n d  t h e s e  in t u r n  give 
r ise  to t he  p h e n o m e n o n  of  n a t u r a l  convec t ion .  S u c h  
flows h a v e  b e e n  s t ud i ed  in e l e c t r o c h e m i s t r y  (20), c rys ta l  
g r o w t h  (21), a n d  cen t r i f uga l  e t c h i n g  (22). We shal l  n o t  con-  
s ider  t h e s e  m o r e  c o m p l i c a t e d  s i tua t ions  here .  

A f u r t h e r  s impl i f i ca t ion  is of fered  by  t he  fac t  t h a t  t h e  
d i f fus ive  p r o c e s s e s  t h a t  t e n d  to equa l ize  ex i s t i ng  ve loc i ty  
g r a d i e n t s  are  m u c h  s t r o n g e r  t h a n  t h o s e  s m o o t h i n g  ou t  
c o n c e n t r a t i o n  d i f fe rences .  As  a resul t ,  c o n c e n t r a t i o n  pro- 
files are  m u c h  s h a r p e r  a n d  m o r e  r e s t r i c t e d  in w i d t h  t h a n  
t h o s e  of  the  veloci ty .  To p u t  it d i f fe rent ly ,  if  t h e  full  varia-  
t ion  of t he  c o n c e n t r a t i o n  f rom its b u l k  v a l u e  at  t he  e tch-  
ing  sur face  ( w h i c h  is zero in th i s  paper )  occurs  over  a dis- 
t a n c e  8c, t he  c o n c e n t r a t i o n  b o u n d a r y - l a y e r  t h i c k n e s s ,  t h e n  
t he  ve loc i ty  v a r i a t i o n s  across  th i s  layer  wil l  on ly  be  mini -  
mal .  Fo r  i n s t ance ,  a t  t h e  sol id  wal l  (mask  or  in terface) ,  t h e  
ve loc i ty  will  h a v e  to be  zero. Fa r  e n o u g h  f rom t he  wall,  
t h e  ve loc i ty  a s s u m e s  a b u l k  v a l u e  t h a t  is d e t e r m i n e d  b y  
t he  s t i r r ing  cond i t i ons .  However ,  at  a d i s t a n c e  8o f rom t h e  
wall,  t h e  ve loc i ty  wil l  h a v e  r e a c h e d  a level  t h a t  is on ly  a 
f rac t ion  of  t h a t  of  t h e  bulk .  As a resul t ,  a l inea r ized  veloc-  
i ty profi le  m a y  be  a s s u m e d  to ex i s t  ove r  t he  r a n g e  8r 
f rom t h e  wai l  in to  t he  e t chan t .  Th i s  is t he  so-cal led 
L e v ~ q u e  a p p r o x i m a t i o n ,  w h i c h  ha s  b e e n  d i s c u s s e d  ex ten-  
s ively in  t he  l i t e r a tu re  (23). 

S i m p l i f y i n g  our  i n t e n d e d  m o d e l  still  fu r ther ,  we sha l l  
a s s u m e  t h a t  th i s  l inea r i zed  ve loc i ty  prof i le  is v i r tua l ly  in- 
d e p e n d e n t  of  t h e  c o o r d i n a t e  t h a t  m e a s u r e s  d i s t ance  a long  
t h e  sol id b o u n d a r y .  Re fe r r i ng  to Fig. 6, t h i s  m e a n s  a ve- 
loci ty  field i n d e p e n d e n t  of  t he  c o o r d i n a t e  x. As  long  as 
t h e  e t c h i n g  su r face  r e m a i n s  at  i ts  o r ig ina l  pos i t i on  (y = 0), 
one  can  eas i ly  i m a g i n e  s u c h  a ve loc i ty  field to ex i s t  ove r  
s o m e  l eng th ,  b o t h  t o w a r d  t h e  n e g a t i v e  a n d  t he  pos i t ive  
s ides  of  t h e  t ip  of  t h e  m a s k  (x = 0, y = 0). However ,  w h e n  
a profi le  ha s  b e e n  e t ched ,  i t  is  o b v i o u s  t h a t  a c o m p l i c a t e d  
flow field will  be  se t  u p  in t h e  u n d e r e t c h e d  r eg ion  (Fig. 
10). I t  is ou r  i n t e n t i o n  to s h o w  tha t ,  e v e n  in t h e s e  c i r cum-  
s tances ,  t h e  l i nea r i zed  ve loc i ty  m o d e l  m a y  s o m e t i m e s  b e  
appl ied .  

