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1. Introduction
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Fig. 1: Penrose diagram of the extended AdS Schwarzschild geometry. Region I

covers the region that is outside the horizon from the point of view of an observer on

the right boundary. Region II is an identical copy and includes a second boundary.

Regions III and IV contain spacelike singularities. The diagram shows the time

and radial directions, over each point there is a sphere Sd−1. This sphere shrinks

as we approach the singularities.

An eternal black hole has an extended Penrose diagram which is depicted in fig. 1.

This Penrose diagram has two asymptotically AdS regions. From the point of view of

each of these regions the other region is behind the horizon. It is a time dependent

spacetime since there is no global timelike isometry. The regions close to the spacelike

singularities can be viewed as big-bang or big-crunch cosmologies (which are homogeneous

but not isotropic). We will propose that this spacetime can be holographically described by

considering two identical, non-interacting copies of the conformal field theory and picking

a particular entangled state. This point of view is based on Israel’s description of eternal

black holes [1]. A similar observation in the context of AdS/CFT was made in [2,3,4] 1.

Here we will emphasize that by including both copies we naturally get a description of the

interior region of black holes, including the region near the singularities. This holographic

description can be viewed as a resolution of the initial and final singularities.

Using this correspondence we can study some aspects of the information loss paradox.

We will formulate a precise calculation on the eternal black hole spacetime of fig. 1. The

result of this calculation shows information loss. We will show that information can be

preserved after summing over geometries.

1 In [3] the formula for the entangled state as a function of the temperature is off by a factor

of 2. It seems to be the related to the factor of 2 that led to the claim [5] that the black hole

temperature is twice what Hawking originally computed.



2. The correspondence

We start with an AdSd+1 spacetime and its holographic dual conformal field theory

CFTd, as in [6,7,8] (for a review see [9]). The conformal field theory is defined on a cylinder

R×Sd−1. This cylinder is also the boundary of AdS. A general conclusion of the studies of

AdS/CFT is that the boundary conditions in AdS specify the theory and the normalizable

modes in the interior correspond to states [10,9]. When we give a particular spacetime

which is asymptotically AdS we are giving a CFT and a particular state in the CFT.

uv

Fig. 2: The Lorentzian black hole in Kruskal coordinates. The singularity is at

uv = 1 and the boundary of AdS is at uv = −1.

We consider the so called “big” black holes in AdS. These are black holes which have

positive specific heat and are the dominant contribution to the canonical thermodynamic

ensemble. In our analysis below we will write explicit formulas for black holes in AdS3

since calculations are easiest in that case, but everything we say also holds for big black

holes in AdSd+1, d ≥ 2. The Euclidean metric of three dimensional black hole can be

written in the following equivalent forms [11]

ds2 =(r2 − 1)dτ̃2 +
dr2

r2 − 1
+ r2dφ̃2

ds2 =4
dzdz̄

(1 − |z|2)2 +
(1 + |z|2)2
(1 − |z|2)2 dφ̃

2

φ̃ =
2πφ

β
, τ̃ =

2πτ

β
, z = |z|eiτ̃

φ =φ+ 2π , τ = τ + β

(2.1)

where we have set RAdS = 1. τ, φ are to be thought of as the coordinates of the space

on which the CFT is defined so that β−1 is the temperature. Notice that the boundary



of AdS is at |z| = 1. By analytically continuing in the imaginary part of z in (2.1), and

setting z = −v, z̄ = u, we obtain the eternal black hole in Kruskal coordinates

ds2 =
−4dudv

(1 + uv)2
+

(1 − uv)2

(1 + uv)2
dφ̃2 (2.2)

where u = t + x, v = t − x. In these coordinates the spacetime looks as in fig. 2. The

event horizons are at u = 0 and v = 0. The boundary of AdS is at uv = −1 and the

past and future singularities are at uv = 1. In these coordinates it is clear that nothing

special happens at the horizon. Notice that the metric (2.2) is time dependent. It has the

boost-like isometry that acts by u→ eλu, v → e−λv. This is the usual “time” translation

invariance in Schwarzschild coordinates. The orbits of these isometries are time-like going

forward in time in region I, timelike going backwards in time in region II and spacelike in

regions III and IV, see fig. 1. The metric (2.2) has a reflection symmetry under t → −t.
In fact, we can glue the Im(z) = 0 cross section of the Euclidean metric (2.1), to the

t = 0 spatial cross section of (2.2). We can view the Euclidean part of the geometry as

giving the initial wavefunction which we then evolve in Lorentzian signature. This is the

