Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint

Marcelo E. Dias de Oliveira Dr: Burton Vaughan -adjunct professor Biological Sciences - WSU Dr: Edward Rykiel Jr - associate professor Biological Sciences -WSU

CO₂ concentration

- Today's concentration 360 ppm.
- Relatively stable at 280 ppm until industrial revolution.
- Increase of 31% in the past 200 years.
- Range of concentrations never before experienced during evolution of modern human social and economic systems

Major cause of CO₂ increase

• Combustion of fossil fuels.

In such scenario alternative fuels gains attention

from scientists, government, and population in general

Arguments for ethanol production

- "Green energy"
- Reduction of CO₂ emissions
- Positive energy balance (output/input)

Focus

- Energy Balance
- Carbon dioxide balances
- Environmental Impacts
- Ecological Footprint

Overview - Brazil

Brazil – First country to develop a large-scale program for fuel ethanol production

- Heavy dependence on fossil fuels at the time
- Concerns with national sovereignty (military government)
- Decrease in oil production (OPEC) 1974
- Low prices or sugar, possibility of bankruptcy by sugar industrialists

1970 – 1 billion liters 2003 – 12 billion liters

Overview - USA

1990 Clean Air Act Amendments:- First US legislation to consider fuel, along with vehicle technology as potential sources of emissions reduction

Provisions include:
(a)Control of carbon monoxide
Increasing the oxygen content of gasoline sold during
the winter in cities that exceed national air quality standards
for CO
(a) Reformulated gasoline
Gasoline sold in the country's worst ozone areas must contain

a minimum oxygen content and a maximum ozone content

1979 - 76 million liters 2001 - 6.4 billion liters

Basic differences

- USA ethanol derived from Corn and Brazilian derived from Sugarcane
- USA uses mixture E85, Brazil uses pure ethanol
 Gasohol: mixture in Brazil (76% gasoline, 24%) ethanol.

Energy Inputs - Agriculture

Table 1. Energy for constituent inputs used in the production of sugarcane in Brazil and corn in the United States.

Constituent	Quantity per hectare Energy equivalent (GJ)		Energy per hectare (GJ)	
Sugarcane (Brazil)				
Nitrogen	65.0 kgª	57.50 per Mg ^b	3.74	
Phosphate (P_2O_5)	52.0 kg ^a	7.03 per Mg ^b	0.36	
Potassium oxide (K ₂ O)	100.0 kg ^a	6.85 per Mg ^b	0.68	
Lime	616.0 kg ^a	1.71 per Mg ^b	1.05	
Seed	215.0 kg ^a	15.60 per Mg ^a	3.35	
Herbicides	3.0 kg ^a	266.56 per Mg ^b	0.80	
Insecticides	0.5 kg ^a	284.82 per Mg ^b	0.14	
Labor	26 workers ^a	0.11 per worker ^c	2.86	
Diesel fuel [°]	600 L ^d	38.30 per m ^{3e}	23.00	
Total			35.98	
Corn (United States)				
Nitrogen	146 kg ^f	57.50 per Mg ^b	8.40	
P ₂ O ₅	64 kg ^r	7.03 per Mg ^b	0.45	
K ₂ 0	88 kg ^r	6.85 per Mg ^b	0.60	
Lime	275 kg ^f	1.71 per Mg ^b	0.47	
Seed	21 kgª	103.00 per Mg ^g	2.16	
Herbicides	3 kg ^r	266.56 per Mg ^b	0.80	
Insecticides	1 kg ^f	284.82 per Mg ^b	0.28	
Diesel fuel	80 L ^g	38.30 per m ^{3g}	3.06	
Gasoline	29 L ^g	34.90 per m ^{3g}	1.01	
Liquefied petroleum gas	59 L ^g	28.50 per m ^{3g}	1.68	
Electricity	191 kWh ^g	3.60 per MWh ^g	0.69	
Natural gas	14 m ^{3g}	0.04 per m ^{3g}	0.56	
Total			20.16	

a. Pimentel and Pimentel 1996.

b. West and Marland 2002.

c. Ortega et al. 2003.

d. Amount of diesel fuel used by machinery and trucks for the processes of planting, harvesting, and transportating sugarcane from fields to industry (Ortega et al. 2003).

e. Lorenz and Morris 1995.

f. Based on average use from 1994–1997, according to the US Department of Agriculture (USDA 1999).

g. Shapouri et al. 2002b.