oncoming 

uniform-shear flow / ~ ~oo 
~ ~ a  ~ re-estabtishing 

flow 

Fig. 10. A tentative view of the flow behavior of the etchant in the 
mask-edge region when a uniform shear flow is presented from the 
left. The radius a is defined by Eq. [56]. 

U n d e r  t he  s impl i f i ed  a s s u m p t i o n s  spe l led  ou t  above ,  
t he  t r a n s p o r t  of the  ac t ive  e t c h i n g  c o m p o n e n t  is g o v e r n e d  
b y  

~c / o"-c 
D | + [42] 

_ _  = ~ C  

u ~x \ 0x ~ 0y 2/ 

w h e r e  

Y 
u = u0 8~- [43] 

is t h e  l inea r ized  v e r s i o n  of  t h e  ve loc i ty  c o m p o n e n t  in  t h e  
x-d i rec t ion .  We use  t h e  g e o m e t r y  of Fig. 6. In  Eq. [43], u0 
is t he  m a x i m u m  ve loc i ty  o c c u r r i n g  in t h e  sys tem.  F u r t h e r  
8, is a m e a s u r e  of  t he  t h i c k n e s s  of  t he  l ayer  across  w h i c h  
t h e  ve loc i ty  c h a n g e s  fi 'om zero to th i s  m a x i m u m  va lue  
(Fig. 11). Of course ,  Eq. [42] is u s e d  on ly  w h e n  y ~< 8c, i . e . ,  

w i t h i n  t he  c o n c e n t r a t i o n  b o u n d a r y  layer. We h a v e  as- 
s u m e d  t h a t  8c/8u ~ 1. In  fact, it is s h o w n  in t he  l i t e ra tu re  
(23, 24) t h a t  

8c/8u - Sc  -' '3 [44] 

w h e r e  t he  S c h m i d t  n u m b e r  Sc is g iven  by  

Sc = v/D [45] 

S ince  t h e  k i n e m a t i c  v i scos i ty  ~ of  a typ ica l  a q u e o u s  
e t c h a n t  is - 1 0  -6 m'-'/s, we h a v e  Sc - 103, so t h a t  t he  ra t io  
[44] is i n d e e d  small .  

As e x p l a i n e d  in  (23), Eq. [44] is, s t r ic t ly  speak ing ,  va l id  
on ly  w h e n  t he  ve loc i ty  field a n d  t h e  c o n c e n t r a t i o n  field 
h a v e  d e v e l o p e d  over  t he  s ame  d i s tance ,  i.e., s t a r t ing  f rom 
the  s a m e  point .  In  genera l ,  a n d  ce r t a in ly  in t he  case  we 
c o n s i d e r  here ,  t he  ve loc i ty  field is a l r eady  fully devel-  
oped  in t he  reg ion  a r o u n d  t he  m a s k  edge.  If, as we  shal l  
a s sume ,  t h e  d i r ec t ion  of  flow is f rom left  to t he  r igh t  in  
Fig. 6, a ful ly d e v e l o p e d  ve loc i ty  prof i le  is p r e s e n t e d  at  x 
= 0, w h e r e a s  t he  c o n c e n t r a t i o n  field on ly  j u s t  b e g i n s  

U 
U o 

Y 
Fig. 11. Sketch showing the velocity profile along the etching sur- 

face (u) as a function of the normal coordinate (y). In the case de- 
picted, the etching depth (8) is much shallower than the thickness of 
the convection-diffusion layer (8c), which in its turn is always much 
thinner than the velocity layer (Su). 
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there. U n d e r  such  condi t ions  the  ratio 8c/G may  be m u c h  
smal ler  than  that  g iven  by Eq. [44]. 

