
Received March 29, 2022, accepted April 20, 2022, date of publication April 22, 2022, date of current version June 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3169902

Ethereum Smart Contract Analysis Tools:
A Systematic Review
SATPAL SINGH KUSHWAHA 1, (Member, IEEE), SANDEEP JOSHI 1, (Senior Member, IEEE),
DILBAG SINGH 2, (Senior Member, IEEE), MANJIT KAUR 2, (Member, IEEE),
AND HEUNG-NO LEE 2, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur 303007, India
2School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Heung-No Lee (heungno@gist.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant by
the Korean Government through the Ministry of Science and ICT (MSIT) (Development of of decentralized consensus composition
technology for large- scale nodes) under Grant 2021-0-00118; and in part by MSIT, South Korea, through the Information Technology
Research Center (ITRC) Support Program supervised by IITP under Grant IITP-2021-0-01835.

ABSTRACT Blockchain technology and its applications are gaining popularity day by day. It is a
ground-breaking technology that allows users to communicate without the need of a trusted middleman.
A smart contract (self-executable code) is deployed on the blockchain and auto executes due to a triggering
condition. In a no-trust contracting environment, smart contracts can establish trust among parties. Terms
and conditions embedded in smart contracts will be imposed immediately when specified criteria have been
fulfilled. Due to this, the malicious assailants have a special interest in smart contracts. Blockchains are
immutable means if some transaction is deployed or recorded on the blockchain, it becomes unalterable.
Thus, smart contracts must be analyzed to ensure zero security vulnerabilities or flaws before deploying
the same on the blockchain because a single vulnerability can lead to the loss of millions. For analyzing
the security vulnerabilities of smart contracts, various analysis tools have been developed to create safe and
secure smart contracts. This paper presents a systematic review on Ethereum smart contracts analysis tools.
Initially, these tools are categorized into static and dynamic analysis tools. Thereafter, different sources code
analysis techniques are studied such as taint analysis, symbolic execution, and fuzzing techniques. In total,
86 security analysis tools developed for Ethereum blockchain smart contract are analyzed regardless of tool
type and analysis approach. Finally, the paper highlights some challenges and future recommendations in
the field of Ethereum smart contracts.

INDEX TERMS Ethereum, smart contract, blockchain, cryptocurrency, decentralized, dapp, vulnerabilities,
security, analysis tool.

I. INTRODUCTION
Blockchain technology [1] gained the interest of the research
community in the year 2008 when a white paper was pub-
lished by Satoshi Nakamoto [2] on a double-spending prob-
lem in peer-to-peer decentralized network [3], [6]. Now the
popularity of blockchain technology is rapidly increasing day
by day, such that countries and giant financial institutions are
planning to deploy their operational processes on the same
technology [4], [5]. In blockchain technology transactions,
the trusted third parties are removed with the help of a con-
sensus mechanism. Smart contracts work on the application

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Cassano.

layer of blockchain. Blockchain technology became popular
after Satoshi Nakamoto’s white paper on the double-spending
problem in a peer-to-peer network. In blockchain technol-
ogy transactions, the trusted third parties are removed with
the help of a consensus mechanism. Today, Ethereum is
the most widely used blockchain platform. Ethereum is
Turing complete to code smart contracts with developers’
constraints.

A smart contract [8], [9] is a contractual agreement embed-
ded in a self-enforceable piece of code. The parties in the
agreement agree to interact with each other based on some
predefined constraints, such that whenever a condition is met,
the predefined operations will execute automatically. Smart
Contracts provide higher transparency without the need for

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 57037

https://orcid.org/0000-0002-4292-5066
https://orcid.org/0000-0001-9127-5947
https://orcid.org/0000-0001-6475-4491
https://orcid.org/0000-0001-8804-9172
https://orcid.org/0000-0001-8528-5778

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

FIGURE 1. Ethereum blockchain based smart contract.

trusted third parties. Figure1 depicts the structure [12], [14]
of Ethereum smart contract.

The smart contract has many use cases in various real-life
areas. Following are some of the use cases:

• Financial Contracts: The governing rules of a finan-
cial product or service can be coded in the form of
a smart contract to facilitate claims settlements and
automated financial transactions. The DeFi (Decentral-
ized Finance) services or applications can address a
large market of financial transactions without a bank.
The DeFi applications can be more advantageous than
traditional ones regarding round-the-clock borderless
availability.

• Prediction Markets: The growth in the prediction mar-
ket is not according to time due to the involved risk in
the same. Smart contracts can revolutionize the field of
the prediction market. There are several gaming fields
where the players have been betting for a long time
without trusting the third party. So, the concept of the
Ethereum smart contract can be utilized in the prediction
of the auction, election, and any betting game.

• Digital Identity: In traditional systems, identity man-
agement and trust management are facilitated by Public
Key Infrastructure or PKI. The certificate-based PKIs
have a problem with the certificate tree isolation. The
Ethereum smart contracts can manage digital identities
and build trust.

• Supply ChainManagement: The Ethereum smart con-
tracts can reduce the complexity in the supply chain by
using the automatic verification process. The traditional
supply chain system lacks transparency and traceability,
which blockchain-based smart contracts can effectively
improve.

• Health Care Industry: The smart contract can be
applied in various application areas in the healthcare
industry like health insurance, medical research, patient
data management, and drugs supply chain management.
Smart contracts can help effectively manage patients’
medical history data management.

• Tokenization ICO/DAICO: The ERC-20 is one of
the essential Ethereum smart contract standards. The
ERC-20 is a set of rules to keep track of all types
of fungible Ethereum tokens. ERC -20 is short of
Ethereum Request for Comments 20. It employs an
application programming interface within smart con-
tracts. ERC-721 is one other type of token which is non-
fungible. The ERC-20 token represents a single entity,
whereas ERC-721 represents a set of resources.

But smart contracts [7], [10], [11] are vulnerable to attacks
due to security flaws present in there due to several reasons
like features of blockchain, coding issues, etc. As smart con-
tracts store cryptocurrencies as their balances, attackers can
take benefit of these security vulnerabilities [35]–[38], which
can result in enormous losses. For analyzing smart contracts,
several security analysis tools [43], [47] have been devel-
oped. Our survey will focus only on analysis tools associated
with the Ethereum blockchain smart contract. We present
a detailed review of 86 analysis tools for the Ethereum
blockchain-based smart contract, covering all the analysis
tools present in the literature or on the web, irrespective of
their type and analysis approach.

A. RELATED WORK
Many review articles have been published by researchers in
this domain with different-different viewpoints.
Harz et.al. [15] examined ten verification tools along
with their respective languages and verification methods.
Angelo et. al. [16] surveyed 27 smart contract analysis tools
with different-different points of view like open-source avail-
ability, development, working methodology, and security
vulnerabilities. Liu and Liu [17], surveyed 53 papers for
security vulnerabilities and correctness aspects. They dis-
cussed 18 tools in different-different categories like seman-
tic analysis, behavioral analysis, formal verification, etc.
Tang et al. [44] surveyed 15 analysis tools and their related
vulnerabilities. Ante [18] studied the smart contracts concern-
ing citation statistics distribution of keywords of several smart
contract platforms and discussed very few analysis tools
like Oyente and SmartCheck. Almakhour et al. [19] surveyed
smart contract analysis tools by categorizing them into ver-
ification tools and vulnerability analysis tools for Ethereum
blockchain smart contracts. They discussed 25 tools in two
categories: formal verification for correctness and Vulnera-
bility detection for security assurance. T. Durieux et. al. [55]
performed a pragmatic survey of 9 automatic analysis tools
on 47587 Ethereum smart contracts and found that 97% of
contracts are vulnerable. Ghaleb et. al. [48] focused only
on static analysis tools and proposed a technique named

57038 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

SolidiFI for evaluating the performance of static analysis
tools. Tolmach et. al. [49] studied various verification tools by
considering the formal modeling and verification techniques.
D. He et. al. [50] studied security vulnerabilities related
to Ethereum smart contract and their defense mechanism
and some of the security audit methods. They discussed
only three analysis tools: Oyente, Porosity, and Mythrill.
Grishchenko et. al. [51] surveyed 11 security and verification
tools but focused their discussion on the static analysis tool
named EtherTrust and formal verification tools. Anna Veca
et. al. [52] surveyed 26 analysis tools for Ethereum smart
contracts concerning smart contract testing and code analysis.
Pinna et.al. [53] presented n pragmatic study on the specific
type of Ethereum smart contract (with the topmost number
of transactions means financial smart contract) deployed on
Ethereum blockchain but covers a little about analysis tools.
Bin Hu et. al. [54] surveyed 39 analysis tools concerning
methodology, input, and availability of source code. All the
above surveys discussed analysis tools related to specific
vulnerabilities or specific fields like verification tools. None
of the above surveys covers all the Ethereum smart contract
analysis tools associated with the analysis of the Ethereum
smart contract. This paper presents 86 analysis tools for
the Ethereum blockchain-based smart contract to cover this
research gap.

B. MOTIVATION
In a no-trust contracting environment, smart contracts can
establish trust among parties. Terms and conditions embed-
ded in smart contracts will be imposed immediately when
specified criteria have been fulfilled. So, the smart contract,
which is just a piece of code, executes the terms and condi-
tions without the need of any third person. Thus, smart con-
tracts must be analyzed to ensure zero security vulnerabilities
or flaws before deploying them on the blockchain because
a single vulnerability can lead to terrific losses [35]. Thus,
it becomes necessary to analyze the security vulnerabilities
of smart contracts to develop safe and secure smart contracts.

The existing review articles have discussed only a limited
set of Ethereum smart contract analysis tools. Even most of
the existing review articles are limited to specific types of
tools. Hu et. al. [54] discussed 39 tools, which was the highest
among all review articles. Therefore, this paper presents a
detailed systematic survey of smart contract analysis tools for
the Ethereum blockchain. The overall objective is to discuss
maximum analysis tools to highlight some challenges and
future recommendations in Ethereum smart contracts.

C. RESEARCH QUESTIONS
Smart contracts [39]–[42] can be developed on various
blockchain platforms, which have their features and chal-
lenges. Still, Ethereum is mainly used as a very promi-
nent smart contract development platform, so we focus only
on analysis tools for smart contracts related to Ethereum
blockchain and systematized these analyses tools regard-
less of their type or analysis approach. The literature lacks

an organized survey of Ethereum blockchain-based analysis
tools covering all the tools. Systematic study methods of
Kitchenham et al. [12] and Peterson et al. [13] are used for
defining the following research questions:

• Research Question 1:What are the static analysis tools
available for Ethereum blockchain smart contracts?

• Research Question 2: Which dynamic analysis tools
are available for the Ethereum blockchain smart con-
tract?

• Research Question 3: For Ethereum blockchain
smart contracts, what kind of analysis approaches are
employed by static/dynamic analysis tools?