Energy Balances

Table 2. Energy balance of ethanol production from sugarcane in Brazil and from corn in the United States.

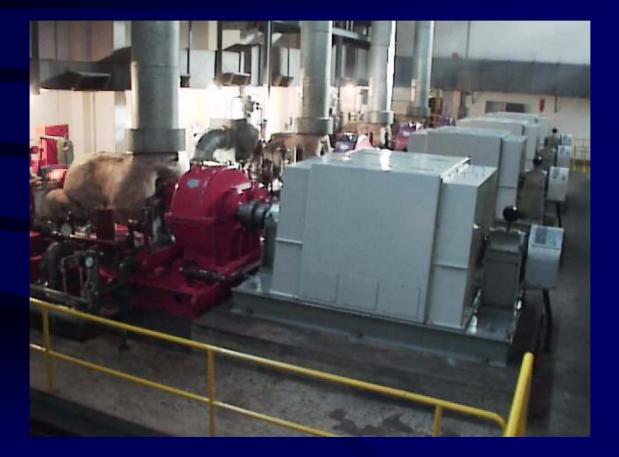
Production sector	Energy required (GJ)	Energy generated (GJ)
Sugarcane (Brazil)		
Agricultural sector	35.98	<u> </u>
Industrial sector	3.63	155.57
Distribution	2.82	_
Total	42.43	155.57
Corn (United States)		
Agricultural sector	22.08	
Industrial sector	41.60	71.44
Distribution	1.34	
Total	65.02	71.44
	05.02	(1.44

Note: Values correspond to ethanol production derived from 1 hectare of sugarcane or corn plantation.

Ethanol Conversion -USA

Conversion process use electricity and thermal energy (Natural Gas).

354 kWh (1.27 GJ) per cubic meter and 12.4 GJ of thermal energy


Total - 13.7 GJ per cubic meter of ethanol produced

Industrial Sector

All energy used to operate the distilleries comes from burning bagasse.

Industrial Sector

CO₂ Balances

- Production and transport and application of fertilizers, herbicides and insecticides
- Production and distribution of fuels
- Soil Organic Carbon (SOC)
- Emissions from automobiles

CO₂ Balances

Reference automobiles*

USA : Ford Taurus Flex Fuel Mileage - 8.94 km l⁻¹ (gasoline), 6.82 km⁻¹ (E85) ^{Source: USDOE – www.fueleconomy.gov} Brazil: Volkswagen Gol 1.6 Mileage - 10.2 km l⁻¹(ethanol), 13.9 km l⁻¹ (gasohol) ^{Source: Volkswagen do Brasil – www.volkswagen.com.br}

* Considering the distance traveled per year as 24150 km

CO₂ emissions - Brazil

Table 6. Carbon dioxide (CO_2) emissions from ethanol production from sugarcane in Brazil.

Process	CO ₂ equivalent emi (kg per ha)	ssions
Agriculture ^a	2269	
Methane (CH₄)	161	
Nitrous oxide (N ₂ O)	465	
Ethanol distribution	227	
Total	3122	

CO₂ emissions - USA

Process	Total CO ₂ released (kg per ha)	
Agricultural inputs	1237	
Increase in soil organic carbon	660ª	
Corn transportation	154	
Ethanol conversion	2721	
Ethanol distribution	108	
Gasoline production and distribution	203	
Gasoline combustion ^b	1267	
Balance	5030	

Note: Negative and positive values indicate reductions in and additions to the atmospheric CO_2 pool, respectively. a. Based on West and Post (2002).

b. Combustion of gasoline added to the E85 mixture.

CO₂ Emissions from Use of Gasoline as Fuel USA

1 ha corn -3.04 m³ ethanol (378 - 402 liters per Mg of corn) 1 ha corn -7.6 - 8.16 Mg

3.58 m³ of E85 \rightarrow 24.4 thousand km (reference car)

Using gasoline: 2.73 m³ of gasoline.