The  e tch ing  p rob l em to be solved n o w  is that  governed  
by Eq. [42] and all the  boundary  condi t ions  def ined in 
the  previous  section. Of  course,  owing  to the fact that  the  
e tch ing  bounda ry  moves,  there  is a t ime -dependen t  ele- 
men t  in this  p rob l em that  requi res  the  addi t ion of  the  
t e rm Oc/Ot to the  left  side of  [42]. However ,  s ince the  
mot ion  of  the  boundary  is ve ry  s low in compar i son  wi th  
the ve loc i ty  of  the  etchant ,  this effect  cor responds  to a 
negl igible  quasi-s ta t ionary contr ibut ion.  We shall  again 
solve this p rob l em wi th  a pe r tu rba t ion  t echn ique ,  assum- 
ing that  the  concent ra t ion  field may  be calculated wi th  
the  in terface  remain ing  at its original  posi t ion in the  
p lane  y = 0 (Fig. 6). This is again referred to as the  re- 
duced  state. 

I n t roduc ing  a character is t ic  length  l based upon  the  
physical  pa ramete rs  of  Eq. [42] 

l =  ~-'~o / [46] 

we may  def ine  d imens ion less  var iables  as follows 

X = x / l ,  Y = y / l ,  A = 6/l, C = c / c  b [47] 

The  r educed  p rob lem is n o w  formula ted  by the  equa t ion  

-- OC O~C ~C 

Y _ -  _ + - - _  [48] 

3X 3X ~ 3 Y~ 

with the boundary conditions 

- 

a tY =  0 ~ - = 0  if  X < O  [49] 

C =  0 i f  X > O  [50] 

and 

C ~ 1 at infinity [51] 

The  solut ion to the  p rob l em def ined by Eq. [48]-[51] 
can be found in (25). A par t icular ly  useful  resul t  tha t  can 
be  obta ined  f rom that  reference  is an express ion  for the  
concen t ra t ion  gradient  at the  boundary  Y = 0 for X > 0. In  
that  paper  this g rad ien t  is deno ted  by the  funct ion  q(X). 
When we subst i tu te  this funct ion  in [20], r e m e m b e r i n g  
that  for smal l  d i sp lacements  of  the  mov ing  boundary ,  the  
t e rm Oc/Oy = c b 1 - 1 0 C / O X  = cb1-1 q (X)  domina tes  the  r ight  
side, we may  use Eq. [25] instead,  and an express ion  for 8 
fol lows immed ia t e ly  

cbO-e 
= ~ q ~ t  [52] 

This shows that  the  e tch rate is direct ly  propor t iona l  to 
the  t ime, as it should  when  fully deve loped  condi t ions  
prevail .  

It  is also shown in (25) that  q(X) becomes  u n b o u n d e d  
w h e n  X tends  to zero, i.e.~ w h e n  the  i m m e d i a t e  neighbor-  
hood  of  the  t ip of  the  mask  is approached .  The  behav ior  
of  q(X) for smal l  va lues  of  X reads 

q(X) ~ 0.44 X ... .  [53] 

As before,  it will  be reasonable  to say that  the straight-  
forward  pe r tu rba t ion  p rocedure  breaks  down  w h e n  6 be- 
comes  of  the  same order  of  magn i tude  as x, i.e. 

1 D t - -  
X of the  order  of  - - - - X  -~'2 [54] 

where  we have  '~:-ed Eq. [13], [47], [52], and [53]. Conse- 
quent ly ,  the  d imens ions  of  the  corner  region are def ined 
by 

of  the  order  of  fl-~'3(Dt)~'31-4"3d~f A [55] 

In  the  d imens iona l  plane, this defines a reg ion  wi th  a ra- 
dius of  the  order  of  (see Fig. 10) 

( x  2 + y~)~.~ ~ l A  d~f a [56] 