Hartle-Hawking construction of the wavefunction [12].

t=0

v u

Fig. 3: The Hartle-Hawking-Israel wavefunction can be thought of as arising

from gluing half the Euclidean geometry at t = 0 to half the Lorentzian geometry.

Over each point on this diagram there is a sphere Sd−1.

Let us understand what this wavefunction is from the point of view of the boundary

CFT. The boundary of the Euclidean black hole is S1
β×Sd−1. The section of the Euclidean

metric (2.1) at Im(z) = 0 intersects the boundary on two disconnected spheres Sd−1+Sd−1.

(In the three dimensional case (2.1) we get two circles S1
φ + S1

φ). The Euclidean time

direction connects these two spheres. The path integral of the boundary CFT is then

over Iβ/2 × Sd−1, where Iβ/2 is an interval of length β/2. This path integral then gives a

wavefunction on the product of two copies of the CFT. Let H = H1 ×H2 denote the full



Hilbert space consisting of two copies of the Hilbert space of the CFT. The wavefunction

|Ψ〉 ∈ H is

|Ψ〉 =
1

√

Z(β)

∑

n

e−βEn/2|En〉1 × |En〉2 (2.3)

The sum runs over all energy eigenstates the system and the subindex 1,2 indicates the

Hilbert space where the state is defined. Z(β) is the partition function of one copy of the

CFT at temperature β−1 and it is necessary in (2.3) for normalization purposes. We view

this wavefunction as an initial condition for Lorentzian evolution. More precisely, this is

the wavefunction at Lorentzian time t1 = t2 = 0. We have two times since we have two

independent copies of the field theory and we can evolve as much as we want in each time.

Note, however, that the state |Ψ〉 is invariant under H̃ = H1 −H2. This construction with

two copies of a field theory in a pure state given by (2.3) is very familiar in the description

of real time thermal field theories and goes under the name of “thermofield dynamics”

[13]. Thermal expectation values in any field theory can be calculated as conventional

quantum mechanical expectation values in two copies of the field theory in the inital pure

state (2.3). In other words

〈Ψ|O1|Ψ〉 = Tr[ρβO1] (2.4)

where O1 is any operator defined on the first copy of the field theory. Since the left hand

side of (2.4) contains no operators acting on the second copy of the field theory we can

sum over all states of the second copy of the field theory and obtain the result on the right

hand side of (2.4). After doing this sum we get the thermal density matrix in the first copy

of the field theory. One views the thermal density matrix as arising from entanglement.

The entropy is the entanglement entropy [13].

The proposal is that two copies of the CFT in the particular pure (entangled) state

(2.3) is approximately described by gravity on the extended AdS Schwarzschild spacetime .

The meaning of the word “approximately” will become clear later. The “boost” symmetry

of the AdS-Schwarzschild spacetime is the same as the symmetry under H̃ of the two

copies of the CFT and the state (2.3). If we do not do any observations in the second

copy of the conformal field theory, i.e. we do not insert any operators on the second

boundary of the AdS Schwarzschild spacetime, then expectation values on the first copy

become thermal expectation values. The connection between the extended Schwarzschild

geometry and “thermofield dynamics” was first noticed by Israel [1], see also [14,15]. Here

we are just pointing out that that in the context of AdS-Schwarzschild geometries this

connection becomes precise and that it gives, in principle, a way to describe the interior.



The fact that the eternal black hole in AdS is related to an entangled state in the CFT

was observed in [2], [3]. The fact that black hole entropy and entanglement entropy are

related was observed in [16,17].

In the semiclassical approximation, besides giving a geometry, we need to specify the

state of all fields living on this geometry. In general time dependent geometries there is no

obvious way to construct the state. In our case the state of the field is fixed by patching

the Euclidean solution as described above which gives the standard Hartle-Hawking state.