• Research Question 4: What are the five most common
vulnerabilities detected by analysis tools?

D. INCLUSION AND EXCLUSION OF ARTICLES
To address the research questions, we identified 670 research
articles from Web of Science (WoS) that are published
between 2016 to 2021. This search was performed in
peer-reviewed scientific research databases like Springer,
ACM, IEEE, Elsevier, and Willey. Out of these research
articles, 525 articles are excluded based on exclusion criteria,
and 132 articles are included based on inclusion criteria.
Duplicated, survey, and review articles are excluded from the
selected articles. Also, articles in which only tools compar-
isons are presented are also avoided. All the phases of the
methodology for inclusion and exclusion of research articles
are depicted in Figure 2.

E. CONTRIBUTIONS
This paper contributes a systematic review of analysis tools
for Ethereum blockchain smart contracts from 2016 to
December 2021. This work provides a thorough understand-
ing of the analysis tools for Ethereum smart contracts. The
main contributions of this paper are as follows:

1) A systematic review of Ethereum smart contracts anal-
ysis tools is presented.

2) The analysis tools are categorized into static and
dynamic analysis categories. These categories are fur-
ther divided into subcategories based on the input type
of the tools, such as solidity code, EVM byte code,
or both.

3) Different sources code analysis techniques are studied,
such as taint analysis, symbolic execution, and fuzzing
techniques.

4) In total, 86 security analysis tools in Ethereum
blockchain smart contract are analyzed regardless of
tool type and analysis approach.

5) Finally, the paper highlights some challenges and
future recommendations in the field of Ethereum smart
contracts.

F. PAPER OUTLINE
The remaining structure of the article is as follows: Section II
briefly describes some famous vulnerabilities associated with

VOLUME 10, 2022 57039

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

FIGURE 2. Identification, exclusion, eligibility, and inclusion methodology.

Ethereum blockchain smart contracts, Section III illustrates a
detailed description of all Ethereum smart contract analysis
tools, Section IV presents a comparison with related work,
limitations of the present survey, and possible future research
directions. Finally, Section V concludes this study by exhibit-
ing an outline of the contributions.

II. SECURITY VULNERABILITIES IN ETHEREUM
BLOCKCHAIN SMART CONTRACT
Several researchers presented many types of vulnera-
bilities [46] associated with Ethereum blockchain smart
contract [31]–[34] in literature. Li et al. [29] surveyed
20 different-different vulnerabilities, Zhu et al. [30] studied
11 types of vulnerabilities, Luu et al. [9] presented security
vulnerabilities in their survey, Atzei et al. [142] studied some
specific security vulnerabilities, Tang et al. [44] presented
15 security vulnerabilities, Huashan Chen et. al [45] pre-
sented 40 vulnerabilities under several root causes. Following
are some of the most discussed Ethereum smart contract
vulnerabilities
• Timestamp Dependency [9]: It occurs when the block
timestamp is used to trigger a condition to initiate the
execution of a critical operation. If the block timestamp
is used to create randomness, it can be compromised by
the malicious attacker.

• Reentrancy [23]–[25]: It is one of the most famous
vulnerabilities related to the Ethereum smart contract.
It was first reported in 2016 from the renowned DAO
attack [26], which caused a loss of 60million US dollars.
It occurs due to repeatedly calling of a function of the

caller contract by the callee contract before the function
completed its execution. Due to this, the state variables
of the function are not updated after each function call
and create a very serious issue.

• Transaction Ordering Dependency [16]: It occurs due
to concurrent order of transaction execution. The miners
decide the transaction execution sequence. A malicious
miner may select or not select a specific transaction
to mine, which ultimately results in wrong execution
results if the transactions are dependent on each other.

• tx.origin [8]: The ‘‘tx.origin’’ is used for authorization
purposes. Still, the attacker can utilize the same for a
phishing attack. ‘‘msg.sender’’ should be used in place
of ‘‘tx.origin’’ for authentication purposes.

• Block-hashBlock Number [8], [20]: It also occurs
when the block has, or block number is used to generate
randomness by generating random numbers. But a miner
can act maliciously tomanipulate or modify the same for
its benefit.

• Gas Related Issues [14], [26], [27]: There can be sev-
eral gas-related issues like sending a transaction with
insufficient gas, useless code in the smart contract, or gas
costly loops present in the contract. Gas is used as a
transnational fee to execute instructions of the smart
contract like each type of operation requires a different
gas, which is charged in Ether (Wei-smallest unit of
Ether).

• Delegate Call [28]: It was first reported in one of the
other famous attacks on the Ethereum smart contract
Parity wallet. It occurs because of using EVM opcodes
maliciously by the callee contract to update the state
variables of the caller’s contract.

• Arithmetic UnderflowOverflow [21]: It occurs due to
solidity data type range, which means values of arith-
metic operation cross the range limit of data type on
upside or downside and give a chance to the attacker
to manipulate the values of state variables. It was first
reported in attacks on BEC tokens.

• Freezing Ether [44]: It was also reported the first
attack against the Parity wallet. It occurs because the
user of the contract cannot spend money due to the
dependency on other contract’s money spending func-
tion, and the function doesn’t allow to spend the
money.

• Unchecked Call [45]: It occurs due to improper excep-
tion handling in the solidity code. When the return value
of execution is not adequately checked and proper mea-
sures are not taken, the malicious user can benefit from
that.

• Self Destruct [29]: The ‘‘self destruct’’ is a method the
owner uses to kill its contract to delete its byte code and
free the storage. But the attacker can kill a contract if
there is poor authentication in the contract. It was first
reported in the Parity wallet bug.

• Access Control [30]: It is the case when inadequate
authorization or authentication is used while coding the

57040 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

smart contract. An attacker can maliciously use the
same to access the critical functions.

• Denial of Service [14], [22]: It occurs due to the mali-
cious intention of the user to disrupt the execution of
another user’s caller contract by reverting the call every
time.

III. ANALYSIS TOOLS FOR ETHEREUM SMART CONTRACT
Smart contracts must execute according to the user’s need
or owner of the smart contract. Security vulnerabilities [29],
[30], [44], [45] or bugs may not allow the smart contract
to perform its operation for which it was coded and be the
reason for tremendous losses. Analysis tools [66], [72], [112],
[124] are necessary to check and analyze the smart contract
for any security flaw. Because the immutability [99] nature
of the blockchain does not allow any type of alteration in
the code of smart contract after deployment of the same on
the blockchain. This Section presents the categorization of
Ethereum smart contract analysis tools into two main cate-
gories.

Further, these two main categories are divided into two
subcategories based on the initial input on the tool for analysis
purposes. Some of the tools take both Solidity and Byte code
as input. One tool named FSolidM [95] generates solidity
code by taking input some formal specifications. Figure 3
shows the categorization of Analysis tools for smart contracts
associated with the Ethereum blockchain.

FIGURE 3. Categorization of analysis tools based on type of analysis and
type of input to the tool.

Several analysis tools have been invented since 2016.
We have considered the tools invented up to November 2021.
Figure 4 shows the year-wise evolution of analysis tools for
Ethereum blockchain-based smart contracts. The majority of
the tools developed to date are static analysis tools. Authors
justified in their articles the benefits of their tool’s analysis
approach.

Figure 5 depicts different-different tools in each cate-
gory, and figure 6 shows the share of each category of the
tool among the total analysis tools invented for Ethereum

blockchain-based smart contract. Data used in the figure 6
is collected in our survey.

Now we will give a detailed overview of each tool under
each category. First, we will describe static analysis tools
under subcategory input to the tool is Solidity code

A. CATEGORY 1: STATIC ANALYSIS TOOLS
1) INPUT TO THE TOOL: SOLIDITY CODE
• ContractWard [76]: It is a static analysis tool that takes
solidity as input and was invented in 2019. It is an
automatic vulnerability finding tool. Wei Wang etȧl pro-
posed this system for detecting vulnerabilities at a large
level with machine learning algorithms. ContractWard
detects six vulnerabilities: Timestamp Dependency,
Re-entrancy, Arithmetic Overflow and Underflow, Call-
stack Depth, and Transaction-Ordering Dependence.
It depends on the Oyente tool for label generation for
each contract with six labels. ContractWard works in the
following six steps: Step 1: Collection of smart contracts
from Ethereum’s official website. Step 2: Transforma-
tion of source code to opcode for simplification. Step 3:
1619 bigram features are extracted from the simplified
opcodes of step 2. Then each smart contract is labeled
with six labels corresponding to each type of vulnerabil-
ity from C1 to C6. Step 4: For multi-label classification,
the OvR algorithm is employed. Step 5: Classification
and balancing are done in this step. Step 6: Balanced
training sets are used for creating detection models.

• Echidna [80]: It is a publicly available open-source
static analysis tool that takes solidity or viper code as
input and was invented in 2020. It is an Ethereum smart
contract fuzzer developed in Haskell, which supports
three properties such as user-defined properties, asser-
tion checking, and gas use estimation. Echidna works
in two steps: 1. Pre-processing: In this step, it leverages
Slither to analyze smart contracts. 2. Fuzzing Campaign:
In this step, random transactions are generated, and
property violations are detected. Echidna is very easy
to use and supports most contract development frame-
works. It is very fast to produce results very quickly.

• Eth2Vec [84]: It is a command-line-based static analysis
tool, invented in 2021. It employs the machine learning
approach for analyzing smart contracts to learn the fea-
tures of vulnerable EVM byte code. It creates a model
for feature extraction by training the tool using training
data. Then, matching the similarity in the code of EVM
and target EVM detects the vulnerabilities.

• Ethainter [85]: It is a static analysis tool invented
in the year 2020. It analyses information flow
with data sanitization in Ethereum smart contracts.
It enhances the tainted information flow by tainting
the guard conditions. Ethainter efficiently detects Seif
Destruct, Delegate Cal, Unchecked, variable tainting
type vulnerabilities.

• EthVer [140]: It is a static analysis tool invented in the
year 2020. It performs automatic formal verification of

VOLUME 10, 2022 57041

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

FIGURE 4. Year wise evolution of analysis tools for ethereum blockchain based smart contract.

smart contracts. Then tool translates the smart contract
into formal models known as the Markov decision pro-
cess and then verifies the same using a formal verifica-
tion tool known as PRISM model checker.

• FEther [94]: It is a publicly available static analysis
tool implemented in Coq and invented in 2019. It takes
an input of solidity code and analyzes the same using
a combination of symbolic execution and high order
logic theorem proving. FEther’s functional correctness
is verified in Coq. FEther’s processing is divided into
three parts: The first one is a Parser, the second one is
an ISA based on Lolisa semantics, and the third one is a
validation checking mechanism.

• FSPVM [96]: It is a static analysis tool implemented
in Coq and invented in 2020. It supports ERC-20 token
standard. FSPVM symbolically analyses the Ethereum
smart contract solidity code and checks for security
vulnerabilities by employing Hoare style logic in Coq.
FSPVM combines the virtual machine platforms with
static security issues checking, based on an extension of
Curry-Howard isomorphism.