A l though  Eq. [55] is qui te  s imilar  to Eq.  [30], there  is an 
impor tan t  d i f ference  be tween  the  analysis of  this sect ion 
and that  of  the  prev ious  one. In  the  foregoing  section, the  
concent ra t ion  field was diffusive;  its spatial  ex ten t  was 
de te rmined  by the  diffusion length  eve rywhe re  and at all 
t imes.  Therefore ,  and since fl >> 1, the  reg ion  def ined by 
[30], as expressed  by the  t ransformat ion  of  Eq. [31], is al- 
ways a small  subreg ion  wi th in  the  who le  field (Fig. 8). 
The p rob lem def ined by Eq. [48]-[51], on the  o ther  hand,  
refers to a spatial  doma in  that  does not  grow in t ime,  
s ince s teady-state  condi t ions  have  been  a s sumed  f rom the  
outset.  Within such  a s tat ionary field, the  subregion  sug- 
gested by [55] or [56] may  indeed  be  small  at first. How= 
ever, as soon as A ~ 1, i .e.,  w h e n  Dt is of  the  order  of  fiG 
one may  no longer  speak of  a subregion.  Once  again refer- 
r ing to our  earl ier  metaphor :  the  magni fy ing  glass loses 
its power  after some  time. 

Assuming  that  the  e tch ing  t ime  is still smal l  enough  for 
Eq. [55] to define a p roper  subregion,  we proceed  by in- 
t roduc ing  the  t rans format ion  

(X, Y, ~(X)) = e A - ~ ( X ,  Y, A(X)) [57] 

which  blows up the  (X, Y) domain  along the  same lines as 
shown in Fig. 8. The  d imens ion less  numer ica l  cons tant  e 
will  be de t e rmined  in the course  of  the  analysis.  Next ,  it 
can be shown f rom the  analysis of  (25) that  

~ 0.62 ~ ( V X  ~ + Y~ - X) [58] 

w h e n  X2 + (Y2 ~ 1 (the cons tan t  0.62 ~ 0.44 x/2). Equa-  
t ions [35], [57], and [58] sugges t  that  we in t roduce  

K 
C(X, Y) = ~ - e ~ . ~ A  ... .  C(X ,  Y )  [59] 

in addi t ion  to [57]. Subs t i tu t ing  Eq. [57] and [59] in Eq. 
[48]-[50] and [58], we obtain the  fo l lowing set of  equa t ions  
and boundary  condi t ions  

o~d o~d - od 
~ + - = e-2A~Y 

0 X '2 3 Y'~ OX 
[60] 

a~ 
- 0 on the  mask  (both sides) [61] 

~f 

d =  0 on ]~= - ~  [62] 

and 

/ 
6 K ~ / ( ~ -  )~) w h e n  X~ + ]~ >> 1 [63] 

Moreover ,  t r ans fo rming  Eq. [20] wi th  the  aid of Eq. [47] 
and [57], we may  der ive  

~ dA 3(0.62) [ ~6 a6 d7~ 

- X  d ~ - -  2 ~  E:~ ~ ~Y + 0X= ~ - ]  [64] 

The  avai labi l i ty of the  free cons tant  e in Eq. [64] enables  
us to r ender  the  coeff icient  of  the  r ight  side of [64] equa l  
to 2, as in Eq. [37] 

e \ 3(0.62) / = 1.25 [65] 

The sys tem of equat ions  and boundary  condi t ions  
[60]-[64] is a lmos t  the  same as that  of  Eq. [34]-[38]. The  
only di f ference still r emain ing  is that  be tween  Eq. [38] 
and [60]. However ,  as long as A ~ 1, i .e.,  when  

D t  ~ flF [66] 

the  r ight  side of  [60] may  be  disregarded,  and a comple te  
analogy be tween  the  analysis of the  p resen t  and the  previ- 
ous sect ions fol lows with  regard  to the  behav ior  near  the 
mask  edge. 
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The  resu l t s  of t h e  p r e s e n t  ana lys i s  m a y  n o w  b e  s u m m a -  
rized. As l ong  as [66] is val id ,  t h e  e t c h i n g  profi le  in  t he  
c o r n e r  r eg ion  a r o u n d  t he  m a s k  edge  will  b e  app rox i -  
ma te ly  t h a t  g iven  by  Fig. 9 a n d  Tab le  II, w h e r e  t he  wrig-  
g led  va r i ab l e s  of th i s  sec t ion  m a y  b e  iden t i f i ed  w i t h  t he  
va r i ab l e s  d e n o t e d  by  cap i ta l s  in  t h e  p r e v i o u s  sect ion.  T h e  
e t ch  fac to r  wil l  b e  1.33, as before .  F u r t h e r m o r e ,  t he  posi-  
t ion  of t h e  b u l g e  wil l  be  at  

xbuJge = 0.296( Dt  )~'3l-1':~ -~'~3; 