One can also specify the state of a quantum field on a general background by specifying

the set of positive energy wavefunctions, see [18]. The Hartle-Hawking state is obtained if

one defines this set to be the set of wavefunctions which restricted to u = 0 (v = 0) have

an expansion in terms of e−iωv (e−iωu) with ω > 0. This Hartle-Hawking-Israel state is

such that the expectation value of the stress tensor is non singular (except at the past and

future singularities).

In the AdS3 case it is very easy to construct this state since the BTZ black hole is

a quotient of AdS3. This quotient is the one that makes φ periodic [11]. If φ were non-

compact we would have an infinite non extremal black string, whose extended Penrose

diagram is global AdS. It can be seen that the H-H prescription of gluing half the Euclidean

solution coincides with the prescription that gives the global AdS vacuum, which is to glue

in half of an infinite Euclidean cylinder. In both cases we glue in half a three ball. This

implies that the notion of positive frequency as defined in global AdS coincides with the

notion of positive frequency defined in the Hartle-Hawking vacuum of the infinite black

string.2 By doing the quotient we restrict the set of possible wavefunctions but we do

not change the notion of positive frequencies. This implies that we can obtain Green’s

functions on the Hartle-Hawking state by taking the usual Green’s functions on global

AdS and adding over all the images under the group that generates the quotient. For

Schwarzschild-AdS black holes in other dimensions one would have to work harder but the

procedure is a straight forward analytic continuation from the Euclidean solution.3

Now that we have specified the state we can compute, in the semiclassical approxi-

mation, the correlation functions for insertions of operators on various boundaries. Let

us consider a scalar field in AdS3 which corresponds to a CFT operator of dimension

2 This is related to the observation in [19] this non-extremal black string can be understood

as the usual CFT on R2 in the usual Minkowski vacuum but viewed in Rindler space.
3 Vacua for black holes in AdS2 were discussed in [20].



(L0, L̄0) = (∆,∆). By summing over all images we obtain the time ordered correlator for

two operators inserted on the same boundary [21]

〈Ψ|T (O1(t, φ)O1(0, 0))|Ψ〉 ∼
∞
∑

n=−∞

1
[

cosh( 2πt
β ) − cosh( 2π(φ+2πn)

β ) − iǫ)
]2∆

(2.5)

For operators inserted on opposite boundaries we obtain

〈Ψ|O1(t1, φ1)O2(t2, φ2)|Ψ〉 ∼
∞
∑

n=−∞

1
(

cosh( 2π(t1+t2)
β

) + cosh( 2π(φ1−φ2+2πn)
β

)
)2∆

(2.6)

where we have defined time on the second copy of the CFT so that it increases towards

the future. The reason that we get a non-vanishing correlator despite the fact that the

operators live in two decoupled field theories is due to the fact that we have an entangled

state, as in the EPR experiment. Operators on different boundaries commute.

t=0

v u

Fig. 4: We can add particles to the Hartle-Hawking-Israel state by acting with

operators on the Euclidean field theory.

It is easy to see how to insert particles in the interior of the extended AdS-

Schwarzschild spacetime. A particle is a small fluctuation around some state, it is a

small deformation of the wavefunction. The H-H wavefunction is defined by doing the

path integral over half the Euclidean geometry. We can generate the H-H state plus some

particles by gluing the same Euclidean geometry but now with some operators inserted

at the boundary, see fig. 4. This deforms slightly the wavefunction and we will not have

the state (2.3) but a slightly different one. In the case of AdS3 we can do this explicitly

and say that an operator inserted at a point (z0 = eiθ0 , φ0) along the Euclidean boundary

(with −π ≤ θ0 ≤ 0 ) creates a particle with the Lorentzian wavefunction

φ(t, x, φ) ∼ (1 + uv)2∆
{

(1 − uv)[cosh( 2π(φ−φ0+2πn)
β ) − 1] + (u− e−iθ0)(v + eiθ0)

}2∆
(2.7)



It is easy to see that this wavefunction has positive frequency, in the Hartle-Hawking sense.

We could form other wavefunctions by convoluting the operator with appropriate functions

of the boundary point. In principle we can also insert particles by acting with operators

in the far past in the Lorentzian description. From the CFT point of view this is clear.