Production and distribution - 1024 kg of CO₂ Combustion - 6409 kg of CO₂

Total emissions: 7433 kg CO₂

1 Mg - 2205 lb. 1 ha - 2.47 acres 1galllon - 3.78 l

difference = 2.4Mg

CO₂ Emissions from Gasoline as fuel - Brazil

Brazilian cars - Gasohol (76% gasoline, 24% ethanol) 1 ha - 80 Mg of sugarcane (69 - 85) 1 Mg sugarcane - 80 liters ethanol (80 - 85) 6.4 m³ ethanol \rightarrow 65.3 thousand km

Using Gasohol: 4.67 m³ of gasohol (1.12 m³ ethanol; 3.55 m³ gasoline) Production, distribution and combustion of gasoline 9.66 Mg CO₂ Production and distribution of ethanol 586 kg CO₂

Total emissions: 10.2 Mg of CO₂

Difference : 7.1 Mg

Sensitivity Analyses

Table 3. Best- and worst-case scenarios for ethanol energy balances and carbon dioxide (CO_2) emissions in Brazil (where ethanol is produced from sugarcane) and in the United States (where ethanol is produced from corn).

Scenario	Yield (Mg per ha)	Energy (GJ) per Mg nitrogen	Ethanol conversion (L per Mg)	Energy balance	CO ₂ emissions (kg per m ³ ethanol)
Sugarcane (Brazil)					
Best-case scenario	80	57.5	85	3.87	461
Worst-case scenario	69	75.6	80	3.14	572
Corn (United States)					
Best-case scenario	8.16	57.5	402	1.12	1392
Worst-case scenario	7.60	75.6	372	1.03	1459

Table 4. Energy balance ranges for ethanol resulting from different assumptions for three variables: yield, energy used to produce one megagram of nitrogen, and ethanol conversion.

Variable	Range of possible values	Resulting energy balance range
Yield	7.60–8.16 Mg per ha	1.09–1.11
Energy per Mg nitrogen	57.5-75.6 GJ per Mg	1.05-1.10
Ethanol conversion	372-402 L per Mg	1.08–1.11

Ecological Footprint (Wackernagel and Rees, 1995)

- Based on sustainability and carrying capacity concepts
- estimates the resource consumption and waste assimilation requirements of a defined human population or economy in terms of corresponding productive land area
- How much land and area are required on a continuous basis to produce all the goods consumed and assimilate all the wastes generated

Ecological Footprint (EF) Calculation

- Area used to grow sugarcane or corn
- Area for CO₂ assimilation 6.6 Mg ha⁻¹
- Electricity Generation 1000 GJ ha⁻¹ (278x10³ kWh)
- Water Use Sugarcane Brazil not considered (water encountered within the basin were sugarcane is planted); data collection.

EF Automobile Results (1 automobile, 1 year) Brazil

Ethanol

- 2368 liters
- Production and Distribution of ethanol
- \rightarrow 1236 kg of CO₂

Area to sequester $CO_2 = 1236/6600 = 0.19$ ha

- Sugarcane area planted $\rightarrow 0.37$ ha

```
Total EF = 0.19 + 0.37 = 0.56 ha
```

EF Results (1 automobile, 1 year) Brazil

Gasohol

- 1729 liters (1314 gasoline, 415 ethanol)
- Production, distribution and combustion of gasoline
- \rightarrow 3577 Kg of CO₂
- Production and distribution of Ethanol
- \rightarrow 217 kg of CO₂

Total Emissions = $3794 \text{ kg of } \text{CO}_2$

- Area to Sequester $CO_2 = 3794/6600 = 0.57$ ha
- Sugarcane area planted = **0.06 ha**

```
Total EF = 0.57 + 0.06 = 0.63 ha
```

EF Results USA

Gasoline

- 2701 liters

- Production, distribution and combustion of gasoline \rightarrow 7532 kg of CO₂

- Area required for sequestering CO_2 7352/6600 = **1.11 ha**

EF = 1.11 ha

E85 - 3541 liters

- Production, distribution and combustion of E85 \rightarrow 4967 kg of CO₂

- Area sequester CO₂ = 4967/6600 = **0.75 ha**

- Area to plant corn \rightarrow 0.99 ha

Total EF = 0.99 +0.75 = **1.74 ha**

EF summary

Table 9. Ecological footprint for Brazilian and US automobiles at present ethanol production capacity.