Y ~ e  = -0.576(Dt#"~l-~'3fl -~'3 [67] 

Of course ,  ou t s i de  t he  m a s k - e d g e  region,  t he  e t c h i n g  
d e p t h  d e t e r m i n e d  in  t he  p r e s e n t  sec t ion  [52] is to ta l ly  dif- 
f e ren t  f rom t h a t  g iven  by  [26] for a p u r e l y  d i f fus ive  field. 
Whereas ,  in p u r e l y  d i f fus ive  t r a n s p o r t ,  t h e  b u l g e  n e a r  t he  
t ip of  t h e  m a s k  will  n e v e r  d i sappear ,  s ince  the  ra t io  of  
e t c h i n g  d e p t h s  nea r  t he  m a s k  a n d  far away  f rom it  is al- 
ways  of  t he  o rde r  of fl,,3, th i s  specia l  b e h a v i o r  of t he  e tch-  
ing profi le  will  b e c o m e  less a n d  less m a r k e d  as t i m e  pro- 
ceeds  in t he  case  of  convec t i ve -d i f fu s ive  t r anspor t .  
I ndeed ,  t a k i n g  t h e  rat io  of  Yb,i~e (Eq. [67]) a n d  ~ (Eq. [52]), 
we o b t a i n  t he  fo l lowing  o r d e r - o f - m a g n i t u d e  e x p r e s s i o n  

lYbulgel l~,3fll,:,,(D 0 -1,3 [68] 
a(X orde r  un i ty )  

As  long  as Eq. [66] is val id,  th i s  ra t io  is large,  w h i c h  
shows  t h a t  a bu lge  will  be  s een  n e a r  t he  m a s k  edge.  A t  
longer  t imes ,  t h e  m a s k - e d g e  r eg ion  merges  m o r e  a n d  
m o r e  w i t h  t he  field e l sewhere ,  a n d  t he  c o m p l e t e  p r o b l e m  
has  to be  solved.  Th i s  m e a n s  t h a t  t he  c o n v e c t i o n  t e r m  can  
t h e n  no  longe r  be  d i s r e g a r d e d  in t he  m a s k  region.  The  
c o m p l e t e  N a v i e r - S t o k e s  s y s t e m  m u s t  t h e n  be  t a ck l ed  to 
ca lcu la te  t he  i n f l uence  of  convec t ion .  

Conclusions 

In  th i s  paper ,  we h a v e  s h o w n  t h a t  it is poss ib le  to de- 
vise  s i m p l e  m a t h e m a t i c a l  m o d e l s  w h i c h  p r ed i c t  ce r t a in  
e t c h i n g  re su l t s  t h a t  h a v e  b e e n  o b s e r v e d  in  pract ice .  On 
t he  bas i s  of a s t r a i g h t f o r w a r d  o n e - d i m e n s i o n a l  mode l ,  we 
h a v e  d e m o n s t r a t e d  t h a t  a d i m e n s i o n l e s s  p a r a m e t e r  fl (Eq. 
[13] a n d  [15]) d e t e r m i n e s  pa r t i cu l a r  e t c h i n g  p roces se s  to a 
large  ex ten t .  We e s t i m a t e d  t he  va lue  of fl for  a n u m b e r  of 
e x a m p l e  s y s t e m s  a n d  f o u n d  t h l s - p a r a m e t e r  to  be  a lways  
m u c h  la rger  t h a n  uni ty .  F r o m  this ,  we d e d u c e d  t h a t  the  
d i s p l a c e m e n t  of t he  e t c h i n g  b o u n d a r y  is re la t ive ly  slow. 
This  fact  s u g g e s t e d  t h a t  e t c h i n g  m o d e l s  can  be  so lved  by  
so-cal led p e r t u r b a t i o n  t e c h n i q u e s ,  by  w h i c h  one  m a y  cal- 
cu la te  the  c o n c e n t r a t i o n  field a s s u m i n g  t he  in te r face  to 
r e m a i n  f ixed at  i ts  or ig ina l  pos i t ion .  F r o m  this ,  we were  
ab le  to o b t a i n  a f i r s t -order  d i s p l a c e m e n t  of the  in ter face .  