• GasGauge [97]: It is a static analysis tool developed
in the year 2021. It employs fuzz testing to detect
vulnerabilities. It efficiently detects out of gas denial
of service vulnerability in Ethereum blockchain-based
smart contracts. The tool is divided into three phases: the
Detection phase, Identification phase, and Correction
phase. All the stages of the tool can work alone or
together to analyze Ethereum smart contracts.

• Gastap [101]: It is a static analysis tool developed in
2018. This tool takes input for analyzing the EVM byte
code or disassembled EVM byte code or solidity code.
It deduces the gas bounds requirements for its functions
and finally compares the deduced gas requirement with
the genuine gas limit paid by the user. The difference
between the deduced gas limit and the actual gas limit
paid will show the gas-related vulnerabilities.

• MuSc [109]: It is a publicly available open-source static
mutation testing tool implemented in Java and invented
in 2019. MuSc generates mutants of smart contracts
at the abstract syntax tree level. These AST-generated
mutants are converted to source code for compilation,
execution, and testing. It also supports the user-defined
test net.

• NeuCheck [110]: Ning Lu et. al. proposed this static
analysis tool in 2019, which takes solidity as input.
NeuCheck is developed in Java. To avoid missing
semantics and the transformation of solidity code to an
intermediate representation, NeuCheck introduced the
syntax tree in the syntactical analyzer. For this transfor-
mation, NeuCheck takes use of a solidity parser which is
developed in ANTLR. NeuCheck works in three steps:
1. Parse the source code to an intermediate represen-
tation. 2. Then, the second step for analyzing the syn-
tax tree utilizes the open-source XML library working.
3. The third and last step notifies users about the location
of security issues in the smart contract.

• Pakala [114]: It is a publicly available open-source
static analysis tool implemented in Python and invented
in 2018. It is a symbolic execution tool for Ethereum
Virtual Machine byte code. It used Z3 as an abstraction
layer and added a SHA3 layer on top of it. It employs
two steps to detect vulnerabilities. In the first step, it exe-
cutes byte code to find outcomes, and in the second
step, it analyses the outcome to find something terrible
corresponding to a vulnerability.

• Remix IDE [115]: It is an open-access tool, which pro-
vides an easy way to write and analyze smart contracts
in solidity code. It is a JavaScript implementation of
Ethereum Virtual Machine with a browser-based user’s
interface, invented in 2016 and written in JavaScript.
It can be used either in the web version or desktop
version. Its source code is available in GitHub Repos-
itory. Presently there are 21 analysis modules under

57042 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

FIGURE 5. Categorywise ethereum smart contract analysis tools.

four categories are listed in Remix IDE v0.10.1, which
are Security, Gas & Economy, ERC & Miscellaneous.
Remixanalyser is a library that works beneath of Remix-
IDE Solidity Static Analysis plugin.

• SASC [126]: It is a static analysis tool invented in
2018 and developed in C (83%), Python (15.7%), Mark
file(0.5%). It comprises two main functions a) Invo-
cation Relationship Analysis b)Logic Risk Expansion
and Location. This tool detects timestamp dependency,
tx.origin, divide by zero vulnerabilities.

• sCompile [127]: It is a static analysis tool invented in
2018 and developed in Python. This tool is based on

automatically identifying monetary transaction’s related
critical program paths and concentrating on those that
possibly contravene essential properties.

• SESCon [130]: It is a static analysis tool invented
in the year 2021. It employs taint analysis to ana-
lyze the Ethereum smart contracts. The tool has
three main modules: XPath module, Vulnerable pat-
terns modules, and Taint module. The XPath module
takes an input of the solidity code and converts the
same to an abstract syntax tree. The Vulnerable pat-
tern module creates vulnerable patterns from vulner-
able smart contracts. The Taint module takes input

VOLUME 10, 2022 57043

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

from the above modules and products the vulnerability
report.

• SIF [132]: It is a publicly available open-source static
analysis tool implemented in C++ and invented in
2019. Apart from analysis, SIF also supports query
instrumentation and code generation at the abstract syn-
tax tree level. It takes an input of abstract syntax tree
generated by solidity compiler and user-defined query
for code instrumentation and finally generates instru-
mented solidity code. It detects arithmetic Overflow or
Underflow.

• Slither [133]: It is a publicly available open-source
static analysis framework invented in 2018 and devel-
oped in Python. It takes solidity code as input to analyze.
It uses an intermediate representation known as SlithIR.
The Slither employs data flow analysis and taints track-
ing approaches to detect vulnerabilities. It can be used
for automated vulnerabilities detection, automated opti-
mization detection, code understanding, and assisted
code review. The open-source version of this tool detects
approximately 20 bugs like shadowing, uninitialized
variables, re-entrancy, suicidal contracts, locked ether,
or arbitrary sending of ether.

• SmartAnvil [134]: It is a publicly available open-source
platform invented in 2018 and developed in Smalltalk.
It is constructed around various modules to cover
the multiple aspects of smart contract analysis. Smar-
tAnvil platform contains three components’ tools:
1) SmaCC-Solidity: a parser used to represent or support
solidity smart contract’s static code. 2) SmartInspect: It
is used to inspect the internal state of the Solidity smart
contract. 3) Ukulele: It is a query language that helps to
fetch required data from the blockchain.

• SMARTBUGS [135]: It is a publicly available
open-source static analysis framework implemented in
Python and invented in 2020. It supports ten tools for
analyzing the smart contract. This tool comprises 5 com-
ponents: command-line interpreter, tool’s configuration,
docker’s image of tools, dataset, and SMARTBUGS
runner. Apart from the command line interface, the
SMARTBUGS also has a web interface to interact.

• SmartCheck [136]: It is a publicly available open-
source static analysis tool invented in 2017 and
developed in Java. SmartCheck employs a lexical and
syntactical analysis approach to analyze the smart con-
tract. An XML parse tree is generated as an intermediate
representation using ANTLR (a parser generator) and
a custom Solidity grammar. XPath queries are used to
process intermediate representation for detecting vul-
nerabilities patterns. It detects approximately 20 types
of vulnerabilities like implicit visibility level, compiler
version not fixed, arithmetic division, style guide viola-
tion, etc.

• SmartEmbed [137]: It is a publicly available
open-source static analysis tool implemented in
JavaScript and invented in 2019. It is a web-based

FIGURE 6. Category-wise share of ethereum smart contract analysis tools.

service tool that detects repetitive contracts. The core
component of SmartEmbed is the similarity checker,
which takes an input of bug embedding matrix, code
embedding matrix, and embedding vector and finally
outputs the bug report and clone report.

• Smart-Graph [138]: It is a static analysis tool invented
in the year 2021. It takes an input of the solidity source
code and creates a graphical visualization. The tool has
a web-based graphical user interface that is very easy
to use and can be accessed using any browser. At the
web GUI the tool takes the smart contract address and
generates the graphical diagram of the same.

• SmartInspect [56]: It is a static analysis tool imple-
mented in Pharo and invented in 2018. It is a
mirror-based reflection system. It inspects the known
smart contracts at the source code level to analyze the
instructiveness and distribution. The reflective approach
of SmartInspect permits the user to view the content of
any contract without needing to redeploy it.

• SmartScan [57]: It is a static/dynamic analysis tool
invented in the year 2021. For detecting the denial
of service or DoS vulnerability, it combines static
and dynamic analysis. SmartScan works in two steps:
First, it statically analyses the smart contract to detect
denial of service vulnerability-related patterns. Then,
the second step uses dynamic analysis to confirm their
exploitability.

• SolAnalyzer [60]: It is an open-source static anal-
ysis framework invented in 2019 and developed in
GO. It allows fully automatic analysis of Ethereum
smart contracts and reduces false positives. SolAna-
lyzer detects vulnerabilities in three phases Phase 1).
Instrumentation with assertion via Solidity Instrumen-
tation Framework (SIF). Phase 2). Input generation for
instrumented smart contracts. Phase 3). Execution in the
Ethereum virtual machine and analysis of instrumented
contracts. For checking the efficiency and effectiveness

57044 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

of SolAnalyzer, there is another component in this
framework named MuContract, which creates several
faulty versions of original smart contracts by seeding
artificial vulnerabilities.

• Solc-Verify [61]: It is a publicly available open-source
static analysis tool invented in 2019 and developed
in C++ and Solidity. It employs formal verification
methods to analyze Ethereum blockchain-based smart
contracts. Very easy to integrate with other developer
tools. It verifies Solidity smart contracts with a modu-
lar software verification approach. Solc-Verify can be
employed as an add-on to the open-source Solidity com-
piler. Solc-Verify detects re-entrancy and integer over-
flow/underflow vulnerabilities.

• Solgraph [116]: It is a publicly available open-source
static analysis command-line tool invented in 2016 and
developed in JavaScript. Solgraph visualizes the con-
trol flow of the function in a Solidity smart contract.
It generates a DOT graph to depict the control flow of
the functions. DOT is a graphical description language
used to visualize functions’ control flow and show the
relations between the objects. Solgraph uses this DOT
graph to identify potential security vulnerabilities in
solidity smart contracts.

• SolGuard [141]: It is a static analysis tool invented
in the year 2021. It was developed by extending the
existing static analysis tool named Solhint. It mainly
detects external call-related vulnerabilities by checking
the order of the state variables, address type parameters,
delegate call invocations, and patterns related to denial
of service in the smart contracts related to decentralized
robotic applications.

• Solhint [119]: It is a publicly available open-source
static analysis command-line tool invented in 2017 and
developed in Java. Solhint uses an antlr4-based imple-
mentation of the Solidity parser that enables efficient
parsing and validation performance. The tool has flex-
ible configuration options like using a predefined set
of rules, a default customized rule set, and code-level
configuration rule management. Solent uses three major
commands 1) **/*.sol: by this command, it receives
a list of file patterns to analyze. 2)stdin: It provides
validating source code to standard input. 3) init config:
It creates a basic configuration file, which can also be
customized if needed.

• Solidifier [62]: It is a static analysis tool developed in
the year 2020. This tool takes input for analysis of the
solidity code. Rather than finding specific behavioral
patterns, it detects errors and bad states that do not
conform to the developer’s intent or detects the falsifying
behavioral properties, which the developers can correct.

• Soliditycheck [63]: It is a publicly available static anal-
ysis tool invented in 2019 and developed in C++. It uses
regular expressions to locate security problems in smart
contracts. Soliditycheck’s main processing is divided
into four steps: 1)Formatting the codes. 2) Keywords

filtering from the formatted code. 3) Detection and pre-
vention. 4) Detection report and preventive contract.
At the end of the fourth step, it shows a detection report
of 18 types of security problems except for re-entrancy
and integer overflow problem and outputs contract that
prevent problems after inserting code.