The fact that we can create particles in region IV (see fig. 1) by insertion of boundary

operators is essentially the idea of complementarity [22].

Note that these particles are created by operators that are acting on both copies of the

field theory. As a simple example, let us replace the CFT by a single harmonic oscillator.

The state (2.3) becomes

|ψ〉 =
1√
Z
ee−βw/2a†

1a†

2 |0〉 (2.8)

This state is related by a Bogoliubov transformation to the vacuum so that it looks like

the vacuum for the oscillators

ã†1 =cosh θa†1 − sinh θa2 , ã†2 = cosh θa†2 − sinh θa1

ãi|ψ〉 =0 , tanh θ = e−βw/2
(2.9)

We conclude that particles are created by the oscillators ã†i and these involve operators on

both decoupled theories.

It is also easy to see that the expectation value of the stress tensor for quantum fields

in the BTZ geometry diverges as we approach the singularities [23,24]. If we define the

stress tensor via a point splitting procedure, as explained in [18], then we will need to

compute the bulk-bulk two point function for fields in the interior. The two point function

can be obtained by summing over all the images. Away from the singularity the images

are spacelike separated. As we approach the singularity the images become light-like

separated and on the other side they would be timelike separated. The divergence of the

stress tensor is just due to the standard divergence of the two point function at lightlike

separated points.

A similar argument shows that for the rotating black hole in AdS3, i.e. the black

hole with angular momentum along the φ circle, the quantum stress tensor is singular at

the inner horizon [25]. The killing vector associated to the identification becomes lightlike

at the singularity. The generator of the identification is obtained by exponentiating the

action of this Killing vector. Once we exponentiate it is possible to get images that are

lightlike separated before we get to the singularity, in fact we get them as soon as we

cross the inner horizon. This does not contradict the statement in [11] that there are no



closed timelike curves within the fully extended Penrose diagram. What happens is that

a locally timelike curve joining two timelike separated images goes through the so called

“singularity”. Due to this divergence of the stress tensor we can only trust the geometric

description up to the inner horizon.4

These eternal black holes with angular momentum along the φ circle are dual to the

same two copies of the CFT but now instead of the state (2.3) we have

|Ψ〉 =
1

√

Z(β, µ)

∑

n

e−
βEn

2 −
βµℓn

2 |En, ℓn〉1 × |En, ℓn〉2 (2.10)

where µ is the chemical potential for momentum along the circle and ℓn denotes the angular

momentum of the state. We can do a similar construction for any other conserved charges

of the CFT to describe charged black holes in AdS, see [1].

Given that the boundary description, in principle, describes the interior one would like

to give a precise prescription for recovering the approximately local physics in the interior,

i.e. we should be able to describe approximately scattering amplitudes measured by an

observer who is behind the horizon and falling into the singularity. If interactions between

bulk particles are weak it is easy to give a prescription. We can map initial and final

states to states in the CFT as we described above and then we can compute the overlap

between initial and final states in the CFT. This can be viewed as mapping all states to the

t = 0 slice and computing the inner product there. This is also equivalent to computing

amplitudes by analytically continuing to Euclidean space in the way we explained above. If

interactions are strong the particles will scatter many times before we evolve back to t = 0.

Though in principle we can do the computation it would be very hard in practice to extract

the desired amplitude. This problem is present not only for black hole spacetimes but also

in usual AdS/CFT. It is the problem of extracting local bulk physics from the CFT. The

mapping between the state in the CFT and multiparticle states in the bulk can be very

complicated, see for example [27]. Certain situations, where particles get well separated

from each other after a time of order the AdS radius can be described as explained in [28].

On the other hand if we have a large number of particles with multiple interactions within

an AdS radius then it becomes complicated to state how to recover local computations in

the interior.

As an aside, let us note that another situation with two boundaries is the case of

AdSd+1 space written with AdSd slices. The system in this case is dual to two field

4 A related remark was made in [26].



theories defined on AdSd which are coupled by their boundary conditions on the boundary

of AdSd (see [29]). Indeed, in the bulk spacetime one can send signals between the two

AdSd boundaries. This is different from the situation we considered above, where the two

field theories where decoupled. In our case we do not expect to be able to send signals

between the two boundaries and indeed in the geometry we find that they separated by a

horizon.