The  p e r t u r b a t i o n  t e c h n i q u e  was  t h e n  app l i ed  to a m a t h -  
emat i ca l  m o d e l  t h a t  we dev i s ed  for  the  e t c h i n g  of  a semi-  
inf in i te  sol id t h a t  was  par t ly  cove r ed  w i t h  a mask .  Sev-  
eral  o b s e r v a t i o n s  r e p o r t e d  in t he  l i t e r a tu re  (6, 7, 8) s h o w  
t h a t  e t ch  ra tes  m a y  be  m u c h  h i g h e r  n e a r  t he  res i s t  edge  
t h a n  f u r t h e r  away  f rom th i s  edge.  In  all cases,  t h e s e  pro- 
cesses  were  d i f fus ion-con t ro l l ed .  A l t h o u g h  it  was  sug- 
ges ted  at  first  t h a t  sur face  d i f fus ion  of  a d s o r b e d  ions  
a long t he  m a s k  m i g h t  be  r e s pons i b l e ,  a r o u g h  m o d e l  (7) 
s h o w e d  t h a t  e n h a n c e d  b u l k  d i f fus ion  n e a r  t he  edge  m u s t  
be  t he  t r ue  cause.  Th i s  o b s e r v a t i o n  is n o w  Conf i rmed by  
our  m o r e  s o p h i s t i c a t e d  t i m e - d e p e n d e n t  mode l ,  w h i c h  ac- 
tua l ly  l eads  to a d e s c r i p t i o n  of  t he  r e s u l t i n g  c u r v e d  inter-  
face. This  ca l cu la t ed  in t e r f ace  (Fig. 9 a n d  Tab le  II) revea ls  
a re la t ive ly  deep  t r o u g h  in the  i m m e d i a t e  v ic in i ty  of  t he  
res i s t  edge.  

W h e n  c o n v e c t i o n  is to ta l ly  absen t ,  t he  e t ch  ra te  n e a r  t he  
m a s k  edge  is l a rger  t h a n  t h a t  far away  f rom t he  edge  by  a 
fac tor  t h a t  is of  t h e  o rde r  of  fil':L There fore ,  a l t h o u g h  t he  
e t ch  ra te  dec rea se s  as B inc reases ,  t he  ra t io  of  e t ch  ra tes  
i nc reases  w i t h  B. There fore ,  i f  one  w i s h e s  to e t ch  ou t  a cir- 
cu lar  area  f rom a t h i n  subs t r a t e ,  one  m i g h t  save  ac t ive  
e t c h i n g  c o m p o n e n t  by  i n c r e a s i n g  the  va lue  of ft. Th i s  
cou ld  be  a c h i e v e d  by  l ower ing  t he  c o n c e n t r a t i o n  c h. Of 
course ,  one  wil l  h a v e  to pay  for th i s  b y - h a v i n g  to wa i t  
l onge r  for t he  f inal  resul t .  I t  s h o u l d  be  rea l ized  t h a t  th i s  

o b s e r v a t i o n  is va l id  on ly  as long  as t he  d i f fus ion  l e n g t h  is 
smal l  in  c o m p a r i s o n  w i t h  t he  d i a m e t e r  of  t he  r eg ion  to be  
e t c h e d  out.  