• SolMet [65]: It is a publicly available open-source
static analysis tool invented in 2018 and developed
in Java. It is a static source code metrics gen-
erator to measure smart contracts’ size and com-
plexity attributes. Parsing the solidity source code
uses a generated parser which the modified version
of antlr4 grammar [https://github.com/solidityj/solidity-
antlr4]. SolMet proposes the following source code
metrics for a smart contract: SLOC, LLOC, CLOCNF,
WMC, and NL.

• VeriSmart [68]: It is a publicly available open-source
static analysis tool implemented in OCaml and invented
in 2020. It is an automatized and scalable analysis tool
based on a domain-specific smart contract verification
language. It starts analysis from basic path construction,
the generation of verification conditions, then collect-
ing unproven paths, then performing domain-specific
refinement, then processing, and at last efficient valid-
ity/invalidity checking. It detects all CVE related vul-
nerabilities.

• VeriSol [69]: It is a publicly available open-source static
analysis tool invented in 2019 and developed in C#.
It is a general-purpose solidity verifier used to check the
assertion in a solidity smart contract. VeriSol converts
the Solidity program’s semantics to Boogie, a low-level
intermediate verification language. It uses the CORRAL
[24], a bounded model checking tool that helps Boogie
generate witnesses to assertion violations.

• VeriSolid [70]: It is a static analysis tool implemented
in JavaScript and invented in 2019. It is a formal verifi-
cation framework that allows the creation of solid source
code from validated prototypes which ultimately allows
the correct design development of the smart contract.
It is constructed on top of another static analysis tool
named FSolidM.

• Zeus [73]: It is a company tool, developed in 2018 by
IBM Research India for static analysis of the solidity
smart contracts. It is a symbolic model checking frame-
work consisting of three components: policy builder,
source code translator, and verifier. Solidity smart con-
tract and policies against which the smart contract is
to be verified are taken as input. It then inserts poli-
cies predicates as assertions at correct program points.
Then this policy asserted code is converted to LLVM
bytecode. Then at the end the verifier checks for policy
violations.

Table 1 presents a comparative analysis of static analysis
tools with solidity code as input. The comparative analysis is
based on some criteria like either the tool is a company tool

VOLUME 10, 2022 57045

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

or academic tool, source code of the tool is available or not
(means source code is freely available to access or evaluate
the tool on Github or some other web location), the tool
has either command-line interface or web interface, the year
of advent and the implementation language or development
language of the tool.

2) INPUT TO THE TOOL: EVM BYTE CODE
• DEFECTCHECKER [78]: It is a static analysis tool
invented in the year 2021 and developed in Java. It is
based on symbolic execution and has four processing
sections: Inputter, CFG Builder, Feature Detector, and
Defect Identifier. It takes as input the byte code and then
extracts the opcodes from that. Then all the opcodes are
categorized into different-different categories for sym-
bolic execution. Then a control flow graph is constructed
to detect the defects in the smart contract.

• E-EVM [81]: It is a publicly available open-source
static analysis tool invented in 2018 and developed in
Python. It visualizes the emulated execution of the smart
contract on Ethereum Virtual Machine. It works on the
byte code of the smart contract by displaying control
flow, opcode, and stack for each step of the contract’s
program execution. The front end of E-EVM is written
in JavaScript, and the back end is written in Python.

• Erays [82]: It is a publicly available open-source static
analysis tool invented in 2018 and developed in Python.
It is a reverse engineering tool that analyses EVM byte
code of Ethereum blockchain smart contracts. It gener-
ates a high-level pseudo-code for the EVM byte code.
Erays works in eight steps starting from disassembly
from hex string to EVM instructions, then basic blocks,
then control flow graph is recovered from these basic
blocks, then EVM’s stack-based instruction are lifted
to registered based instruction. Then it performs data
flow optimizations following the aggregation to an inter-
mediate representation. Then control flow structure is
recovered using structural analysis algorithms. Then val-
idation is performed to transform the contract into more
readable expressions. Erays has limitations like it cannot
capture operation on complex types.

• ESCORT [83]: It is a static analysis tool invented
in the year 2021. It employs a Deep Neural Network
(DNN)-based approach to analyze Ethereum blockchain
smart contracts vulnerability detection framework.
It supports lightweight transfer learning on invisible
security issues, thus is extensible and oversimplified.
The ESCORT is composed of two components: (i) the
First component extracts the features and semantics of
the Ethereum smart contract (ii) The second component
takes an input of features from the first component and
consists ofMultiple branch structures. Each branch from
this multiple branch structure works on a specific secu-
rity vulnerability.

• Ether (S-GRAM) [87]: It is a semantic-aware security-
aware framework. It was developed in Python based on

the S-Gram artifact in 2018. To detect vulnerabilities,
it works in two phases: the model construction phase
and the security auditing phase. It uses a combination
of N-gram language modeling and lightweight static
semantic labeling to learn statistical regularities of con-
tract tokens and finally capture high-level semantics to
predict potential vulnerabilities.

• EtherTrust [89]: It is a publicly available open-source
automated static analysis tool invented in 2018 and
developed in JavaScript. Its analysis is based on the
horn clause. For discharging proof obligations, it relies
on Z3 theorem prover. It shows a formal guarantee and
supports the analysis of EVMbyte code. It detects Single
entrance and independence from the transaction environ-
ment.

• EthIR [90]: It is a publicly available open-source static
analysis tool invented in 2018 and developed in Python.
It is an Ethereum byte code analyzer and depends on
Oyente to generate the control flow graph. It converts the
control flow graph to a rule-based intermediate represen-
tation. It then uses SACO, a high-level static analyzer,
to analyze its intermediate rule-based representation of
EVM byte code.

• eThor [91]: It is an EVM byte code static analyzer
invented in JavaScript in 2020. The author employs the
HoRSt (specification and implementation framework
for static analysis) to implement eThor. eThor is built
on the top of the reachability analysis realized by horn
clause resolution, which abstracts the contract’s execu-
tion behavior to query about the abstracted property over
abstract executions instead.

• EthPloit [92]: It is a static analysis tool invented in the
year 2020. This tool uses a fuzzing approach for exploit
generation in smart contracts exploit generators based
on fuzzing. The workflow of EthPloit is divided into five
parts starting from Static analysis, test-case generation,
test case execution, trace analysis, and feedback han-
dling. It generates exploits related to Unchecked Trans-
fer Value, Vulnerable Access Control, Exposed secret,
etc.

• GasChecker [98]: It is a static analysis tool invented in
the year 2020. GasChecker mainly works on gas-related
bugs in smart contracts. The tool analyses smart con-
tracts based on ten gas inefficient codes or program-
ming patterns. Symbolic execution is employed as
GasChecker’s analysis approach to detect gas-related
security issues in the Ethereum virtual machine byte
code.

• Gasper [100]: It is a static analysis tool invented in
Python in the year 2017. Gasper analyzes the EVM byte
code of the smart contract to identify the gas costly
pattern. Gasper identifies 7 gas costly patterns in two
categories: unnecessary code-related patterns and gas
costly loop-related patterns. So, Gasper is a gas costly
pattern checker based on symbolic execution and work
on byte code.

57046 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

TABLE 1. Comparative analysis of static analysis tools (with solidity code as input).

VOLUME 10, 2022 57047

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

• HoneyBadger [103]: It is a publicly available
open-source static analysis tool invented in 2019 and
developed in Python. It performs a systematic analysis
of honeypot smart contracts. It employs symbolic exe-
cution with a defined heuristic for exposing honeypots
by investing their pervasiveness, actions, and influence
on the Ethereum blockchain. Its structure contains three
types of analysis pipeline named symbolic analysis,
cash flow analysis, and honeypot analysis. Each type of
analysis uses Z3 SMT solver to check the satisfiability
of constraints.

• KEVM [104]: It is a publicly available open-source
static analysis tool invented in 2016 and developed with
a mixture of markdown syntax and k specification lan-
guage. TheKEVM formation is divided into two compo-
nents states. The first one is the active VM state or virtual
machine state for executing transactions and contracts.
Another one is the network state which records a log of
account information.

• MadMax [105]: It is a publicly available open-source
static analysis tool invented in 2018. It uses Gigahose
IR to perform static analysis. Gigahose IR is a lifter
that converts low-level Ethereum virtual machine byte
code into high-level IR (intermediate representations).
MadMax automatically detects gas-focused vulnerabil-
ities. MadMax employs a combination of two analysis
approaches. The first is a control-flow-analysis-based
decompiler, and the second is declarative program-
structure queries. This approach identifies high-level
area-specific concepts.

• Mythril [120]: It is a publicly available open-source
analysis tool implemented in Python programming
language in 2017 by ConsenSys, a software engi-
neering leader in the blockchain space. Ethereum
Virtual Machine byte code is given as input for
analysis in this tool. Mythril not only analyses
Ethereum blockchain-based smart contracts but also
works for other blockchain platforms. Mythril uses
three approaches for analyzing smart contracts: sym-
bolic execution, SMT solving, and taint analysis.
It can also be used in combination with other
tools.

• Octopus [121]: It is a publicly available open-source
static analysis tool implemented in Python and invented
in 2017 and sponsored by QuoScient Technologies.
It is a vulnerability detection model for WASM and
blockchain smart contracts. Octopus can work as a dis-
assembler to translate bytecode into assembly represen-
tation. It can generate a control flow graph and call flow
graph. It employs symbolic execution to find new paths
into the program.

• Osiris [111]: It is a publicly available open-source
static analysis tool implemented in Python and invented
in 2018. For detecting arithmetic vulnerabilities,
it employs a combination of two approaches, which are
symbolic execution and taint analysis. It can detect three

types of integer vulnerabilities arithmetic, truncation,
and signedness bugs.

• Oyente [9]: It is a publicly available open-source static
analysis tool implemented in Python and invented in
2016. It is one of the oldest tools which employs sym-
bolic execution for analyzing smart contracts and stati-
cally analyzing the program code path by a path. Its main
architectural components are CFG builder, Explorer,
Core analyzer, Validator. The Explorer and Validator
use Z3 bit-vector solver to eliminate provably infeasible
traces from consideration.

• Porosity [113]: It is a publicly available open-source
static analysis tool implemented in C++ and invented
in 2017 by Comae technology. It is a decompiler and
vulnerability analysis tool for Ethereum blockchain and
generates readable solidity syntax contracts. As per the
author, the tool is not maintained for a long time, and he
suggested using another tool.

• RA [117]: It is a static analysis tool invented in the year
2020. The complete form of the RA is ‘‘Re-entrancy
Analyser.’’ So, as per the name, it is a re-entrancy attack
hunter. It employs a combinational approach of sym-
bolic execution and constraints solver in two ways, i.e.,
symbolic simulation of re-entrancy vulnerability and
then verification of the same. It also supports the anal-
ysis of inter-contract behavior. Its architectural design
contains three components CFManager, VM, and Veri-
fier. The CFManager conducts the symbolic simulation
process of re-entrancy vulnerability. Verifier assisted by
VM executes the vulnerability verification process.