If we start with a CFT with only one connected boundary we cannot get geometries

with two disconnected boundaries because they would have infinite action. When we spec-

ify the CFT and say on which space it lives we are implicitly giving a set of counterterms

for the gravity solution. If we start with only one boundary then there could exist ge-

ometries which have additional boundaries but they will have infinite action and will not

contribute to the computation if we do not include the counterterms for the extra compo-

nents of the boundary. These counterterms are local and depend only on the asymptotic

structure of the solution [8,30], but we need to say over which surfaces they are integrated.

This choice of surface is the choice of space over which the field theory is defined. Notice

in particular that we are not interpreting fig. 3 as a gravitational instanton giving the

amplitude to create two boundaries. The action of the euclidean instanton is infinite, if

we do not include the regularizing counterterms on the Euclidean boundary. Including the

boundary conterterms is specifying precisely what theory we have, it is saying that we have

precisely the Euclidean field theory on a very specific geometry. The process depicted in

fig. 3 should be thought of as the process that prepares the entangled state, both in field

theory and in gravity.

If the curvature of the boundary is positive and we are in Euclidean space it was

shown in [31] that the boundary cannot have disconnected pieces. If the boundary has

negative curvature one can have several disconnected pieces. In the case of AdS3 we expect

to be able to consider the field theory on negatively curved Riemman surfaces as long as

we are not at a singular point of the CFT [32]. In this situation it would be interesting to

understand the meaning of Euclidean geometries with disconnected boundaries.

Finally let us notice that in the case of AdS3 there are many interesting Lorentzian

spacetimes that have multiple boundaries [33]. These can be obtained by gluing suitable

Euclidean geometries [34]. These geometries also have the interpretation of being several

copies of the CFT in a entangled state that can be obtained by doing the path integral of

the Euclidean theory on the boundary of the Euclidean geometry. In the next subsection

we discuss examples of black holes with one boundary.



2.1. Black holes with only one boundary5

One can take quotients of the eternal black hole spacetime in fig. 1, and obtain black

hole spacetimes with only one boundary. The main idea is to quotient by a map that acts

as a reflection x → −x on the Kruskal coordinates (2.2) (in other words u ↔ v). This

action can be accompanied by many other Z2 actions on the full theory. One possibility,

which was discussed in detail in [35], is to also map a point on Sd−1 to its antipodal point,

this has the advantage of being a non-singular quotient. In the full string theory one

might need to accompany this action with an orientifold action, etc. These black holes are

particular pure states in one copy of the conformal field theory that lives on the boundary

of AdSd+1. By thinking about patching a Euclidean solution at a moment of time reversal

symmetry it is easy to construct these states, both the state in the boundary CFT and

the state for quantum fields in the bulk.

τ=β/2

τ=0

τ=β/4

τ=β/2

τ=0

τ=β/4 t=0

(a) (b)

(d)(c)

t=0

Fig. 5: Z2 quotients of the eternal black hole. In (a) we see the Z2 quotient of the

CFT. It is a Euclidean cylinder going between two boundary states. These could

be cross caps, so that we get a “Klein bottle”. In (b) we cut (a) along the doted

lines and view the resulting state as the t = 0 quantum state which is then evolved

using Lorentzian evolution. In (c,d) we see the bulk gravitational description of

(a,b). The vertical doted line indicates that the left and right sides are identified.

In (c) the boundary cylinder of (a) is represented as the arc going from τ = 0 to

τ = β/2.

