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A ‘‘bubble universe’’ nucleating in an eternally inflating false vacuum will experience, in the course of
its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the
rate of collisions around an observer inside a given reference bubble. We show that the collision rate
violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can
be related to ‘‘the beginning of inflation’’ in the parent false vacuum, and any observer not at the center
will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory
of the onset of inflation persists no matter how much time elapses before the nucleation of the reference
bubble.
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I. INTRODUCTION

In a theory with different metastable vacua, such as the
landscape of string theory [1,2], the process of eternal
inflation may lead to a ‘‘multiverse’’ where different re-
gions of space-time are occupied by different vacua. A
region occupied by vacuum A may spawn regions of other
vacua B, C, D . . . which are adjacent in field space.
Daughter regions will in turn spawn their offspring, and
so on, producing an infinite tree of ‘‘pocket universes.’’

Vacua can evolve by a mix of semiclassical tunneling
and stochastic evolution, but in this paper we will consider
only tunneling. In that case, bubbles form by random
nucleation and then start to expand into the parent vacuum
with constant acceleration. The interior of the growing
bubble has the geometry of an open Friedmann-
Robertson-Walker (FRW) universe [3], and (assuming
that a short period of slow-roll inflation flattens it out to
satisfaction) we may entertain the possibility that we live in
one of such ‘‘bubble universes’’ [4].

The above description, however, is incomplete because
it ignores collisions with other bubbles. Collisions may be
quite rare if the nucleation rates are small. Nonetheless, a
bubble expands for an infinite amount of time, and will
collide and merge with an infinite number of other bubbles,
forming an ever growing ‘‘cluster.’’

We should therefore reevaluate the naive picture of a
smooth FRW universe on large scales. In particular, we
may ask what fraction of the FRW universe remains un-
affected by collisions. As we shall see, only a set of
measure zero remains unaffected. If this is supposed to
describe our local universe, there seems to be reason for
concern. Why have not we seen any collisions yet? Do we

have much time left until we are blown away by a colli-
sion? What is the expected distance to the nearest point in
our FRW time slice which has already been hit by another
bubble? The purpose of the present paper is to explore
some of these issues.

In the course of this investigation we have stumbled
upon a rather remarkable result. We find that the rate of
collisions around a typical observer in the bubble universe
is anisotropic, and the origin of this anisotropy is related to
the beginning of false vacuum inflation.

A metastable inflationary de Sitter phase can be eternal
to the future, but not to the past. More precisely, the
inflating region of space-time is geodesically past-
incomplete [5], and therefore some initial conditions
must be specified on the past boundary of this region. For
instance, we may posit that at some initial time, a given
large region of space is in false vacuum. The congruence of
geodesics normal to the initial time surface defines a
preferred frame, with respect to which velocities can be
defined.

The standard lore is that this preferred frame is not
important, and that the initial conditions are soon for-
gotten. This may be true for geodesic observers in the false
vacuum phase, whose velocity with respect to the preferred
congruence redshifts exponentially with time. For those
‘‘comoving’’ observers, memory of the initial surface is
lost as we push the surface far away into the remote past.
However, when a bubble of a new phase forms in the
original false vacuum, the congruence of observers in the
FRW open universe includes observers with velocities
arbitrarily close to the speed of light relative to the pre-
ferred congruence. Such individuals are not ‘‘far’’ from
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some points on the initial surface, and may have a chance
to detect some information about the beginning of inflation.

The plan of the paper is the following. In Sec. II we
describe the geometry and statistics of collisions onto a
given reference bubble. In Sec. III, we consider the anisot-
ropies in the bubble distribution as seen by observers inside
a reference bubble. The origin of these anisotropies is
further discussed in Sec. IV in a simplified context, where
the observer is in false vacuum rather than inside the
bubble. Section V is devoted to conclusions. Some techni-
cal details are left for the appendices.

II. COLLISIONS ONTO A REFERENCE BUBBLE

Here, we shall derive some basic results concerning the
distribution of collisions impinging on a given reference
bubble. We begin with a description of the basic setup we
shall consider.

It is convenient to use flat de Sitter coordinates to
describe the background inflating false vacuum,

 ds2 � dt2 � e2Ht�dr2 � r2d�2�: (1)

To simplify the equations, we shall choose units so that

 H � 1: (2)

To simplify matters further, we shall assume that the
vacuum energy density inside the bubbles is nearly the
same as that outside (at least for a sufficiently long time
after bubble nucleation) and that the gravitational effect of
bubble walls is negligible. Then the metric is

 ds2 � dt2 � e2t�dr2 � r2d�2� (3)

in the entire space-time region of interest.
It is also useful to consider the ‘‘embedding’’ of de Sitter

space as a timelike hyperboloid of unit radius, in a 5
dimensional Minkowski space, whose rectangular coordi-
nates are labeled V, W and ~X � �X; Y; Z�:

 

~X 2 �W2 � V2 � 1: (4)

These are related to the flat chart coordinates t and ~x �
�x; y; z�, (r � j ~xj), through

 W � V � e�t � etr2; W � V � et; ~X � et ~x:

(5)

Let us consider a ‘‘reference’’ bubble that nucleates at t �
r � 0 (we shall sometimes call this ‘‘our’’ bubble). In the
embedding coordinates, this corresponds to

 W � 1; V � ~X � 0: (6)

The bubble geometry is symmetric under boosts which
have the nucleation event as a fixed point. These form an
O�3; 1� group of isometries.

The interior of the bubble (or more precisely, the interior
of the light cone from the nucleation event) is described by
the line element

 ds2 � d�2 � sinh2��d�2 � sinh2�d�2�: (7)

The coordinates �t; r� and ��; �� are related by

 et � cosh�� cosh� sinh�; (8)

 etr � sinh� sinh�: (9)

We set the initial condition that there are no bubbles at
some t � ti. This breaks the residual O�3; 1� invariance of
the bubble, which is responsible for the homogeneity and
isotropy of our FRW universe. Consequently, not all ob-
servers who live in the open FRW universe will see the
same.