• Rattle [118]: It is a publicly available open-source
static analysis tool implemented in Python and invented
in 2018 Trail of Bits. It is a binary static analysis frame-
work and can analyze deployed smart contracts. It recov-
ers the original control flow graph by a flow-sensitive
analysis of EVM byte code. Then it converts the control
flow graph into SSA (Single Static Assignment) register
form. At last, optimizing SSA removes DUPs, SWAPs,
PUSHs, and POPs.

• Securify [128]: It is a publicly available open-source
static analysis tool implemented in Java and invented
in 2018. It is a fully automated security analyzer and
indicates the behavior of a smart contract associated
with a given feature to check it is either safe or not.
The input to this tool is EVM byte code and a set of
security patterns. Security employs two steps analysis
process. The first step performs the symbolic execution
of the contracts dependency graph and extracts specific
semantic data. The second step checks for compliance
and violation pattern for proving if a property holds or
not.

• SmartSheild [58]: It is a static analysis tool invented in
the year 2020. It is a type of Ethereum virtual machine
byte code rectification tool. It rectifies three security
vulnerabilities: missing checks for failing external calls,
missing checks for out-of-bound arithmetic operations,

57048 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

TABLE 2. Comparative analysis of static analysis tools (with EVM byte code as input).

and state changes after external calls. It extracts semantic
information related to Ethereum virtual machine byte
code from abstract syntax tree generated from source
code and non-rectified EVM byte code. It performs byte
code relocation and validation and, in the end, produces
rectification reports and rectified contracts by using the
information from control flow transformation and data
guard insertion.

• TEEther [14]: It is a static analysis tool implemented
in Python and invented in the year 2018. It is an exploit
generation tool for smart contracts. The process of
exploit generation is divided into five modules. The first
module is a CFG generation module, the second module
is a path generation module, the third is a constraint
generation module, and the last is an exploit generation
module. TEEther uses Z3 as a constraint solver.

• Vandal [67]: It is a publicly available open-source static
analysis tool implemented in Python and invented in the
year 2018. Its analysis pipeline transforms the Ethereum
virtual machine byte code to semantic logic relations.
It phrases the vulnerability analysis into souffle‘ which
is a declarative language. Vandal’s analysis pipeline pro-
cess is divided into several stages: scrapper, disassem-
bler, decompiler, and extractor, which finally produces
the logic relations.

• VerX [71]: It is a static analysis tool invented in the
year 2020. It verifies the temporal properties of smart
contracts. It employs the combination of symbolic exe-
cution and abstraction during transaction execution.
A new symbolic execution engine for Ethereum virtual
machine is used by the VerX, which avoids the short-
comings of the existing execution engine.

VOLUME 10, 2022 57049

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

3) INPUT TO THE TOOL: EVM BYTE CODE/SOLIDITY CODE
• Conkas [122]: It is a publicly available open-source
static analysis tool implemented in Python and invented
in 2019. The cookies analysis methodology is based
on symbolic execution. It takes an input of solidity
code or Ethereum virtual machine byte code. Cookies
use Z3 as an SMT solver and Rattle for intermediate
representation.

• GASOL [139]: It is a static analysis tool invented in the
year 2020. GASOL is an analysis tool and optimization
tool for gas-related issues. After analyzing the selected
types of EVM instructions, GASOL returns the upper
bound of the cost of execution of the function. This tool
estimates the gas cost of a running function and informs
the users about any vulnerability related to gas in the
same.

• SAFEVM [125]: It is a publicly available open-source
static analysis tool implemented in Python and invented
in 2019. It is a verification tool with a verification
engine for the C program. It can take Solidity or EVM
byte code input for analysis purposes along with assert
and required authentication annotation and outputs a
verification result. It depends on Oyente for generating
control flow graphs and EthIR framework for generating
rule-based representation. It can detect the division by
zero, out-of-bounds access vulnerabilities efficiently.

Table 2 presents a comparative analysis of static analysis
tools with EVM byte code as input.

4) INPUT TO THE TOOL: FORM. SPEC
• FSolidM [95]: It is a publicly available open-source
static analysis tool implemented in JavaScript and
invented in 2017. It allows defining contract as FSM
(Finite State Machine) with the precise and clear-out
specification. It is a web-based tool built on top of
the WebGME. This tool provides a security plugins
mechanism to prevent security vulnerabilities in smart
contracts. It is the only tool that generates solidity
code according to the specifications defined by the
user.

Table 3 summarizes the same type of information as in
Tables 1 and 2 for static analysis tools like a year of advent,
development programming language, source code availabil-
ity, etc. Table 4 summarizes the same type of information
for the tools with input both solidity code and EVM byte
code. Some companies develop some tools. The respective
company name is mentioned in front of the respective tool’s
name for such tools.

Table 4 presents the relationship between the tools (with
solidity code as input, EVM byte code, and both respec-
tively) and their checked or detected vulnerabilities and
their employed analysis approach. Some tools are only anal-
ysis tools. They do not detect or check any vulnerabil-
ity but analyze the smart contract by code transformation
into some other form or by visualizing it into some kind

of graphical representation, which makes the analysis very
easier. Table 5 depicts the same type of information as
presented in Table 4 but for the tools with input either
only as solidity code or both the solidity code and EVM
byte code.

B. CATEGORY 2: DYNAMIC ANALYSIS TOOL
1) INPUT TO THE TOOL: SOLIDITY CODE
• ContractLarva [75]: It is a publicly available
open-source dynamic analysis tool implemented in
Haskell and TeX and invented in 2017. It is a runtime
verification tool and works on solidity code. This tool
instruments the Ethereum smart contract using event
triggering and monitoring logic. It uses dynamic event
automata for specifying properties that help monitor the
events. The tool captures two types of events: control
flow events and data flow events.

• Ethlint [123]: It is a publicly available open-source
dynamic analysis tool implemented in JavaScript and
invented in 2016. It was formally known as Solium.
It checks the solidity code for style and security issues.
It derives ideas from ESLint, a static analyzer for
JavaScript code and Solidity Parser.

• Harvey [102]: It is a dynamic analysis tool invented in
the year 2020. Harvey is a grey-box fuzzer for smart
contracts, which is nothing but a lightweight test genera-
tion approach to detect vulnerabilities and security bugs.
Harvey mainly detects two types of bugs, the first one is
assertion violations defined in SWC 110 and the other
one is memory access errors defined in SWC 124.

• ModCon [108]: It is a dynamic analysis tool imple-
mented in JavaScript and invented in 2020. It is a
model-based testing framework, defines test oracles
using user-defined models, and works for both permis-
sioned and permission-less blockchain platforms. Mod-
Con has a web-based frontend and JavaScript-based
back-end. It takes an input of the smart contract and a
test model specification from the user.

• Solitor [64]: It is a dynamic analysis tool implemented
in Java and invented in 2018. Solitor is short for Solidity
monitor. In this tool, the user can specify the behavior
using annotations. These annotations can be used at
run-time to check whether specific properties hold or
not.

• Vultron [27]: It is a publicly available open-source
dynamic analysis tool implemented in JavaScript and
invented in 2019. It proposes an approach to building
an oracle to detect irregular transactions over a normal
one. A broad spectrum of downstream analysis tech-
niques like testing, fuzzing, verification, and symbolic
execution can be enabled by this oracle. Its other name
is ContraMaster.

Tables 6, 7, and 8 presents a comparative analysis of dynamic
analysis tools with solidity code, EVM byte code and both as
input respectively.

57050 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

TABLE 3. Comparative analysis of static analysis tools (with both solidity code and EVM byte code as input).

2) INPUT TO THE TOOL: EVM BYTE CODE
• ContractFuzzer [74]: It is a publicly available
open-source dynamic analysis tool implemented in GO
and invented in 2018. It is a fuzzing tool to detect secu-
rity vulnerabilities in Ethereum smart contracts. It uses
ABI specifications of smart contracts for generating
fuzzing inputs. It classifies test oracles to detect security
vulnerabilities. Smart contract’s run time behavior is
logged by instrumenting the Ethereum virtual machine.
Finally, these logs are analyzed to find out security
vulnerabilities.

• ContractGuard [77]: It is a dynamic analysis tool
implemented in JavaScript and invented in 2019.
It employs a practical anomaly-based intrusion detection
system approach. It raises the alarm to the administrators
when detecting some abnormal behavior and rolls back
the changes in the smart contracts state to the previous
safe state.

• EthBMC [86]: It is a dynamic analysis tool developed
in the year 2020. This tool takes input for the analysis
of EVM byte code. It is an automatized vulnerability
detector based on symbolic execution. It explores the
available state space a program can reach. It encodes
the attackers’ goal using some constraints, and then that
constraint is solved by using the SMT solver. It works
efficiently on parity bug vulnerabilities.

• Etherolic [88]: It is a dynamic analysis tool imple-
mented in Rust and invented in 2020. Etherolic’s analy-
sis methodology is based on the combination of dynamic
taint tracking and console testing to analyze Ethereum
virtual machine byte code. It identifies vulnerabilities
as well as generates exploits to trigger unknown errors.
It can detect Integer Overflow/Underflow, Bad Ran-
domness, Re-entrancy, Locked Ether, Unhandled Excep-
tions, Denial of Service, Short addresses, etc.

• EVMFuzzer [93]: It is a publicly available open-source
dynamic analysis tool implemented in Python and
invented in 2019. For detecting vulnerabilities, it uses
differential fuzzing techniques. It feeds seed contracts
into a benchmark EVM and targets EVM to discover
the discrepancies in the outcomes. These discrepan-
cies are finally used to detect vulnerabilities by cross-
referencing outputs.

• MAIAN [106]: It is a publicly available open-source
dynamic analysis tool implemented in Python and
invented in the year 2018. It employs symbolic analysis

and a concrete validation approach. It uses systematic
approaches for discovering a violation of specific prop-
erties in smart contracts. The specific properties are
safety properties and liveness properties.

• Manticore [107]: It is a publicly available open-source
dynamic analysis tool implemented in Python in 2017 by
Trell of Bits. It is a dynamic symbolic execution anal-
ysis tool. User customization is allowed in Manticore
for analysis purposes. Its architecture is divided into
primary and secondary components. The primary com-
ponents are the Ethereum execution modules and the
core engine. The secondary components include the API
module, event system module, and SMT-LIB module.

• Sereum [129]: It is a dynamic analysis tool imple-
mented in JavaScript and implemented in 2019. Sereum
is short of secured Ethereum. It protects deployed
smart contracts against re-entrancy vulnerability attacks.
It employs the run-time monitoring and validation
approach in a backward-compatible way. This tool also
employs taint tracking to monitor the execution of a
smart contract and monitor the data flow from storage
variables.