Country/fuel	Area for CO ₂ assimilation	Area harvested	Total ecological footprint
	(ha)	(ha)	(ha)
Brazil (gasohol)	0.57	0.06	0.63
Brazil (ethanol)	0.19	0.37	0.56
United States (gasoline)	1.11	_	1.11
United States (E85)	0.75	0.99	1.74

Note: Ecological footprint values are expressed for one automobile per year.

Advantages in terms of EF - Brazil

Each ton sugarcane milled - 0.02 GJ (5.35 kWh) of electricity surplus

Automobile using ethanol - area to sequester CO_2 is 0.38 ha smaller

The whole Brazilian fleet using ethanol

Area required to absorb CO_2 - 6.09 million ha smaller

Energy generation - 9.44 million GJ, that corresponds to 9440 ha of impoundment (hydro-electric dams)

Benefits in terms of EF - 6.10 million ha

Disadvantages

Erosion - 5.4 times soil formation rate

Secure biodiversity - 1/3 area set aside

Comparison benefits and disadvantages

Additional area required to secure biodiversity and counterbalance erosion = 35.8×10^{6} ha

Benefits in terms of EF area = $6.10x \ 10^6$ ha

Ratio = 5.86

EF uncertainties

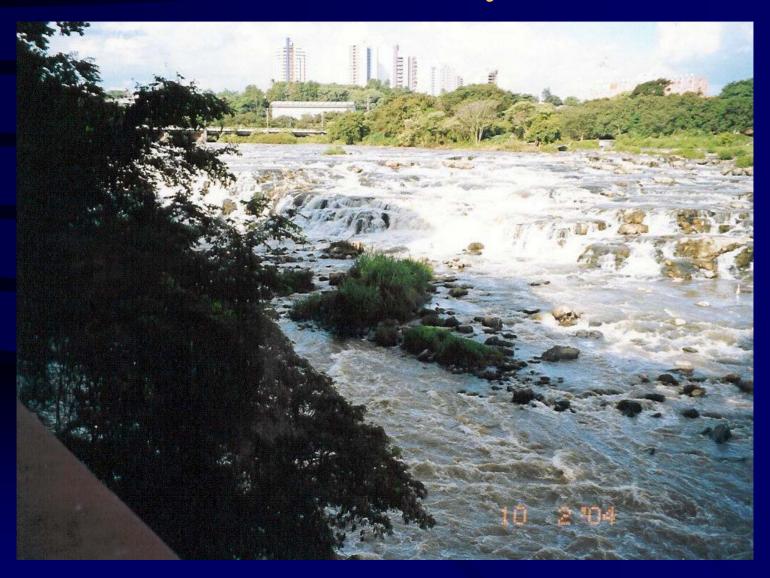
• CO₂ sequestration rates

• Water Impact

Other environmental impacts

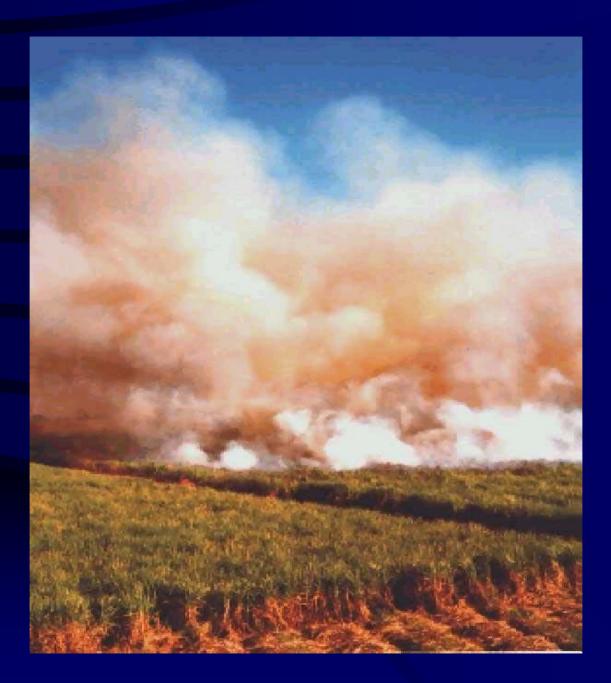

- Water Use
- Water contamination.
- Soil compaction
- Atmospheric pollution by pre-harvest burning of sugarcane
- Vinasse decomposition

Water Use


 Considering average production of the last five years in Brazil, the water used was enough to supply a population 13.8 million people per year in Brazil.