A. Collisions around the observer at � � 0

Let us now concentrate on the distribution of collisions
around the point � � �obs � 0, which is at the origin of the
open FRW hyperboloid. We leave the consideration of
typical observers, who live far away from the origin, to
Secs. II B and III.

The distribution around �obs � 0 will of course be iso-
tropic. In particular, we shall be interested in the typical
distance at which we might expect the nearest collision. In
what follows, we shall calculate the probability P��; �� that
no collisions with other bubbles have affected a spherical
region of radius � around the origin, on a hypersurface of
constant �.

As a warm up exercise, let us consider the following
question. Assuming that the point t � r � 0 is still in false
vacuum, what is the probability that some bubble will have
hit the surface t � 0 at some r � r0? The relevant quantity
is the 4 volume inside the past light cone of the circle r <
r0 minus the 4 volume inside the past light cone of the
origin r � 0 (see Fig. 1). The physical radius of the past
light cone from the origin is R0�t� � 1� et (t < 0),
whereas the radius of the past light cone from the circle
of radius r0 is R1�t� � R0�t� � r0e

t. The volume of the
gray shaded region in Fig. 1 is thus given by

 V 4�r0; ti� �
4�
3

Z 0

ti
�R3

1 � R
3
0�dt

�
2�
9
�6r0 � 3r2

0 � 2r3
0� �O�e

tir0�: (10)

Note that this is finite (for finite r0) even in the limit when
the initial surface is pushed all the way to ti ! �1. For a
region of a Hubble size, we have

 V 4�1; ti ! �1� �
22�

9
:

Hence, the probability of having a bubble one Hubble
distance away from ours at t � 0 is of order of the nuclea-
tion rate per unit volume �, which we shall assume to be
small (�� 1 in the units where H � 1). The distance to
the nearest bubble at t � 0 can be estimated from the
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condition �V 4 	 1. From Eq. (10), this distance will be of
the order r0 	 �

�1=3.
Next, we may consider the same question on a � � const

hyperboloid. Past directed radial null rays define a map-
ping between points on the hyperboloid at some distance �
and points on the ‘‘bubble cone,’’ by which we mean the
future light cone from the nucleation event. The bubble
cone is given by the equation

 r�t� � 1� e�t; �t > 0�: (11)

The flat chart coordinates of points on the hyperboloid can
be found from Eq. (9). The past directed outward radial
null geodesic from a point ��; �� is given by

 r�t� � e�t � F��; ��; (12)

where

 F �
sinh� sinh�� 1

cosh�� cosh� sinh�
: (13)

Note, in particular, that for � � 0, we have F � �e��,
whereas for large � and �, we have

 F��; �� 
 1� 2e�� � 2e�2� � 4e���� ��; �� 1�:

(14)

The intersection of the null geodesic (12) with the bubble
cone (11) is at

 e�tc �
1� F

2
; rc �

1� F
2

: (15)

(Incidentally, the intersection with the plane at t � 0 is at
r0 � 1� F < 2.)

It will be very convenient to use Eq. (12) as the definition
for a change of variables, to replace r in favor of F. The
different values of F can be thought of as labeling the
different past directed outward radial null rays emanating
from a given �, on a � � const hyperboloid, as indicated
by Eq. (13). More explicitly, we introduce

 a � et; F � r� e�t; (16)

in terms of which the metric reads

 ds2 � 2dadF� a2dF2 � �1� aF�2d�2: (17)

This form of the metric is completely regular at a � 0
(which corresponds to the boundary of the flat coordinati-
zation). In fact, the new chart (17) covers the whole of
de Sitter space, when we let the coordinates vary in the
range �1< a<1, �1<F <1, with the restriction
aF >�1. Negative values of a correspond to the part of
de Sitter space not covered in a flat chart.

Let us assume that, on a given � � const hyperboloid,
the origin � � 0 has not yet been hit by a bubble, and let us
ask what is the typical distance at which we may expect the
nearest collision. The probability that no collisions have
affected a region of coordinate radius � around the origin is
given by

 P��; �; ti� � e��V4 ; (18)

where � is the nucleation rate, and V4 is the relevant 4
volume to the past of a spherical region of radius � on the
hyperboloid. Here, we must subtract the contribution from
the interior of the past light cone of � � 0 (this is because
we assume � � 0 has not been hit by any bubbles), and
also the intersection with the interior of our bubble, since
we assume that no new bubbles can nucleate inside of our
bubble. We may express this 4 volume as

 V4��; �; ti� � 4�
Z
e3tr2 dr dt

� 4�
Z
e3t�e�t � F�2 dF dt

� 4�
Z
�1� aF�2 da dF: (19)

The evaluation of V4 is simplest in the �F; a� coordi-
nates. This is because the light cones are bound by null
geodesics with F � const. Hence, the integration limits for
F in (19) are independent of a,

 � e�� < F < F��; ��:

The lower limit corresponds to the center of the hyperbo-
loid � � 0. The integration range for t depends on F: ti <
t < tc�F�, where tc is given in (15). Here we are approx-
imating the boundary of our bubble by the ‘‘bubble cone,’’
which is justified when the size of bubbles at the time of
nucleation is much less than the Hubble radius. In terms of

our bubble

t=t =0

=0=

=
const.

=
const.