• sFuzz [131]: It is a publicly available open-source
dynamic analysis tool implemented in C++ and
invented in 2020. It employs the approach of
feedback-guided adaptive fuzzing. The test generation
problem is transformed into an optimization problem in
this approach. Then this optimization problem is solved
by using some form of feedback. A genetic algorithm is
employed at the top level by this tool.

• SODA [59]: It is a publicly available open-source
dynamic analysis tool implemented in GO and invented
in 2020. SODA is compatible with any blockchain
compatible with Ethereum Virtual Machine. It is
embedded with eight apps with new methods which
can easily detect major vulnerabilities in Ethereum
blockchain-based smart contracts like invalid input data,
re-entrancy incorrect check for authorization, no check
after contract, unexpected function invocation.

3) INPUT TO THE TOOL: EVM BYTE CODE/SOLIDITY CODE
Following dynamic analysis tools analyze the Ethereum
smart contract by taking as input both the solidity code or
EVM byte code.
• EasyFlow [79]: It is a publicly available open-source
dynamic analysis tool implemented in the

VOLUME 10, 2022 57051

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

TABLE 4. Static analysis tool (with input as solidity code) checked vulnerabilities and analysis approach.

57052 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

TABLE 5. Static analysis tool (with input as only solidity code or both solidity code and EVM byte code) checked vulnerabilities and analysis approach.

GO programming language and invented in 2019.
It employs the taint analysis approach to track the propa-
gation of involved units. It monitors the transaction pro-
cesses using the taint analysis component and declares
the smart contract vulnerable in three categories which
are ‘‘safe’’, ‘‘overflow’’ and ‘‘potential overflow’’.

• ReGuard [24]: It is a dynamic analysis tool imple-
mented in Python and invented in 2018. It is a
fuzzing-based analyzer for Ethereum smart contracts.
It performs fuzz testing on the smart contract and gen-
erates diverse transactions iteratively. It records critical
execution traces during the run time and dynamically

VOLUME 10, 2022 57053

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

TABLE 6. Comparative analysis of dynamic analysis tools with solidity code as input.

TABLE 7. Comparative analysis of dynamic analysis tools with EVM byte code as input.

TABLE 8. Comparative analysis of dynamic analysis tools with both solidity code and EVM byte code as input.

identifies re-entrancy vulnerability by feeding them to
re-entrancy automata.

• SoliAudit [25]: It is a dynamic testing tool invented in
the year 2019. SoliAudit is a fuzzing and vulnerability
analysis tool based on machine learning and fuzz testing
approach. It analyses solidity code in machine code,
i.e., opcode, to verify 13 kinds of top vulnerabilities:
access control, denial of service, bad randomness, front
running, arithmetic, time manipulation, unchecked low-
level calls, short addresses, re-entrancy. The approach
used by this tool does not require expert knowledge or
predefined patterns.

Tables 7, 8, and 9 present a comparative analysis of the
same type of information as presented in Tables 2, 3, and 4.
Table 7 presents the comparative analysis for dynamic anal-
ysis tools with solidity code as input. Table 8 presents the
comparative analysis for dynamic analysis tools with EVM
byte code as input. Table 9 presents the comparative analysis

for dynamic analysis tools with input both solidity code and
EVM byte code.

IV. DISCUSSION
This paper presents a systematic review of Ethereum
blockchain-based smart contract analysis tools irrespective of
their type and analysis approach. For this purpose, we covered
86 analysis tools and referred to 145 research papers from
the literature and other online resources from 2016 to 2021.
This section covers the comparison of this survey with the
related work, limitations of the survey, and the future research
directions, which help the researchers and smart contract
tools developers to set future research directions in this
domain. The most popular top five vulnerabilities checked
or detected by most of the tools are re-entrance, arithmetic
overflow/underflow, gas-related, timestamp dependency, and
transaction ordering dependency. Figure 7 depicts the share of
each of these vulnerabilities concerning checking or detecting
by static or dynamic analysis tools.

57054 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

TABLE 9. Dynamic analysis tools checked vulnerabilities and analysis approach.

The most popular top five analysis approaches employed
by most tools are symbolic execution, fuzz testing, con-
straint solving, code instrumentation, and code transforma-
tion. Figure 8 depicts the share of each of these analysis
approaches concerning the use by static or dynamic analysis
tools.

We selected some tools from each category and performed
an experimental analysis. Some of these chosen tools have
already been practically evaluated in the past on different
data sets. We used a group of 30 contracts tagged with the
top 5 vulnerabilities mentioned in Figure 7 and downloaded
them from the SolidiFI Benchmark [143] data set. The Solid-
iFI Benchmark is a remote data set smart contracts with
9369 tagged vulnerabilities. Figure 9 depicts the average
execution time of each selected tool on the 30 smart con-
tracts. The Slither, Solhint, and Smart check perform bet-
ter in average execution time. The Average Execution time
of the Manticore is very high as compared to other tools.
Figure 10 shows the detected vulnerabilities results by each

tool, and Figure 11 shows the false-positive results of each
selected tool on 30 contracts. The performance of the Slither,
Mythril, and Oyente is better than other tools chosen for
comparison in terms of vulnerability detection. The Slither
and Mythril detect the maximum number of vulnerabili-
ties related to re-entrency and arithmetic underflow/overflow
issues. The false-positive rate of the Mythril and Securify is
high than other selected tools. The false-positive rate of the
SmartCheck, and HoneyBadger is low as compared to other
tools. VeriSmart, RA, sFuzz, SODA, and VeriSolid are some
of the latest tools which have not been explored so much in
the past. The false-positive rate of these tools is meager as
compared to other tools. The RA and VeriSolid are specific
tools for Re-entrency vulnerabilities. The VeriSmart is a par-
ticular tool for arithmetic overflow/underflow vulnerabilities.

In case of an attack on smart contracts, no one is liable
for any losses due to the decentralized nature of blockchain.
Involved parties need to be bound for any loss that occurred
due to the legitimate design of the smart contract because the

VOLUME 10, 2022 57055

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

FIGURE 7. Top five vulnerabilities share checked or detected by static or
dynamic analysis.

FIGURE 8. Top five analysis approaches share with respect to use by
static or dynamic analysis.

smart contract code permits the breach. The DAO (Decen-
tralized Autonomous Organization) was the first and one of
the famous attacks on a smart contract which caused the loss
of 60 Million US dollars. The existing tools are unable to
deal with the liability issues. Because of this, smart contracts
must be analyzed for security issues in advance before being
deployed on the blockchain.

A. COMPARISON WITH RELATED WORK
This systematic review can be considered an extension to
the existing surveys in the Ethereum blockchain-based smart
contract analysis tools. To fill the research gap, this paper
covers a deep insight of 86 analysis tools divided into two
main categories static analysis and dynamic analysis. Then
the tools are further divided into sub-categories based on
input to the tool for analysis. It is found that this review
covers most of the tools as compared to any other survey

FIGURE 9. Average execution time of each tool on 30 contracts.

in this domain. To highlight the future research direction in
this domain we considered the most recent literature. Figure 9
depicts the comparison of the present survey and related work
in terms of the number of tools discussed.

B. LIMITATIONS
The Ethereum blockchain is the most prominent one, and
most of the research has the maximum share of the same.
So, our discussion is mainly related to the Ethereum
blockchain-based smart analysis tools. But other blockchain
platforms also have essential concerns. Our discussion
doesn’t consider those analysis approaches that give any tool
name to their approach. The same is left for future research.
Following are some limitations of this review:

1) Our discussion compares the tools with different-
different aspects like source code availability, develop-
ment platform, checked vulnerabilities, etc., but does
not cover the high-level description related to the full
flesh working of the tools.

2) There are several other analysis tools for other
blockchain-based smart contracts like Solana, Hyper-
ledger, etc. Our discussion mainly covers the analysis
tools related to Ethereum blockchain smart contract
because it has the maximum share in the literature
related to smart contracts.

3) This review should not be considered complete because
several new analysis tools and approaches are being
proposed and developed day by day. Our discussion
does not cover the analysis tools proposed in the pre-
prints articles.

4) Some research articles don’t have any name for the
detection approach or model proposed. Such articles
are not covered in this review.

C. FUTURE RESEARCH DIRECTIONS
Blockchain technology is changing day by day at a very fast
pace. So, several new functionalities and features will be
added to the Ethereum blockchain in the near future. So, more
new security vulnerabilities will be discovered. So, it may

57056 VOLUME 10, 2022

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

FIGURE 10. Top 5 vulnerabilities detection performance of each selected tools.

FIGURE 11. False positive rate of each tool on top 5 vulnerabilities.

FIGURE 12. Comparison of present survey and related work in terms of
number of tools discussed.

lead to the development of new and advanced analysis tools
for detecting such types of vulnerabilities. No tool is found
in the survey which checks or detects all the vulnerabilities
presented in the literature. A lot of work is suggested to

be done in this direction. Following are some of the future
research directions:

1) We found that most of the tools’ source code is
not openly accessible for evaluation purposes. So,
for building trust among the research community, the
source code must be openly available for evaluation.

2) Most of the Ethereum smart contract analysis tools
mostly check or detect only some of the famous
Ethereum smart contract vulnerabilities. A standard
benchmark should be suggested by the research com-
munity for evaluating the effectiveness of any analysis
tool.

3) The majority of the Ethereum smart contract analysis
tools employ the static analysis approach. But for the
complete analysis of a smart contract, both static and
dynamic analysis is necessary to detect or check all the
vulnerabilities.

4) The research lacks very few tools for designing and cre-
ating new smart contracts. Such types of tools should
be developed that will be an aid for the research com-
munity for developing safe smart contracts.

VOLUME 10, 2022 57057

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

V. CONCLUSION
The Ethereum smart contracts security analysis is of essential
concern, and various analysis tools have been developed for
creating safe and secure smart contracts. This paper presented
a systematic review of Ethereum smart contracts analy-
sis tools. Initially, 670 articles were selected from various
databases such as ACM, IEEE explores, Elsevier, Springer,
and Scopus. 132 articles were selected by using various
inclusion and exclusion criteria. Besides it, 13 additional
articles and online sources were also utilized. 86 security
analysis tools in the Ethereum blockchain smart contract
were analyzed regardless of tool type and analysis approach.
These tools were categorized into static and dynamic analysis
tools. After that, different source code analysis techniques
were studied, such as taint analysis, symbolic execution,
and fuzzing techniques. It was found that the most popular
vulnerability checked and detected by most of the static and
dynamic analysis tools is ’re-entrancy’. The most popular
analysis methodology employed by static analysis tools is
symbolic execution and fuzz testing by dynamic analysis
tools. Most of the tools have utilized static analysis, and
some tools were found that employ a combination of static
and dynamic analysis, i.e., hybrid analysis. It is concluded
that hybrid analysis-based tools have considered more than
95% of security flaws. Finally, the paper highlights some
challenges and future recommendations in Ethereum smart
contracts.