5 This subsection originated in conversations with G. Horowitz.



Let us start with the CFTd on a space which is (S1
β × Sd−1)/Z2 where Z2 acts by

mapping a point on Sd−1 to its antipodal point and by a reflection (τ → −τ) on the

circle S1
β. The length of S1

β before we do the quotient is β. The geometry thus obtained

is non-singular, it is a “Klein bottle” (it is the Klein bottle for d = 2). If we cut this

Euclidean geometry at τ = β/4, were τ is a point on S1
β , we get two copies of a “Moebius

strip” (it is the usual Moebius strip for d = 2). The boundary of this “strip” is Sd−1. So

the path integral of the Euclidean theory over this “strip” produces a state of the CFT on

Sd−1. The d = 2 version of this construction is very familiar, we produced the crosscap

boundary state evolved by β/4 with the closed string Hamiltonian, which is a state in the

closed string Hilbert space. In summary, we have produced the state of the Lorentzian

CFT at t = 0 by a Euclidean path integral over a “Moebius strip”.

Now let us discuss the dual gravity description. Let us start with the Euclidean

theory. There are (at least) two ways of filling in the Klein bottle which are related to the

two ways of filling in S1
β × Sd−1 [36]. One way of filling it in is with a space of topology

D2 × Sd−1, this is the Euclidean Schwarzschild AdS black hole. The Z2 quotient gives a

non-singular space. This geometry has a time reflection symmetry at τ = β/4. The spatial

geometry of this slice is that of the t = 0 section of the quotiented Kruskal diagram of a

black hole in AdSd+1, so we can patch the Lorentzian solution to the Euclidean solution.

This is represented pictorially in fig. 5d. As we explained above for the eternal black hole,

this construction determines, in a precise way, the quantum state for the fields in the

Lorentzian solution. Particles in the interior are obtained by inserting operators in the

Euclidean geometry as in fig. 4. Some aspects of this quantum state were discussed in [35].

In the AdS3 case the supergravity correlators were computed in [35] and are given, again,

by the method of images, except that now we have to include images under the Z2 action

also. This implies that we essentially have to add (2.5) and (2.6) together.

We can consider other Z2 quotients. For example, we can choose a Z2 which purely

reflects the Euclidean time direction and does not act on the sphere. This Z2 action has

fixed point on the boundary. In fact, this can be interpreted as a conformal field theory

with a boundary. All we have to do is to substitute the crosscap in the above discussion,

and in figure fig. 5, by a usual Cardy boundary state.

In all of our discussion in this section we have assumed that we can actually do this

Z2 orbifold. Both in the field theory and in string theory we have to be careful about the

presence of spinors, so that the Z2 will also have to act on them appropriately. In order

to make the discussion more concrete let us mention two examples of Z2 actions we could



consider. As an example where the Z2 action does not have fixed points on the boundary

consider AdS3 × S3 × T 4. The Z2 action is an orientifold together with the following

geometrical action the Euclidean time direction, it shifts the circle S1
φ by π (this is the

antipodal map for the circle) and it sends g → g†, where g ∈ SU(2) describes the S3.

As an example of a Z2 action with fixed points on the boundary consider the following.

Start from the field theory that results from taking the low energy limit of coincident M2

branes which is dual to AdS4 × S7. Take the Z2 to be a reflection on S1
β as in [37].

This introduces a boundary in the Euclidean field theory, the M2 branes can end on this

boundary. The state is prepared from the boundary state via Euclidean evolution as

above. In this case the vertical doted line in fig. 5 is an end of the world ninebrane in 11

dimensions. In fact the M2 brane is stretched between an end of the world ninebrane (at

τ = 0) and an end of the world anti-ninebrane (at τ = β/2), as in [38]. Its worldvolume is

Iβ/2 × S2, where Iβ/2 is an interval of length β/2.

Even though the black hole is given by a pure state we expect to find approximate

thermal answers if we do measurements that involve a very small subset of degrees of

freedom. When we only probe part of the system the rest of the system is acting as a

thermal reservoir at temperature β.

3. Remarks about information loss

The information loss paradox [39] becomes particularly sharp in AdS because we can

form black holes that exist for ever. The information loss argument in [39] says that

after matter collapses into a black hole all correlators with the infalling matter decay

exponentially. In [12] it was argued that computations done at late times will be the same

as computations done in the full extended Schwarzschild geometry. These computations

show that only thermal radiation comes out and therefore information gets lost. In the

case of black holes that evaporate in finite time there are some residual correlations with

the initial state. These correlations are of the order of e−ctevap/β ∼ e−c′S where tevap is the

evaporation time for Schwarzschild black holes in flat space and c, c′ are some numerical

constants. In the case of black holes in AdS the black hole lives for ever so one can wait

an arbitrary long time for correlations with the initial state to decay.6

Here we will consider the simplest possible deformation of the perfectly thermal

Schwarzschild AdS state and we will show that, indeed, correlations die off exponentially