(t c( ), rc( ))( c( ) c( ))

rr

r=r =0

r0r = r0

FIG. 1. Region in gray shade, V 4�r0� can nucleate bubbles
which will be within the distance r0 from the origin (on the flat
surface t � 0). Here, we assume that the point r � t � 0 is still
in false vacuum. Region in horizontal stripes, V4��; ��, can
nucleate bubbles which will collide with ours, and which will
be visible within a coordinate radius � from the origin (on the
� � const hypersurface). Here, we assume that the center point
� � 0 has not yet been hit by any bubble.
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a � et, the range is given by

 ai < a < 2=�1� F�:

Performing the double integral, we have
 

V4��;�; ti� �
8�
3

�
2F

�1�F�2
� ln�1�F��O�aiF�

�
F��;��

F��e��
;

(20)

where the upper limit is given by (13). Note that the 4
volume takes a finite value in the limit when the initial
surface is pushed into the remote past ai ! 0.

Defining V4��; �� � limti!�1V4��; �; ti�, we find
 

V4��; �� �
8�
3

�
e� sinh�tanh2

�
�
2

�

� ln
�

1�
1

2
�1� e����e� � 1�

��
: (21)

In particular, for �� 1, we have

 V4��; �� 
 4���O��2� ��� 1�; (22)

 V4��; �� 

4�
3
e2� �O��� ��� 1�: (23)

The typical coordinate distance to the nearest bubble is
found from �V4 	 1, and for small nucleation rates, ��
1, it is of order

 ��	 ln�1=��: (24)

Note that this is independent of �. This is to be expected,
since (for � * 1) the products of collision are ‘‘frozen in’’
with the expansion of the universe during the period of
inflation inside the bubble. Here, for simplicity, we have
approximated this period as a de Sitter phase with the same
expansion rate as the false vacuum. In a more realistic case
we should consider a period of slow-roll inflation, followed
by a standard decelerating phase. If this phase leads to a
Minkowski vacuum, all products of collision would gradu-
ally fall within the horizon, and eventually hit any observer
inside the bubble. (This is explicitly shown at the end of
Appendix A, where we calculate the rate at which an
observer in Minkowski vacuum would see new bubbles
falling into his field of view.) On the other hand, our own
universe does not seem to be approaching a Minkowski
vacuum. Rather, it appears to be accelerating again, and
collisions with other bubbles may forever remain hidden
behind the cosmological horizon.

The curvature radius of the FRW universe corresponds
to ��	 1. Current observational bounds on the spatial
curvature imply [6] �a0H0�

�2 � j1��j & 10�2, where
the subindex 0 indicates the present time. The coordinate
size of the observable universe is given by ��0 	
�a0H0�

�1. Hence, the observer at the center of the hyper-
boloid �obs � 0 can only see out to coordinate distances
��0 & 10�1. Using (18) and (22), the probability that this

observer may see any collisions at all is given approxi-
mately by

 1� P���0� 
 1� e�4����0 & �� 1:

This issue will be discussed further in Sec. III, and also in
Appendix A. In the appendix we show that the asymptotic
expressions (22) and (23) are valid also for the relevant
four volume in the neighborhood of any observer (at
�obs � 1) who has not yet been hit by a bubble. This
means that we are very unlikely to be hit by a bubble at
any time in the future.

The expected physical distance to the collision nearest to
� � 0, at the time when inflation ends, can be estimated as

 d � Z ln�1=��; (25)

where Z	 sinh�f is the slow-roll expansion factor (�f is
the time at the end of inflation inside the bubble). Here we
have worked in a simplified scenario where H is the same
in false vacuum as it is in the period of slow-roll inflation
inside the bubble. In the general case, the expression for d
will be more complicated, but the dependence on Z and �
will be similar.

B. Fractal dimension of the bubble universe

The worldline of a given point ��;�� on the wall of the
reference bubble will sooner or later be hit by other bub-
bles, with probability equal to one. This follows from the
fact that there is a finite probability per unit time t for this
worldline to be hit by other bubbles (see Sec. IV for a
rigorous derivation of this statement). Hence, the fraction
of the bubble wall area that makes it to future infinity
without collisions is a set of measure zero.

The effect of collisions onto the reference bubble prop-
agates into the open FRW universe. On the hyperbolic slice
� � const, each collision affects a ‘‘wedge’’ shaped region,
whose tip points towards the origin and which extends all
the way to �! 1, spanning a finite asymptotic solid angle
at spatial infinity. Let us denote by �c the distance from the
tip of the wedge to the origin, and let us calculate the
asymptotic angular radius of the wedge, �w, as a function
of �c.

It is convenient, again, to use the coordinates a, F of the
chart (17). A bubble that nucleates at time a has asymptotic
comoving radius 1=a at future infinity. A bubble nucleating
at point F will have its center displaced a distance r �
F� a�1 from the origin, and its boundary at future infinity
will have comoving Cartesian coordinates satisfying:

 x2 � y2 � �z� F� a�1�2 � a�2: (26)

(Here we have assumed that the center is on the z axis.) The
future boundary of the reference bubble (which nucleates
at t � r � 0) is given by

 x2 � y2 � z2 � 1: (27)

The intersection of both is at
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 z � cos�w �
1

2

a� 2F� aF2

1� aF
: (28)

Note that �w corresponds to the asymptotic angular radius
of wedges corresponding to bubbles nucleated at �a; F�.