S ince  c o n v e c t i o n  can  ha rd ly  ever  b e  s u p p r e s s e d  in 
p rac t i ce  - -  on  t he  con t ra ry ,  i t  is a l m o s t  i n v a r i a b l y  a domi-  
n a n t  fac tor  - -  we i n v e s t i g a t e d  its i n f luence  on  e t c h i n g  
nea r  t he  m a s k  edge.  Again ,  we f o u n d  a b u l g i n g  s h a p e  of  
t he  in t e r f ace  nea r  the  m a s k  edge.  Moreover ,  for suffi- 
c ien t ly  s h a l l o w  e t c h i n g  resul ts ,  t h e  s h a p e  was  s h o w n  to 
b e  exac t ly  t he  s a m e  as t ha t  de r i ved  for  t h e  case of  a quies-  
c en t  e t chan t .  Th i s  is of  i m p o r t a n c e  expe r imen t a l l y .  I t  
shows  t h a t  s l igh t  c o n v e c t i o n  levels  can  be  a l lowed t h a t  all 
lead  to a s ingle  def in i te  resul t ,  viz., t h a t  o b s e r v e d  in a sta- 
t iona ry  e t chan t .  

A l t h o u g h  a qua l i t a t ive  a g r e e m e n t  ha s  n o w  b e e n  s h o w n  
to ex i s t  b e t w e e n  ac tua l  e x p e r i m e n t a l  o b s e r v a t i o n s  a n d  
our  m a t h e m a t i c a l  mode l ,  it still  r e m a i n s  to b e  seen  
w h e t h e r  t he  p r e d i c t e d  s h a p e  (Fig. 9) can  be  con f i rmed  
e x p e r i m e n t a l l y .  Th i s  will  be  t he  s u b j e c t  of  our  n e x t  p a p e r  
(9). 

M a n u s c r i p t  r e ce ived  Apr i l  22, 1985. 

P h i l i p s  Research  L a b o r a t o r i e s  ass i s t ed  in  m e e t i n g  the 
p u b l i c a t i o n  costs o f  this  art ic le .  

A P P E N D I X  

The Moving Boundary Condition in More Than One Dimension 

Let  us  c o n s i d e r  Fig. A-l ,  w h i c h  s h o w s  two c o r r e s p o n d -  
ing  c o n t i g u o u s  pa r t s  of t he  m o v i n g  b o u n d a r y  at  the  t i m e s  
t a n d  t + At, r espec t ive ly ,  w h e r e  At is a s s u m e d  to be  a 
smal l  t i m e  i n c r e m e n t .  The  m o v i n g  b o u n d a r y  is d e n o t e d  
by  y = h(x, t). A c c o r d i n g  to the  s k e t c h  as g iven  in t he  
figure,  t he  e t c h a n t  is to be  f o u n d  a b o v e  t he  m o v i n g  
b o u n d a r y ,  a n d  t h e  solid be low it. I f  t h e  ve loc i ty  of t he  
m o v i n g  b o u n d a r y  in t h e  d i r ec t i on  of the  i n w a r d  n o r m a l  n 
is d e n o t e d  by  %, the  m o v i n g  b o u n d a r y  c o n d i t i o n  in i ts 
s i m p l e s t  fo rm re la tes  th i s  ve loc i ty  to  t he  n o r m a l  g r a d i e n t  
of  c as fol lows 

Oc 
v, = - ere O~ [A-l] 

The  m i n u s  s ign m u s t  be  chosen ,  s ince  we h a v e  a s s u m e d  
t h a t  c is t he  c o n c e n t r a t i o n  of  the  ac t ive  e t c h i n g  c o m p o -  
nent .  I ndeed ,  t he  m o v i n g  b o u n d a r y  b e i n g  a s ink  w i t h  re- 
spec t  to t he  ac t ive  c o m p o n e n t ,  t he  c o n c e n t r a t i o n  will  be  
lowes t  there .  As a resul t ,  t he  g r a d i e n t  wilt  be  pos i t ive  in  
the  d i r ec t ion  of  nega t i ve  n. 