6 For other discussions of information loss in AdS/CFT see [40].



fast. The simplest possible deformation of the thermal state is to add an operator in the

second boundary. From the point of view of the first boundary this is a small change in

the thermal ensemble. This change is detectable. Indeed we can compute the one point

function of the same operator in theory one. This correlator is zero in the perfectly thermal

ensemble (when there is no operator on boundary two), but it is non-zero in the deformed

ensemble. This non-zero value is given by (2.6). In agreement with the arguments in

[39][12], this correlator decays exponentially fast as e
−ct

β where c is a numerical constant.

If we wait a sufficiently long time this correlator goes to zero. This is not what we expect

if we make a small change of the density matrix in a unitary theory, such as the boundary

CFT. In some sense, we can say that the extended AdS Schwarzschild spacetime is “more

thermal” than a thermal state in a unitary theory. This is a version of the information

loss paradox. It is a particularly sharp version of the paradox since the calculation is very

well defined.

It has been suggested that string theory, being a theory of extended objects, invali-

dates arguments based on local field theory, such as the arguments that lead to information

loss. It is therefore natural to ask if these effects could solve the paradox that we have just

presented. The BTZ black hole in AdS3 is particularly useful to test this idea. We can

embed AdS3 in string theory in such a way that strings moving in AdS3 are described by

an SL(2, R) WZW model. Two point correlation functions in AdS3 computed using string

theory have the same functional form as in field theory [41][42]. This is easy to understand

since both are restricted by conformal invariance (i.e. global SL(2, R)2 invariance). The

BTZ black hole is a quotient of AdS3. The standard orbifold rules imply that the correla-

tion function is given by “summing over the images”. This prescription gives the stringy

version of the Hartle-Hawking state. This produces a result that has the same functional

form as in field theory (2.5)(2.6). This shows that tree level string theory does not solve

the problem. One could think that higher loops in string theory would solve the problem,

this might be possible, but as we will see below this expectation seems unfounded.7

Before we go on looking for corrections we should ask: How big are the expected

correlations? We now show that a correlation that is consistent with unitarity could be as

7 In the case of the SL(2,R) WZW model we find that one loop corrections diverge as explained

in [43]. This is related to the fact that the thermal ensemble is unstable since the black hole

can evaporate by emitting long strings. In stable thermal ensembles we do not expect such a

divergence.



small as of order e−cS where S is the entropy of the ensemble and c is a numerical constant.

Instead of presenting a general argument, let us do a calculation in a free field theory and

see that correlations as small as e−cS are possible. The field theory we will consider is

similar to the so called “long string model” of the black hole [44]. We consider a single field

X(τ, σ) that lives on a circle of radius k where k ∼ RAdS

G
(3)
N

, so that σ = σ+2πk. The operator

that we will consider is O =
∑

n ∂X∂̄X(τ, σ + 2πn). We can use the standard formulas

of finite temperature field theory [13] to compute the two point correlation function of an

operator inserted in the second copy with an operator inserted on the first copy.

〈O1(τ, σ)O2(0, 0)〉Free ∼
∑

m







∞
∑

n=−∞

1
(

cosh( 2π(t+2πmk)
β

) + cosh( 2π(φ+2πn)
β

)
)2






(3.1)

We see that the quantity in square brackets has the form of the gravity result (2.6) and

the role of the sum over m is to make the result periodic in time, under t → t + 2πk.

This periodicity follows from the fact that all energies in this free theory are multiples of

1/k. We notice, however, that between two maxima this function is very small, it is of

order e−(2π)2k/β ∼ e−cS as we wanted so show. In a full interacting field theory we do not

expect to find a periodic answer, but this calculation shows us that the correlations can

be as small as e−cS . Since the entropy is proportional to 1/GN we see that these could

come from non-perturbative effects, so there would be nothing wrong if we did not see any

effect in string perturbation theory.