On a hyperboloid with � * 3, large � corresponds to
1� F 
 2e���1� cosh��= sinh� 
 2e��. From (19), the
bubbles which affect this region nucleate in a four-volume
dominated by the largest possible a,

 a	
2

1� F
	 e�:

From (28), The typical angular size of wedges whose tip is
at �c � 1 is therefore

 �w��c� 	 e
��c � 1: (29)

Let us denote by �u��� the solid angle which remains
unaffected by collisions out to a distance � from the origin.
As � is increased, more and more wedges accumulate, each
one removing a solid angle 2��1� cos�w
 from �u. The
loss of solid angle due to wedges whose tip is in the interval
d� is given by

 d�u��� 
 �2��1� cos�w
�dV4 	��e�2�dV4; (30)

where dV4 is the region of four volume to the past of the
interval d�, in the unaffected portion of the sphere. Here,
we are making the approximation that wedges do not
overlap with each other. Also, we shall assume that a
wedge whose tip is at �c depletes a solid angle equal to
the corresponding asymptotic value (at �! 1) for all � >
�c. The four volume is approximately given by Eq. (19),
where 4� is replaced by �u���. Using (28), we have
 

2��1� cos�w
dV4 � ��u���
�Z 2=�1�F�

a�0
�1� F�

� �2� a�1� F�
�1� aF� da
�
dF

�
2��3� F�
3�1� F�

�u��� dF



4�
3

�u��� d�; (31)

where in the last step we have used F 
 1� 2e��.
Combining Eqs. (30) and (31), the solid angle which

remains unaffected by collisions as a function of � is given
by

 �u��� 
 4�e���; ��� 1�; (32)

where � 
 �4�=3��. The volume element on a spatial
section of an open FRW is given by dVFRW �
4�sinh2�d�. The volume which is unaffected by bubbles

 dV � �u���sinh2�d�	 2�e�2���� d�; (33)

is therefore unbounded and dominated by large distances
from the origin (assuming, of course, that �� 1).

Nevertheless, the unaffected volume fraction tends to
zero in the limit �! 1. The unaffected volume fraction
will be recalculated in the next section, using a method
which is exact in the context of our idealized model.

The fact that the unaffected part of the volume is a set of
measure zero might seem to be reason for concern.
Nevertheless, if we pick a random point in the unaffected
region, then the closest hit is likely to be quite far away.
Indeed, the number of bubbles hitting in the interval d� is
given by dN � �dV4. Using (29), (31), and (33) we find
that for large �,

 dN 	 �dV: (34)

Let us now pick a random point in the unaffected region, at
�� 1, and let us choose it as the origin of open FRW
coordinates. A spherical region of radius ��� 1 around
that point has coordinate volume V 	 e2��. Using (34), the
expected distance to the nearest bubble will be of order

 ��	 ln�1=��: (35)

This is the same result we found in the previous Sec. II A,
for the distribution around the privileged point at the center
of the hyperboloid. The coordinate distance (35) is large
enough that we should not be too concerned about the
hazard of future collisions.

Finally, let us characterize the fractal dimension of the
unaffected part of the bubble universe. Looking outward
from the center of the hyperboloid, we see finer and finer
‘‘wedges’’ carving away the solid angle as we increase �. If
we define a smearing angle � � e��, and ignore structures
smaller than �, the unaffected solid angle is �u��� 

4���. The number of sets of angular radius � which is
needed to cover this region is n	 ���2. Thus we can think
of

 D � 2� � � 2�
4�
3
� (36)

as the fractal dimension of the unaffected portion of the
‘‘celestial’’ sphere at �! 1. Clearly, this is also the fractal
dimension of the remaining surface of our bubble which
has not been hit by other bubbles at future infinity.

III. ANISOTROPIES IN THE DISTRIBUTION OF
COLLISIONS

To study collisions around points which are away from
the origin, it is useful to perform a de Sitter transformation
(Lorentz transformation in the embedding space) to a new
frame S0 where the point of interest is at the origin. This
greatly simplifies the geometry of the relevant past light
cones.

If the original point at large � � �obs was along the Z
direction, then we use the boost
 

V0 � 	�V � 
Z�; Z0 � 	�Z� 
V�;

X0 � X; Y0 � Y; W0 � W;
(37)
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with 
 � tanh�obs and 	 � cosh�obs, in order to bring the
point of interest down to �0obs � 0. In doing so, the initial
surface t � ti gets distorted and this is of course something
we have to consider.

In the embedding coordinates, t � ti corresponds to the
null plane

 W � V � eti � ai; (38)

which in boosted coordinates reads

 V 0 � 
Z0 � 	�1�ai �W0�: (39)

We can now express this in terms of flat chart coordinates
�t0; ~x0� by using the standard relations (5). This leads to

 sinht0 �
1

2
et
0
r02 � 
et

0
r0 cos�0

� 	�1

�
ai � cosht0 �

1

2
et
0
r02
�
: (40)

In terms of coordinates �a0; F0� analogous to the �a; F� pair
which we introduced in the previous section [see Eq. (17)],
the equation for the initial surface a � ai takes the more
tractable form a0 � a0i�F

0; �0; ai�, where

 a0i � 2
ai � 
	 cos�0 � �	� 1�F0

1� 	� 2
	F0 cos�0 � �	� 1�F02
: (41)

It should be noted that a0i can be negative for some values
of F0. This is not a problem. It just means that in the
boosted frame, the initial surface invades the portion of
de Sitter space not covered in the original chart.

It is interesting to calculate the probability that the FRW
observer at �0 � 0 (that is, � � �obs) will be affected by a
collision with another bubble before some specified time �.
This is related to the space-time volume available for the
nucleation of bubbles which lies in the past light cone of
the observation point ��0 � 0; ��, but which does not lie
inside our reference bubble, or inside the past light cone of
the nucleation event. This four volume increases with
proper time, in the following way

 dV4 �

�Z 2=�1�F0�

a0i

�1� a0F0�2 da0
�
dF0

d�
d� d�0; (42)

where d�0 � 2�d�cos�0�. The probability per unit proper
time and solid angle that our observer is hit by a bubble,
assuming that he was not already hit by a bubble, is given
by

 

dP
d� d�0

� �
dV4

d� d�0
: (43)

From Eq. (13), �0 � 0 corresponds to F0 � �e��, and
performing the integration over a0 we find

 

dV4

d� d�0
�

1

3

��
cosh�obs sinh�� cosh�� ai

cosh�obs cosh�� sinh�� sinh�obs cos�0

�
3

� tanh3

�
�
2

��
: (44)

Note that the result depends both on the point of observa-
tion �obs and on the direction of observation �0.
Homogeneity and isotropy are lost, even in the limit
when we push the initial surface all the way to ti ! �1,
i.e. ai � 0.