REFERENCES
[1] A. Averin and O. Averina, ‘‘Review of blockchain technology vulnerabil-

ities and blockchain-system attacks,’’ in Proc. Int. Multi-Conf. Ind. Eng.
Modern Technol. (FarEastCon), Oct. 2019, pp. 1–6, doi: 10.1109/Far-
EastCon.2019.8934243.

[2] C. S. Wright, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ SSRN
Electron. J., p. 9, Aug. 2019, doi: 10.2139/ssrn.3440802.

[3] C. K. Frantz and M. Nowostawski, ‘‘From institutions to code: Towards
automated generation of smart contracts,’’ in Proc. IEEE 1st Int. Work-
shops Found. Appl. Self Syst. (FAS-W), Sep. 2016, pp. 210–215.

[4] M. In and F. Of, ‘‘Dubai aims to be a city built on blockchain where finan-
cial regulation goes in a republican era,’’ Wall Street J., vol. 4, pp. 3–6,
Apr. 2017. [Online]. Available: https://www.wsj.com/articles/dubai-
aims-to-be-a-city-built-on-blockchain-1493086080

[5] R. Liu, ‘‘Study on single-valued neutrosophic graph with application
in shortest path problem,’’ CAAI Trans. Intell. Technol., vol. 5, no. 4,
pp. 308–313, 2020.

[6] M. Singh and S. Kim, ‘‘Blockchain technology for decentralized
autonomous organizations,’’ in Advances in Computers, vol. 115. Ams-
terdam, The Netherlands: Elsevier, 2019, pp. 115–140.

[7] M. F. Aljunid andM. D. Huchaiah, ‘‘Multi-model deep learning approach
for collaborative filtering recommendation system,’’ CAAI Trans. Intell.
Technol., vol. 5, no. 4, pp. 268–275, 2020.

[8] M. Wöhrer and U. Zdun, ‘‘Design patterns for smart contracts in
the Ethereum ecosystem,’’ in Proc. IEEE Int. Conf. Internet Things
(iThings) IEEEGreen Comput. Commun. (GreenCom) IEEECyber, Phys.
Social Comput. (CPSCom) IEEE Smart Data (SmartData), Aug. 2018,
pp. 1513–1520, doi: 10.1109/Cybermatics_2018.2018.00255.

[9] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making
smart contracts smarter,’’ in Proc. ACM Conf. Comput. Commun. Secur.,
vols. 24–28, 2016, pp. 254–269, doi: 10.1145/2976749.2978309.

[10] J. Jiang and L. Hu, ‘‘Decentralised federated learning with adaptive
partial gradient aggregation,’’ CAAI Trans. Intell. Technol., vol. 5, no. 3,
pp. 230–236, 2020.

[11] S. Jatsun, A. Malchikov, A. Yatsun, A. M. Khalil, and A. S. M. Leon,
‘‘Simulation of a walking robot-exoskeleton movement on a movable
base,’’ J. Artif. Intell. Technol., vol. 1, no. 4, pp. 207–213, Oct. 2021.

[12] B. A. Kitchenham, D. Budgen, and O. P. Brereton, ‘‘Using mapping
studies as the basis for further research—A participant-observer case
study,’’ Inf. Softw. Technol., vol. 53, no. 6, pp. 638–651, 2011, doi:
10.1016/j.infsof.2010.12.011.

[13] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ‘‘Systematic
mapping studies in software engineering,’’ in Proc. 12th Int. Conf.
Eval. Assessment Softw. Eng. (EASE), Jun. 2008, pp. 1–10, doi:
10.14236/ewic/ease2008.8.

[14] J. Krupp and C. Rossow, ‘‘teEther: Gnawing at Ethereum to automatically
exploit smart contracts,’’ in Proc. 27th USENIX Secur. Symp., 2018,
pp. 1317–1333.

[15] D. Harz andW. Knottenbelt, ‘‘Towards safer smart contracts: A survey of
languages and verification methods,’’ 2018, arXiv:1809.09805.

[16] M. di Angelo and G. Salzer, ‘‘A survey of tools for analyzing
Ethereum smart contracts,’’ in Proc. IEEE Int. Conf. Decentral-
ized Appl. Infrastruct. (DAPPCON), Newark, CA, USA, Apr. 2019,
pp. 69–78.

[17] J. Liu and Z. Liu, ‘‘A survey on security verification of blockchain
smart contracts,’’ IEEE Access, vol. 7, pp. 77894–77904,
2019.

[18] L. Ante. (2020). Smart contracts on the Blockchain—A Bibliomet-
ric Analysis and Review. [Online]. Available: https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=3576393

[19] M.Almakhour, L. Sliman, A. E. Samhat, andA.Mellouk, ‘‘Verification of
smart contracts: A survey,’’PervasiveMobile Comput., vol. 67, Sep. 2020,
Art. no. 101227.

[20] I. C. Lin and T. C. Liao, ‘‘A survey of blockchain security issues and
challenges,’’ Int. J. Netw. Secur., vol. 19, no. 5, pp. 653–659, 2017, doi:
10.6633/IJNS.201709.19(5).01.

[21] E. Mik, ‘‘Smart contracts: Terminology, technical limitations and real
world complexity,’’ Law, Innov. Technol., vol. 9, no. 2, pp. 269–300,
Jul. 2017, doi: 10.1080/17579961.2017.1378468.

[22] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou,
‘‘Exploiting blockchain data to detect smart Ponzi schemes on
Ethereum,’’ IEEE Access, vol. 7, pp. 37575–37586, 2019, doi:
10.1109/ACCESS.2019.2905769.

[23] T. Min, H. Wang, Y. Guo, and W. Cai, ‘‘Blockchain games: A survey,’’
in Proc. IEEE Symp. Comput. Intell. Games (CIG), Aug. 2019, pp. 1–8,
doi: 10.1109/CIG.2019.8848111.

[24] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, ‘‘ReGuard: Find-
ing reentrancy bugs in smart contracts,’’ in Proc. 40th Int. Conf. Softw.
Eng., Companion, May 2018, pp. 65–68, doi: 10.1145/3183440.3183495.

[25] J.-W. Liao, T.-T. Tsai, C.-K. He, and C.-W. Tien, ‘‘SoliAudit:
Smart contract vulnerability assessment based on machine learning
and fuzz testing,’’ in Proc. 6th Int. Conf. Internet Things, Syst.,
Manage. Secur. (IOTSMS), Oct. 2019, pp. 458–465, doi: 10.1109/
IOTSMS48152.2019.8939256.

[26] B. Ghaleb, A. Al-Dubai, E. Ekonomou, M. Qasem, I. Romdhani, and
L. Mackenzie, ‘‘Addressing the DAO insider attack in RPL’s Internet
of Things networks,’’ IEEE Commun. Lett., vol. 23, no. 1, pp. 68–71,
Jan. 2019, doi: 10.1109/LCOMM.2018.2878151.

[27] H. Wang, Y. Li, S. W. Lin, L. Ma, and Y. Liu, ‘‘VULTRON: Catching
vulnerable smart contracts once and for all,’’ in Proc. IEEE/ACM 41st Int.
Conf. Softw. Eng., New Ideas Emerg. Results (ICSE-NIER), May 2019,
pp. 1–4, doi: 10.1109/ICSE-NIER.2019.00009.

[28] B. C. Gupta and S. K. Shukla, ‘‘A study of inequality in the
ethereum smart contract ecosystem,’’ in Proc. 6th Int. Conf. Internet
Things, Syst., Manage. Secur. (IOTSMS), Oct. 2019, pp. 441–449, doi:
10.1109/IOTSMS48152.2019.8939257.

[29] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the secu-
rity of blockchain systems,’’ Future Gener. Comput. Syst., vol. 107,
pp. 841–853, Jun. 2020, doi: 10.1016/j.future.2017.08.020.

[30] L. Zhu, B. Zheng, M. Shen, F. Gao, H. Li, and K. Shi, ‘‘Research on
the security of blockchain data: A Survey,’’ CoRR, vol. abs/1812.02009,
pp. 1–48, Dec. 2018, doi: 10.1007/s11390-020-9638-7.

[31] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and
A. Bani-Hani, ‘‘Blockchain smart contracts: Applications, challenges,
and future trends,’’ Peer-to-Peer Netw. Appl., vol. 14, no. 5,
pp. 2901–2925, Sep. 2021, doi: 10.1007/s12083-021-01127-0.

[32] Z. Wang, H. Jin, W. Dai, K.-K.-R. Choo, and D. Zou, ‘‘Ethereum smart
contract security research: Survey and future research opportunities,’’
Frontiers Comput. Sci., vol. 15, no. 2, Apr. 2021, doi: 10.1007/s11704-
020-9284-9.

57058 VOLUME 10, 2022

http://dx.doi.org/10.1109/FarEastCon.2019.8934243
http://dx.doi.org/10.1109/FarEastCon.2019.8934243
http://dx.doi.org/10.2139/ssrn.3440802
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00255
http://dx.doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.1016/j.infsof.2010.12.011
http://dx.doi.org/10.14236/ewic/ease2008.8
http://dx.doi.org/10.6633/IJNS.201709.19(5).01
http://dx.doi.org/10.1080/17579961.2017.1378468
http://dx.doi.org/10.1109/ACCESS.2019.2905769
http://dx.doi.org/10.1109/CIG.2019.8848111
http://dx.doi.org/10.1145/3183440.3183495
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939256
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939256
http://dx.doi.org/10.1109/LCOMM.2018.2878151
http://dx.doi.org/10.1109/ICSE-NIER.2019.00009
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939257
http://dx.doi.org/10.1016/j.future.2017.08.020
http://dx.doi.org/10.1007/s11390-020-9638-7
http://dx.doi.org/10.1007/s12083-021-01127-0
http://dx.doi.org/10.1007/s11704-020-9284-9
http://dx.doi.org/10.1007/s11704-020-9284-9

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

[33] T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu, K. Zhou,
and Y. Liu, ‘‘Transaction-based classification and detection approach
for Ethereum smart contract,’’ Inf. Process. Manage., vol. 58, no. 2,
Mar. 2021, Art. no. 102462, doi: 10.1016/j.ipm.2020.102462.

[34] A. Bhardwaj, S. B. H. Shah, A. Shankar, M. Alazab, M. Kumar, and
T. R. Gadekallu, ‘‘Penetration testing framework for smart contract
blockchain,’’ Peer-to-Peer Netw. Appl., vol. 14, no. 5, pp. 2635–2650,
Sep. 2021, doi: 10.1007/s12083-020-00991-6.

[35] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, ‘‘A systematic
literature review of blockchain and smart contract development: Tech-
niques, tools, and open challenges,’’ J. Syst. Softw., vol. 174, Apr. 2021,
Art. no. 110891, doi: 10.1016/j.jss.2020.110891.