Let us return to the eternal black holes in AdS. The correlation functions in the

boundary field theory clearly cannot decay to zero at large times. The problem is solved

once we remember that the AdS/CFT prescription is to some over all geometries with

prescribed boundary conditions. In particular, the euclidean thermal ensemble has other

geometries besides the one we included so far. One of them is that of an AdS space

with euclidean time periodically identified. This is a geometry with topology S1 × Bd.

The fact that we should sum over geometries in the Euclidean theory was emphasized in

[45,36,19,46]. Since we can view the Euclidean path integral as defining our initial wave

function we will also get other geometries that contribute to the Lorentzian computation.

The geometry that provides the effect that were are looking for consists of two separate

global AdS spaces with a gas of particles on them. This gas of particles is in an entangled

state. This piece of the wavefunction originates from a Euclidean geometry which is an

interval in time of length β/2 in global Euclidean AdS. The Euclidean evolution by β/2 is



responsible for creating the entangled state for the gas of particles. Now if we compute the

two point correlator in this geometry we indeed get a non-decaying answer. This geometry

is contributing with a very small weight due to its small free energy (remember the factor

Z(β)−1/2 in (2.3)) compared to the AdS Schwarzschild geometry. In fact the size of the

contribution is of order e−β(FAdS−FBlack−hole) ∼ e−c′S where c′ is some constant. So we get

the right amplitude for the non-decaying correlator.

It was argued in the past that the sum over geometries would destroy unitarity since

it would involve black holes. It is amusing to note that here the sum over geometries is

involved in restoring unitarity.8 The fact that the sum over geometries can restore unitarity

was observed in [47,48].

One could ask how to restore unitarity in the case that we start with a pure state in a

single copy of the field theory. In fact we can consider the Z2 quotients we discussed above,

which produce black holes with a single boundary. The two point correlation function also

decays exponentially in this case. Once we remember that there are other ways of filling in

the geometry we realize that we get non-decaying contributions to the correlation function.

Finally let us remark that even though we chose to compute a correlator between

theory two and theory one, we could have computed a correlator between two insertions in

theory one. This could be viewed as throwing in a particle in a perfectly thermal state and

asking whether we can see any change in the state at late times. If we look at (2.5) carefully

we can also see that these correlations decay exponentially in time (we need to convolute

with a smooth function at the initial point taking into account the iǫ prescription).

4. Conclusions

We have seen how to describe, in principle, the spacetime corresponding to extended

AdS Schwarzschild geometries. More precisely, the AdS Schwarzschild geometry appears

as the saddle point contribution of a more complicated sum over geometries. This gives,

in principle, the resolution of the spacelike singularities in the interior of black holes.

These spacetimes are very interesting since they are simple cosmological spacetimes. The

resolution of the singularities in this case reduces simply to the specification of initial

8 G. Moore reminded me of the connection between unitarity in the lorentzian theory and

modular invariance in the Euclidean theory. In the AdS3 case the sum over geometries was required

by modular invariance [19,46]. In string perturbation theory this connection is well known, we

see it appearing again in a (apparently) different context.



conditions in the full system, the full system includes other classical geometries as well.

There are many initial conditions corresponding to different particles coming out of the

white hole singularity. The wavefunction |Ψ〉 (2.3) is a very special choice for which we

have a geometric interpretation. Of course these “cosmologies” are very unrealistic since

they are highly anisotropic (but notice that by considering black holes in AdS4 they can

be four dimensional). These solutions show that it is possible to have cosmological looking

spacetimes in non-perturbative string theory. If we start the system in the state (2.3) and

we let it evolve, after a time of order β we expect that the geometric description would

break down for an important part of the state. But since the evolution is just adding

phases to the state, by the quantum version of the Poincare recurrence theorem after a

very long time will get arbitrarily close to the initial state and therefore we would recover

the geometric interpretation, but with slightly different initial conditions, so that we will

not have the H-H state but we will have the H-H state with some particles coming out of

the white hole singularity. Interpreted as a cosmology, the universe gets to start over and

over again and the initial conditions change slightly every time.

It would be very nice to understand more precisely how to describe local processes in

the interior in terms of the boundary theory.
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