For any fixed nonzero value of �, the limit of (44) as
�obs ! 1 is given by

 

dV4

d� d�0
�

1

3

��
sinh�

cosh�� cos�0

�
3
� tanh3

�
�
2

��
: (45)

The existence of this limit is good news. The number of
observers grows without bound with the distance to the
center of the hyperboloid, and thus we expect that the
typical observer lives at very large �obs. He or she should
therefore measure the distribution (45). Also, the limit is
independent of ti. This is also interesting, since it means
that some specific details about the surface of initial con-
ditions do not seem to matter. Nevertheless, the distribution
is anisotropic, with the minimum number of hits per unit
time in the direction of the center of our reference bubble.
In this sense, memory of the initial surface persists. For
large �, the distribution takes the simple dipole form

 

dV4

d�d�0
� 2�1� cos�0�e�� �O�e�2��: (46)

Dipole anisotropies and memory of initial conditions are
not commodities one usually expects from inflation.
Although we find this result to be rather shocking, the
effect is real. Its origin is best understood by eliminating
the complications due to the bubble geometry, as will be
discussed in the next section. First, however, we would like
to study a bit further the implications of (44).

To find the total rate �dV4=d� at which bubbles will be
encountered by an observer who has not previously been
hit by a bubble, one can integrate (44) over solid angle. The
result is given by

 

dV4

d�
�

4�
3

�
�cosh�obs sinh�� cosh�� ai�

3�cosh�obs cosh�� sinh��

�cosh�obs sinh�� cosh��4
� tanh3

�
�
2

��
: (47)
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The dependence of this result on �obs shows us the inho-
mogeneity of the bubble collision rate. For the special case
of � � 0 the expression simplifies to

 

dV4

d�
�

4�
3
�1� ai�3 cosh�obs; (48)

which is highly inhomogeneous, while for large � the
expression becomes

 

dV4

d�
� 8�

�
1�

ai
cosh�obs � 1

�
e�� �O�e�2��; (49)

which shows that the inhomogeneity disappears when ti !
�1 (i.e., ai ! 0), and also when �obs is large.

We can continue by integrating (47) over �, from zero up
to an arbitrary value, thereby determining the total 4 vol-
ume available for the nucleation of bubbles that could
collide with an observer located at ��obs; ��. One finds
 

V4 �
4�
3

�
tanh2

�
�
2

�
� ln

�
�cosh2

�
�
2

���

� 4�
�
ai�1� �� �

1

2
a2
i �1� �

2� �
1

9
a3
i �1� �

3�

�
;

(50)

where

 � �
1

cosh�obs sinh�� cosh�
: (51)

This quantity represents the 4 volume of the region that is
in the past light cone of the point ��obs; ��, but is not inside
the reference bubble nor in the past light cone of its
nucleation event. This volume can be calculated directly
without making the coordinate transformation (37), and we
have verified that the results agree.

If an observer at � � �obs has not seen a bubble at time
�1, then the probability that she will not be hit by a bubble
by some later time �2 is determined by (50), with

 P � expf���V4��obs; �2� � V4��obs; �1�
g: (52)

It is particularly interesting to look at (50) for large �obs,
since a typical observer will be found at arbitrarily large
�obs. In that limit one finds that

 � �
2e��obs

sinh�
�

4 cosh�

sinh2�
e�2�obs �O�e�3�obs�; (53)

which is valid for any � � 0. Then
 

V4 �
4�
3

�
�obs � tanh2

�
�
2

�
� ln

�
tanh

�
�
2

��

� 2e��obs coth���
�

� 4�
�
ai �

1

2
a2
i �

1

9
a3
i � 2ai

e��obs

sinh�

�
�O�e�2�obs�:

(54)

Then, if we are interested in the limit �! 1, we find
 

lim
�!1

V4 �
4�
3
��obs � 1� 2e��obs� � 4�

�
ai �

1

2
a2
i �

1

9
a3
i

�

�O�e�2�obs�: (55)

The probability of a point not being hit by a bubble is given
by P � exp���V4�, so the leading term 4��obs=3 in the
formula above reproduces Eq. (32), which was used to
determine the fractal dimension.

IV. A MOVING OBSERVER IN DE SITTER SPACE

Even for an observer in the false vacuum, the bubble
nucleation rate and the angular distribution of bubbles
depend on the observer’s velocity relative to the ‘‘pre-
ferred’’ comoving congruence C which is determined by
the surface of initial conditions. Here, we give a self-
contained account of this effect.

Consider a de Sitter space with H � 1,

 ds2 � ��2�d�2 � dx2�; (56)

with �1<�< 0. The conformal time � is related to the
usual time vatiable as

 � � �e�t: (57)

We shall assume that there are no bubbles at some initial
moment � � �i.

Consider an observer at x � 0, � � �0, moving with a
velocity

 v � tanh� (58)

relative to the comoving observers of (56). We want to
know the probability for this observer to be hit by a bubble
per unit proper time (by his clock).