By c o n s i d e r i n g  t he  t a n g e n t  of t he  m o v i n g  b o u n d a r y  at  
A (see Fig. A-l) ,  we  m a y  exp re s s  the  n o r m a l  g r ad i en t  in  
t e r m s  of  t h e  de r iva t ive  w i t h  r e spec t  to x a n d  y as fol lows 

ac ac ax ac ay ac ac 
- ~ - s in  4) - - -  cos (5 [A-2] 

on ax On ay On ax oy 

w i t h  

Oh 
t an  4) - [A-3] 

0x 

The  l e n g t h  of  s ec t ion  A B  is a p p r o x i m a t e l y  equa l  to 
- (ah/ot )ht .  Hence ,  the  n o r m a l  ve loc i ty  of t he  m o v i n g  
b o u n d a r y  is g iven  b y  

h (x,t) 

h(x,t+ht) 

Fig. A-1. Sketch to be used in the derivation of the etching bound- 
ary condition of Eq. [A-IO]. 
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Vn 
AC AB cos ~b Oh 

At At at 
cos ~5 [A-4] 

From Eq. [A-1]-[A-4], we may finally deduce 

Oh / Oc Oc Oh \ 
} at y = h ( x , t )  [A-5] 

at - ~ ', Oy ~x Ox / 

as the moving boundary condition in two dimensions. 
Considering the problem in three dimensions, i.e., as- 

suming y = h(x, z, t), where z is the coordinate normal to 
both x and y, we may derive similarly 

Oh [ Oc Oc Oh 
at ~re Oy Ox Ox 

Oc 0~ ) at y = h(x' z' [A-6] 
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Etching Profiles at Resist Edges 

II. Experimental Confirmation of Models Using GaAs 

P. H. L. Notten, J. J. Kelly, and H. K. Kuiken 

Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands 

ABSTRACT 

Etching experiments have been carried out with GaAs in order to check mathematical models developed for diffu- 
sion-controlled dissolution at resist edges. Both electroless and chemical etchants were used, and their chemistry is 
briefly considered. An interesting method of controlling the electroless dissolution rate of GaAs by means of a diffu- 
sion-controlled oxidation reaction is reported. The excellent agreement between calculated and measured etched 
profiles demonstrates the validity of the mathematical model. The influence of natural convection and of convection 
induced by gas evolution is reported, and the results are compared with theory. 

In Part I (1) a mathematical model was presented to de- 
scribe diffusion-controlled etching at resist edges. Both 
the form of the etched profiles and the characteristics of 
the etching kinetics at the edges are predicted by the 
model. 

In the present paper we attempt to verify the model ex- 
perimentally. In order to do this, we need etching systems 
that meet two main requirements (i). (i) The etch rate on 

all crystal planes of the solid must be determined by 

mass-transport in the solution, i.e., the rate constant for 

the rate-determining step of the dissolution process must 

be sufficiently large to ensure a very low surface concen- 

tration of the rate-cletermining species, even at the 

slowest etching plane. (ii) The dimensionless etching pa- 

rameter fl, introduced in Part I to describe the dissolution 

process, must be large (~>i00). 

Etching methods not involving an external current or 

voltage source can be divided into two classes: electroless 

and chemical (2). Electroless etching occurs at a well- 

defined mixed potential that is determined by two poten- 

tial-dependent electrochemical reactions; at this poten- 

tial, the rates of dissolution of the solid and reduction of 
the oxidizing agent in the solution are "equal. Chemical 
dissolution is observed with bifunctional molecules that 
are capable of forming new bonds with two neighboring 
surface atoms simultaneously. The etch rate, in this case, 
does not depend on the surface concentration o f  charge 
carriers in the solid and is not influenced by an exter- 
nally applied potential (3). 

As a model system in the present work, the etching of 
GaAs, which is very important for device applications, 
was considered. This material can be dissolved with both 
electroless and chemical etchants. In order to decide on 
how to comply with the requirements of the mathemat- 
ical model, we examined the chemistry of possible etch- 
ing systems. Apart from the two requirements described 
above, the precise etching mechanism is important in 
determining the etched profiles. For this reason, we first 
consider briefly the mechanism of electroless and chemi- 
cal dissolution of GaAs. Results obtained experimentally 
with suitable etchants are then described and compared 
with those predicted by theory. 