• Withdraw in the most critical period of the year (dry season)

Piracicaba River-September (dry season)



Piracicaba River - February (wet season)

Pre-harvest burning

Release at a rapid rate of about 19.4 Mg of CO_2 per hectare in the most critical period of the year in terms of air quality.

Forest fragments

- Piracicaba River basin characterized by irregular forest fragments smaller than 5ha.
- Susceptibility to edge effect
- Lack of internal structure for breeding typical species
- Besides small areas of fragments, there is lack of connectivity among them.

Pre-harvesting burning reaching forest fragment

Forest Fragments - Brazil

Vinasse decomposition

Vinasse decomposition can release about 13 Mg of CO_2 in a relatively short period of 30 days.

Vinasse being used as fertilizer

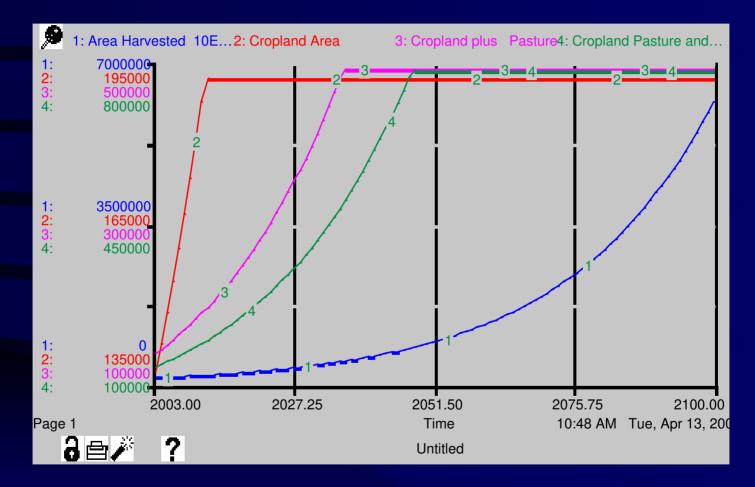
Water - Corn USA

Growing corn requires large amounts of water

One hectare of corn transpires 4 million liters of water during its growing season and additional 2 million liters ha⁻¹ evaporate concurrently from the soil.

Environmental impacts - Corn ethanol

- Ground water being mined 25% faster than natural aquifer recharge
- 12 liters of waste per liter of ethanol produced (high BOD)
- Erosion rates 18 times faster than soil formation
- Use of marginal land in case of production increase

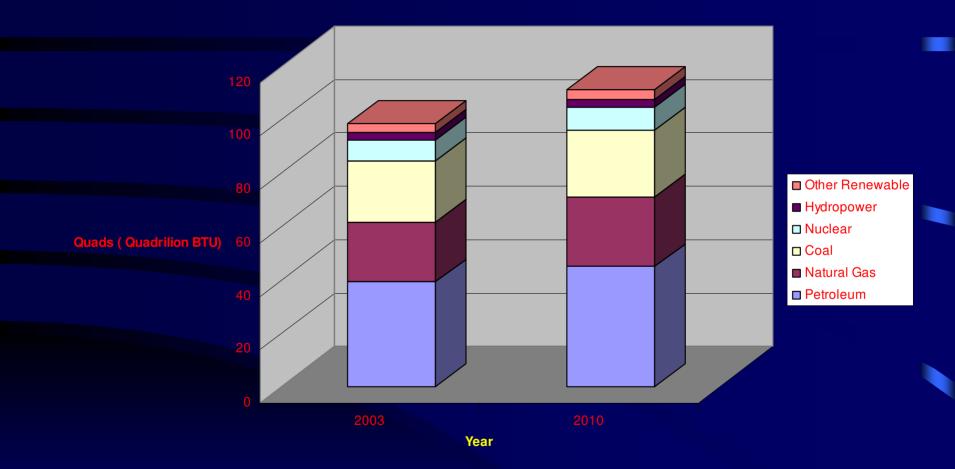

Transportation Sector

- Responsible for about 23-26% of energy consumption in the USA

-If only passenger cars were to use ethanol as fuel (the whole fleet)* -60% of country's crop land area would be required to grow corn.