An infinitesimal proper time interval �� corresponds to a
coordinate displacement

 �� � j�0j�� cosh�; (59)

 �x � v��: (60)

The probability to be hit by a bubble is determined by the
space-time volume between the past light cones of the
points ��0; 0� and ��0 � ��; �x�. The first of these light
cones is given by

 jx1���j � �0 � � (61)

and the second is given by

 jx2 � �xj � ��� �0 � �: (62)

To linear order in ��,

 jx� �xj 
 r� j�0j�� sinh� cos� � r� v�� cos�;

(63)

where r � jxj and � is the angle between x and v, so we
can rewrite (62) as
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 r2��; �� � ���1� v cos�� � �0 � �: (64)

The space-time volume between the two light cones is
given by the integral
 

�V4 � 2�
Z �0

�i
d���4

Z �

0
d� sin�r2

1����r���

� 2���
Z �0

�i
d���4��0 � ��

2

�
Z �

0
d� sin��1� v cos��; (65)

where �r��� � r2��; �� � r1��� � ���1� v cos��. The
integration over � is easily done by a change of variable
� � �1=�,

 

Z �0

�i
d���4��0 � ��2 �

Z
d���0�� 1�2

�
1

3
�2

0��0 � �i�3: (66)

Substituting this into (65) and using Eq. (59) for ��, we
have

 �V4 �
2�
3
�� cosh�f�t0 � ti�

Z �

0
d� sin��1� v cos��;

(67)

where

 f�t� � �1� e�t�3 (68)

and t is the usual time variable which is related to � as in
Eq. (57).

Note that f�t� ! 1 as t! 1. In what follows we assume
the limit ti ! �1 and set f�t0 � ti� � 1.

The � integration in (67) is, of course, easily done; the
result is

 �V4 �
4�
3
�t; (69)

where

 �t � j�0j
�1�� � �� cosh� (70)

is the interval of time t corresponding to the proper time
interval ��.

The result (69) is easy to understand. We have two past
light cones, one has its origin at �t0; 0� and the other has its
origin shifted in both time and space directions.
Equation (69) tells us that the 4-volume difference �V4

depends only on the time displacement �t. And this is as it
should be. The volumes of the light cones do not change
when we shift them in the ‘‘horizontal’’ (space) directions,
so �V4 remains unchanged, as long as one light cone
remains entirely within the other.

All observers see the same bubble nucleation rate per
unit time t, but this corresponds to different rates per unit
proper time �,

 

�V4

��
�

4�
3

cosh�: (71)

There is thus a preferred frame, where � � 0, correspond-
ing to the lowest nucleation rate.

The distribution of the arrival directions of the bubbles is
also anisotropic. The angular distribution can be easily
read from Eq. (67),

 

d��V4�

��d�
�

1

3
cosh��1� v cos��: (72)

The velocity of a geodesic observer relative to the co-
moving frame decays as

 v�t� / e�t (73)

at large t, so the anisotropy rapidly disappears and the rate
approaches that for a comoving observer. However, when
we study bubble collisions and construct FRW coordinates
inside a bubble, the set of comoving observers associated
with these coordinates includes observers with arbitrarily
large values of v. This is the origin of the anisotropy
measured by typical observers in a bubble universe.

The frame dependence of the bubble arrival rate is
perhaps not too surprising. To the moving observer the
initial surface t � ti ! �1 looks rather odd. It is a null
surface which crossed the worldline of the observer a finite
proper time � in the past. This time has been calculated in
[5]; it is given by

 � �
1

2
ln
�
	� 1

	� 1

�
:

For �	� 1� � 1, the initial surface is many Hubble times
ago, and the difference from a comoving observer is small.
However, for 	� 1, the cutoff surface is only a small
fraction of the Hubble time away. No wonder it changes the
rate and introduces an asymmetry.

The connection between (72) and the results of the
previous section is not completely straightforward, and
deserves some comment. The main difference is that ob-
servers inside the bubble will not have any bubbles nucle-
ating in their immediate neighborhood (since we assume
that bubbles can only nucleate in false vacuum).

Near the surface � � 0, corresponding to the origin of
time in the open chart, this difference becomes irrelevant.
For � � 0, Eq. (44) gives

 

dV4

d�d�0
�

1

3	3�1� 
 cos�0�3
: (74)

At first sight, this looks rather different from (72).
However, if we take into account the aberration of the
angles in a moving frame,

 cos� �
cos�0 � 


1� 
 cos�0
;

we find
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dV4

d�d�
�

1

3
	�1� 
 cos��:

This agrees with (72) under the identifications 	 � cosh�
and 
 � v. From Eq. (8), the FRW observer at constant �
has a relativistic factor with respect to the preferred ‘‘rest
frame’’ congruence C which is given by

 	 �
dt
d�
�

sinh�� cosh� cosh�
cosh�� cosh� sinh�

: (75)

For � � 0, we have 	 � cosh�, which is unbounded for
large �. Hence, right after nucleation, observers in this
FRW congruence have arbitrarily large relativistic factors.

For any � > 0, the limit of very large � gives a finite 	 

coth�. This means that a period of inflation inside the
bubble slows down all observers to nonrelativistic speed
(for �� 1, the velocity is of order e��). Nevertheless, to
the observers at large �, the initial surface looks ‘‘slanted,’’
sloping down in time in the direction away from the origin.
This leads to the anisotropy in the distribution of bubbles.
In embedding coordinates, the initial surface at t � ti, is
described as the intersection of the null surface W � V �
eti with the de Sitter hyperboloid (4) [the coordinate V is
‘‘time,’’ whereas theW axis is normal to the hyperboloid at
the nucleation point (V � 0,W � 1)]. Now, we can always
bring an observer from very large � to the origin of
coordinates �0 � 0 by means of a large boost, with 
 �
tanh� 
 1. If in the original ‘‘rest’’ frame the observer was
at large z, the surface of initial conditions in the new
reference frame takes the form V 0 � Z0 
 0. This ‘‘initial’’
plane is (almost) tangent to the bubble cone, along its null
generator in the negative z0 direction. Since this leaves no
room between the initial surface and the reference bubble,
it is clear that the probability of being hit from that par-
ticular direction vanishes. From the point of view of the
rest frame C the anisotropy is not surprising either. The
observers at large � are very close to the light cone, near
the surface of the reference bubble. Other bubbles can only
hit from the false vacuum outside, and because of that
FRW observers are more likely to be hit by bubbles ap-
proaching from even larger � than from any other
direction.

V. CONCLUSIONS

Our primary goal in this project was to study the effect
of bubble collisions on the structure of ‘‘bubble universes’’
in the inflating false vacuum. In particular, we wanted to
know how likely it is for an observer living in one of the
bubbles to be affected by such a collision.

In the absence of collisions, the bubble interior is de-
scribed by an open FRW model. A constant-FRW-time
slice of such an unperturbed bubble universe is a hyperbo-
loid, a space of constant negative curvature. Each bubble
collision carves an infinite wedgelike region out of the
hyperboloid. We found that the part of the hyperboloid

that remains unaffected by collisions has a fractal charac-
ter. Its volume is infinite, but it constitutes a vanishing
fraction of the total volume of the hyperboloid.

If we pick a random observer in the unaffected region,
then we find that the typical distance d from this observer
to the nearest bubble collision is given by

 d	 R ln�1=��: (76)

Here R is the curvature radius of the hyperboloid and ��
1 is the bubble nucleation rate (per Hubble volume per
Hubble time in the false vacuum). The origin of the loga-
rithmic dependence on � is that the volume grows expo-
nentially with distance on a hyperboloid. Current
observational bounds on the spatial curvature imply R *

10H�1
0 , where H�1

0 is the present Hubble radius, and
Eq. (76) yields d > 10H�1

0 .
Assuming that we live in a bubble universe, we have also

estimated the probability for a collision to occur within our
observable range. This is given by

 Pcoll 	 4��=H0R & �: (77)

The bubble nucleation rate � is usually exponentially sup-
pressed, and thus the chance for us to observe a bubble
collision is rather remote.

In the process of this investigation, we have uncovered a
remarkable fact, that the probability for an observer to be
hit by a bubble has a strong dependence on the arrival
direction of the bubble. The origin of this effect can be
traced to a simpler setting, which does not involve bubble
collisions. Consider a geodesic observer who lives in false
vacuum. We want to know the probability for this observer
to be hit by a bubble, per unit time by his clock. We found
that this probability depends on the observer’s velocity v
relative to a certain preferred ‘‘comoving’’ frame, which is
set by the initial conditions at the beginning of inflation.
The bubble nucleation rate is minimal for comoving ob-
servers with v � 0, and the most probable arrival direction
for a bubble is that opposite to v.

For a single observer, these effects will be present only
for a brief period of time. If the initial state of false vacuum
is specified on some spacelike hypersurface, the comoving
frame is defined by the congruence C of geodesics orthogo-
nal to that surface. The velocity of a geodesic observer
relative to C redshifts exponentially with time, so the
bubble nucleation rate rapidly becomes isotropic and ap-
proaches its comoving value. This is in accord with the
widespread belief that the initial conditions at the onset of
inflation have no lasting effect.

We found, however, that this folk wisdom does not apply
when the situation is described in terms of a FRW open
universe inside the bubble. The geodesic congruence cor-
responding to such a universe includes geodesics with
velocities arbitrarily close to the speed of light relative to
C. Fast moving observers in this congruence would initially
detect an extremely high rate of bubble hits. The short
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period of inflation inside the bubble slows down the con-
gruence to nonrelativistic speeds, and the rate approaches a
constant on the hyperboloid (at large distances from the
origin). Nevertheless, the angular asymmetry in the arrival
directions of the bubbles remains. The reason is that, to an
observer far from the origin, the initial surface looks very
anisotropic, sloping down in time in the radial direction
further away from the origin. In the unlikely event that we
detect a signature of a bubble collision in some direction in
the sky, we will be able to say that we are probably moving
in that general direction relative to the preferred congru-
ence C.

Now that we know that the initial conditions at the
beginning of inflation have a lasting effect on the distribu-
tion of bubble hits, one cannot help wondering what other
effects they may have. We hope to return to this issue in the
future.
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APPENDIX A: COLLISIONS AT �obs � 1

In this appendix, we repeat the calculation of the distri-
bution of collisions which we presented in Sec. II A, but
now instead of looking around the origin we consider the
vicinity of a point �obs � 1.

It is useful to go to the boosted frame where the point of
observation is at the origin, as we did in Sec. II.
Furthermore, we may take the limit 	 � cosh�obs ! 1,

 � tanh�obs ! 1 in the expression for the initial surface
(41),

 a0i � �2
cos�0 � F0

1� 2F0 cos�0 � F02
:

We may take Eq. (42) as the starting point. Performing the
integral over a0 we have

 dV4 �
1

3F0

��
1� F0

1� F0

�
3

�

�
1� F02

1� 2F0 cos�0 � F02

�
3
�
dF0 d�0: (A1)

Integrating over solid angle, we have

 dV4 �
8��3� 2F0 � 3F02�

3�1� F0�3�1� F0�
dF0: (A2)

Finally, integrating over F0 we obtain

 

V4��
0; �; ti ! �1; �obs � 1�

�
4�
3

�
4F0

�1� F0�2
� ln

1� F0

1� F0

�
F0��0;��

�e��
: (A3)

After some algebra, this greatly simplifies to

 V4��
0; �; �obs � 1� �

4�
3
�2e�

0
sinh�0tanh2��=2� � �0
:

This can be compared with the distribution around the
privileged point �obs � 0 given in (21). The expressions
are rather similar. In particular the asymptotic expressions
(�� 1)

 V4 
 4��0 �O��02� ��0 � 1�; (A4)

 V4 

4�
3
e2�0 �O��0� ��0 � 1�: (A5)

are the same.
Suppose we match the inflating phase to a standard

cosmological phase with scale factor given by a���. As
the universe decelerates, the horizon becomes larger and
more bubbles come into sight. We can then ask what is the
rate at which bubbles become visible per unit time to the
observer at �0 � 0. This is proportional to the nucleation
rate �, times the rate at which the relevant 4 volume enters
the backward light cone from the point of observation:

 

dN���
d�

� �
@V4

@�0

�����������e;�0��0���

d�0���
d�

: (A6)

Here �e is the time at the end of inflation, and the last factor
gives the rate at which the observable distance changes as
we look back to the surface where inflation ends:

 ���� �
Z �

�e

d�
a���

:

For instance, if inside the bubble the vacuum energy is
zero, and we go immediately into the curvature dominated
regime a��� � �, then the rate at which we would see new
bubbles entering our horizon per unit proper time is given
by

 

dN���
d�

�
4��

3

�
�
2
�

1

�

�
: (A7)

Since this grows without bound, we would be guaranteed to
see some bubbles sooner or later if we lived in this
Minkowski vacuum.