* 138 million automobiles

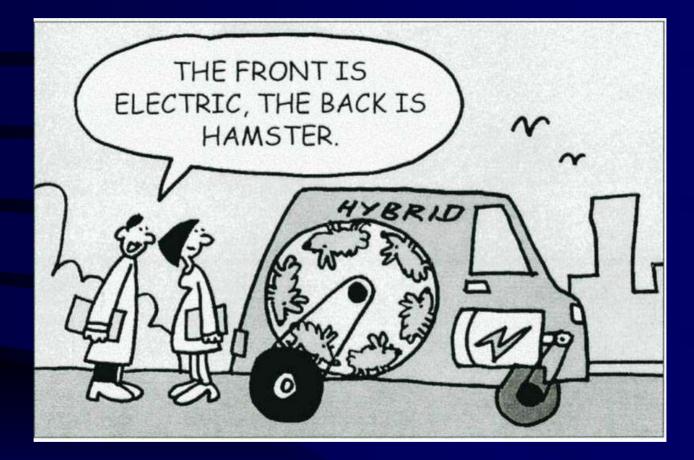
Area required for growing corn


Cropland area - 2012 Cropland and pasture - 2036 Cropland, pasture and forest - 2048

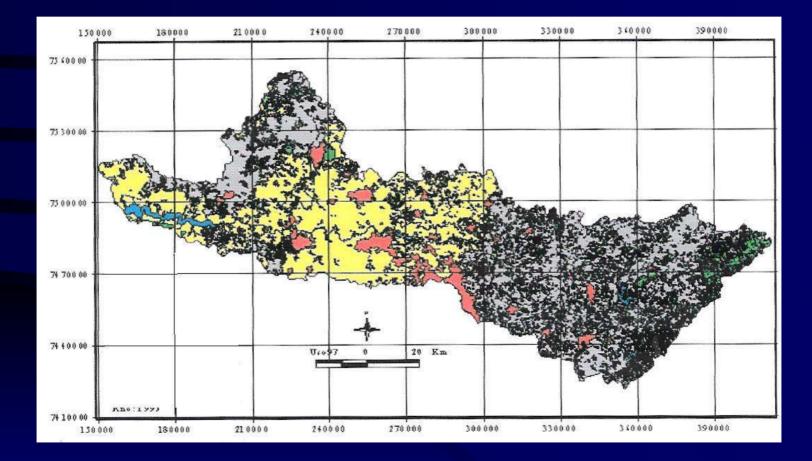
Energy Matrix .cont

• Fossil fuels – 85 % of energy matrix*

USA Energy Matrix


Conclusions

- Environmental impacts surpasses the benefits of avoided CO₂ emissions and electricity generation, in terms of EF.
- Ethanol use as fuel in both countries is not sustainable with current practices.
- Brazil produces 90% of the oil it consumes argument of national security is no longer applies.
- To avoid CO₂ emissions in Brazil is better to control deforestation of amazon (187 Mg of CO₂ released per ha).
 rate of deforestation 1.24 million hectares/year 3.07million acres*
- In USA, the area required to grow corn makes it unfeasible
- Option should no be disregarded,
 - use of ethanol in cities or regions with critical pollution problems.
 - achieve a more sustainable way of production


• NASA – Earth Observatory http://earthobservatory.nasa.gov/Library/Deforestation/deforestation_2.html

Conclusions – cont.

Substitution of fossil fuel will not be achieved with one option alone
 No option is free from environmental problems

Piracicaba River basin land use

Corn transportation and Ethanol distribution

Corn transportation to distilleries - 0.63 GJ m⁻³ of ethanol produced.

Ethanol distribution - 0.44 GJ m⁻³

Possibility of ethanol production from sugarcane in USA.

- States of Florida, Louisiana, Texas and Hawaii.
- Total area 414 thousand ha
- Average productivity 85.5 Mg ha-1
- Considering 80 l ethanol per Mg of sugarcane - 2.8 billion liters ethanol - 3.29 billion liters E85
- 1 million USA automobiles per year.

Sugarcane USA

- Deterioration of water quality at Everglades (Florida)
- Contamination by fertilizers, herbicides and insecticides of water bodies in Louisiana.