APPENDIX B: SPECIAL CONFIGURATIONS

Here, we explore the possibility of setting up initial
conditions which do not break the residual O�3; 1� sym-
metry of the bubble. This is a formal exercise whose
practical utility is unclear. Bubbles nucleate at random
points, and it is not possible to set up initial conditions
which preserve O�3; 1� symmetry for all of the bubbles in
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the ensemble. Nevertheless, the attempt may be
illustrative.

The simplest thing we can do in order to have O�3; 1�
invariant initial conditions, is to require that there are no
bubbles inside the backward light cone from the antipodal
point A of the nucleation event N (see Fig. 2). We are also
assuming that N is in false vacuum, so the surface of initial
conditions is the disjoint union of the backward light cones
from A and N. The relevant four-volume of our interest is
represented by the shaded area in Fig. 2.

It is convenient to use the conformal closed chart, in
which the metric reads

 ds2 �
1

cos2�
��d�2 � d
2 � sin2
d�2�: (B1)

The 4 volume is given by

 

~V 4��; �� � 4�
Z sin2


cos4�
d
d�

� 8�
Z umax

umin

du
Z �=2

0
dv

sin2�v� u�

cos4�v� u�
; (B2)

where we have introduced the change of coordinates � �
v� u and 
 � v� u. Past light cones are labeled by u �
const values. Performing the integrals, we have

 

~V 4��; �� �
8�
3

�
2 cos2u

sin22u
� lntan2u

�
umax

umin

: (B3)

Finally, we must relate the values of u to the values of � on
the � � const hyperboloid. Alternatively, we may relate
them to the by-now familiar variable F.

On the bubble cone we have 
 � �� �, and hence the
physical radius of two-spheres is given by

 R �
sin

cos�

� tan� � � cotu: (B4)

On the other hand, in terms of a and F coordinates we have

 R � �1� aF� �
1� F
1� F

; (B5)

where we have used that on the bubble cone a � 2=�1�
F� [see Eq. (15)]. Equating both expressions for Rwe have

 tanu �
F� 1

F� 1
: (B6)

Substituting in (B3) we obtain

 

~V 4 �
8�
3

�
4F�F2 � 1�

�F2 � 1�2
� 2 ln

1� F
1� F

�
F����

�e��
: (B7)

our bubble

= const
= obs =0

0

A N

/2

/ 2

FIG. 2. Conformal diagram of a bubble in a de Sitter space.
The relevant 4 volume to the past of a sphere of radius � around
the origin is shaded in gray.

obs =0ob

0
/2

/2

N

Late time
surface

s =0

/2

/2

FIG. 3. Same as in Fig. 2, but now the true vacuum inside the
bubble is of lower energy. For simplicity, we take it to be
Minkowski, although this is not essential. In this case, the shaded
area corresponding to the 4 volume available for the nucleation
of bubbles which will hit a distance �� away from the point of
observation, is finite. All we need is that the backward light cone
from the point of observation reaches the point 
 � 0 at some
time in the past. This will happen if the cosmological horizon at
the time of observation is many times larger than the Hubble size
during inflation. Formally, we do not need a cutoff initial surface,
and seemingly we obtain a finite answer which respects O�3; 1�
invariance. However, we know that physically some initial con-
ditions are needed. These look different to different observers in
the FRW congruence, which leads to anisotropies in the distri-
bution of bubbles.
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Note that the leading dependence for large � is the same as
in V4, given in (20). However, both expressions differ in the
subleading terms, and so the limit of large �obs studied in
the previous section does not exactly agree with the result
which we have just obtained by setting up Lorentz invari-
ant initial conditions.

Formally, we have obtained a finite result which does not
break the homogeneity and isotropy of the reference bub-
ble, by assuming that the point of observation is still in
false vacuum. However, it is clear that the 4 volume ~V4

diverges when we set � � 0 in the lower limit of integra-
tion. What this means is that the bubble has probability 1 of
being hit by other bubbles immediately after its formation.
In other words, there is no possibility of eternal inflation
with these initial conditions: we have included too much of
the contracting part of de Sitter space.

Finally, we could have adopted yet another approach
which formally does not require any ‘‘cutoff’’ initial sur-
face. Indeed, we could ask the following question. Given
that a particular point has not been hit by a bubble at some

late time in the true vacuum (e.g. by the time of last
scattering), what is the expected distance to the nearest
bubble? If the true vacuum is of sufficiently low energy, the
relevant 4 volume is finite, without the need of any cutoff.
This is illustrated in Fig. 3. For clarity, we draw the case
where the ‘‘true’’ vacuum inside the bubble is Minkowski.
In practice, it is enough that the true vacuum be of suffi-
ciently low energy density, so that the observer’s cosmo-
logical horizon is much bigger than the Hubble size during
inflation. In this case, the shaded area corresponding to the
4 volume available for the nucleation of bubbles which will
hit a distance �� away from the point of observation, is
finite. Formally, we avoid the need to specify the initial
surface.

Again, this formal setup is unphysical. Some initial
conditions must be specified, and these will look different
from the point of view of different observers. This will lead
to the anisotropies which we have discussed in the present
paper.
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