[36] J. Liu, C. Sun, and Y. Lai, ‘‘A data transmission approach based on
ant colony optimization and threshold proxy re-encryption in WSNs,’’
J. Artif. Intell. Technol., vol. 2, no. 1, pp. 23–31, Dec. 2021.

[37] H. Rameder, ‘‘Systematic review of Ethereum smart contract security
vulnerabilities, analysis methods and tools,’’ M.S. thesis, Dept. Com-
put. Eng., Technische Universität Wien, Vienna, Austria, 2021, doi:
10.34726/hss.2021.86784.

[38] Y. Xu, Y. Li, and C. Li, ‘‘Electric window regulator based on intelligent
control,’’ J. Artif. Intell. Technol., vol. 1, no. 4, pp. 198–206, Sep. 2021.

[39] Z. Wan, X. Xia, D. Lo, J. Chen, X. Luo, and X. Yang, ‘‘Smart
contract security: A practitioners’ perspective,’’ in Proc. IEEE/ACM
43rd Int. Conf. Softw. Eng. (ICSE), May 2021, pp. 1410–1422, doi:
10.1109/ICSE43902.2021.00127.

[40] T. Palina, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, ‘‘A survey of smart contract
formal specification and verification,’’ ACMComput. Surv., vol. 54, no. 7,
p. 38, 2021, doi: 10.1145/3464421.

[41] S. Ji, D. Kim, and H. Im, ‘‘Evaluating countermeasures for verifying the
integrity of Ethereum smart contract applications,’’ IEEE Access, vol. 9,
pp. 90029–90042, 2021, doi: 10.1109/ACCESS.2021.3091317.

[42] N. A. N. Aidee, M. G. M. Johar, M. H. Alkawaz, A. I. Hajamydeen,
and M. S. H. Al-Tamimi, ‘‘Vulnerability assessment on Ethereum
based smart contract applications,’’ in Proc. IEEE Int. Conf.
Autom. Control Intell. Syst. (I2CACIS), Jun. 2021, pp. 13–18, doi:
10.1109/I2CACIS52118.2021.9495892.

[43] R. Gupta, M. M. Patel, A. Shukla, and S. Tanwar, ‘‘Deep learning-
based malicious smart contract detection scheme for Internet of Things
environment,’’ Comput. Electr. Eng., vol. 97, Jan. 2022, Art. no. 107583,
doi: 10.1016/j.compeleceng.2021.107583.

[44] X. Tang, K. Zhou, J. Cheng, H. Li, and Y. Yuan, ‘‘The vulnerabilities
in smart contracts: A survey,’’ in Advances in Artificial Intelligence
and Security (Communications in Computer and Information Science),
vol. 1424, X. Sun, X. Zhang, Z. Xia, and E. Bertino, Eds. Cham,
Switzerland: Springer, 2021, doi: 10.1007/978-3-030-78621-2_14.

[45] H. Chen, M. Pendleton, L. Njilla, and S. Xu, ‘‘A survey on Ethereum sys-
tems security,’’ ACM Comput. Surv., vol. 53, no. 3, pp. 1–43, May 2021,
doi: 10.1145/3391195.

[46] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, ‘‘Sys-
tematic review of security vulnerabilities in Ethereum blockchain
smart contract,’’ IEEE Access, vol. 10, pp. 6605–6621, 2022, doi:
10.1109/ACCESS.2021.3140091.

[47] R. Lawler. (Dec. 3, 2021). Someone Stole $ 120 Million in Crypto by
Hacking a DeFi Website, The Verge. Accessed: Dec. 11, 202. [Online].
Available: https://www.theverge.com

[48] A. Ghaleb and K. Pattabiraman, ‘‘How effective are smart contract
analysis tools? Evaluating smart contract static analysis tools using bug
injection,’’ 2020, arXiv:2005.11613.

[49] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, ‘‘A survey of smart contract
formal specification and verification,’’ ACMComput. Surv., vol. 54, no. 7,
pp. 1–38, Sep. 2022.

[50] D. He, Z. Deng, Y. Zhang, S. Chan, Y. Cheng, and N. Guizani, ‘‘Smart
contract vulnerability analysis and security audit,’’ IEEE Netw., vol. 34,
no. 5, pp. 276–282, Sep. 2020, doi: 10.1109/MNET.001.1900656.

[51] I. Grishchenko, M. Maffei, and C. Schneidewind, ‘‘Foundations and
tools for the static analysis of Ethereum smart contracts,’’ in Computer
Aided Verification (Lecture Notes in Computer Science), vol. 10981,
H. Chockler and G. Weissenbacher, Eds. Cham, Switzerland: Springer,
2018, doi: 10.1007/978-3-319-96145-3_4.

[52] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, ‘‘A systematic
literature review of blockchain and smart contract development: Tech-
niques, tools, and open challenges,’’ J. Syst. Softw., vol. 174, Apr. 2021,
Art. no. 110891.

[53] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi, ‘‘A massive
analysis of Ethereum smart contracts empirical study and code metrics,’’
IEEE Access, vol. 7, pp. 78194–78213, 2019.

[54] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, and X. Lin,
‘‘A comprehensive survey on smart contract construction and
execution: Paradigms, tools, and systems,’’ Patterns, vol. 2,
no. 2, Feb. 2021, Art. no. 100179, doi: 10.1016/j.patter.2020.
100179.

[55] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, ‘‘Empirical
review of automated analysis tools on 47,587 Ethereum smart con-
tracts,’’ in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng., Jun. 2020,
pp. 530–541.

[56] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, ‘‘SmartIn-
spect: Solidity smart contract inspector,’’ in Proc. Int. Workshop
Blockchain Oriented Softw. Eng. (IWBOSE), Mar. 2018, pp. 9–18, doi:
10.1109/IWBOSE.2018.8327566.

[57] N. F. Samreen and M. H. Alalfi, ‘‘SmartScan: An approach to detect
denial of service vulnerability in ethereum smart contracts,’’ in Proc.
IEEE/ACM 4th Int. Workshop Emerg. Trends Softw. Eng. Blockchain
(WETSEB), May 2021, pp. 17–26.

[58] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, ‘‘SMARTSHIELD:
Automatic smart contract protection made easy,’’ in Proc. IEEE 27th Int.
Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2020, pp. 23–34, doi:
10.1109/SANER48275.2020.9054825.

[59] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu, G. Chen,
Z. He, Y. Tang, X. Lin, and X. Zhang, ‘‘SODA: A generic online detection
framework for smart contracts,’’ inProc. Netw. Distrib. Syst. Secur. Symp.,
2020, pp. 449–461, doi: 10.14722/ndss.2020.24449.

[60] S. Akca, A. Rajan, and C. Peng, ‘‘SolAnalyser: A framework
for analysing and testing smart contracts,’’ in Proc. 26th Asia–
Pacific Softw. Eng. Conf. (APSEC), Dec. 2019, pp. 482–489, doi:
10.1109/APSEC48747.2019.00071.

[61] Á. Hajdu and D. Jovanovic, ‘‘SOLC-VERIFY: A modular verifier for
solidity smart contracts,’’ in Proc. Working Conf. Verified Softw., The-
ories, Tools, Exp., in Lecture Notes in Computer Science : Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, vol. 12031, 2020, pp. 161–179, doi: 10.1007/978-3-030-
41600-3_11.

[62] P. Antonino and A. W. Roscoe, ‘‘Solidifier: Bounded model check-
ing solidity using lazy contract deployment and precise memory mod-
elling,’’ in Proc. 36th Annu. ACM Symp. Appl. Comput., Mar. 2021,
pp. 1788–1797, doi: 10.1145/3412841.3442051.

[63] P. Zhang, F. Xiao, and X. Luo, ‘‘SolidityCheck : Quickly detect-
ing smart contract problems through regular expressions,’’ 2019,
arXiv:1911.09425.

[64] L. Stegeman, ‘‘Solitor: Runtime verification of smart contracts,’’
M.S. thesis, Univ. Twente, Enschede, The Netherlands, 2018.

[65] P. Hegedűs, ‘‘Towards analyzing the complexity landscape of solid-
ity based Ethereum smart contracts,’’ in Proc. 1st Int. Workshop
Emerg. Trends Softw. Eng. Blockchain, May 2018, pp. 35–39, doi:
10.1145/3194113.3194119.

[66] S. S. Kushwaha and S. Joshi, ‘‘An overview of blockchain-based
smart contract,’’ in Computer Networks and Inventive Communication
Technologies (Lecture Notes on Data Engineering and Communica-
tions Technologies), vol. 58, S. Smys, R. Palanisamy, Á. Rocha, and
G. N. Beligiannis, Eds. Singapore: Springer, 2021, doi: 10.1007/978-
981-15-9647-6_70.

[67] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz, ‘‘Vandal: A scalable security analysis framework for smart
contracts,’’ 2018, arXiv:1809.03981.

[68] S. So, M. Lee, J. Park, H. Lee, and H. Oh, ‘‘VERISMART:
A highly precise safety verifier for Ethereum smart contracts,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1678–1694, doi:
10.1109/SP40000.2020.00032.

[69] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, and I. Naseer,
‘‘Formal specification and verification of smart contracts for azure
blockchain,’’ 2018, arXiv:1812.08829.

[70] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, ‘‘VeriSolid:
Correct-by-design smart contracts for Ethereum,’’ in Proc. Int. Conf.
Financial Cryptogr. Data Secur., in Lecture Notes in Computer Sci-
ence: Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics, vol. 11598, 2019, pp. 446–465, doi:
10.1007/978-3-030-32101-7_27.

VOLUME 10, 2022 57059

http://dx.doi.org/10.1016/j.ipm.2020.102462
http://dx.doi.org/10.1007/s12083-020-00991-6
http://dx.doi.org/10.1016/j.jss.2020.110891
http://dx.doi.org/10.34726/hss.2021.86784
http://dx.doi.org/10.1109/ICSE43902.2021.00127
http://dx.doi.org/10.1145/3464421
http://dx.doi.org/10.1109/ACCESS.2021.3091317
http://dx.doi.org/10.1109/I2CACIS52118.2021.9495892
http://dx.doi.org/10.1016/j.compeleceng.2021.107583
http://dx.doi.org/10.1007/978-3-030-78621-2_14
http://dx.doi.org/10.1145/3391195
http://dx.doi.org/10.1109/ACCESS.2021.3140091
http://dx.doi.org/10.1109/MNET.001.1900656
http://dx.doi.org/10.1007/978-3-319-96145-3_4
http://dx.doi.org/10.1016/j.patter.2020.100179
http://dx.doi.org/10.1016/j.patter.2020.100179
http://dx.doi.org/10.1109/IWBOSE.2018.8327566
http://dx.doi.org/10.1109/SANER48275.2020.9054825
http://dx.doi.org/10.14722/ndss.2020.24449
http://dx.doi.org/10.1109/APSEC48747.2019.00071
http://dx.doi.org/10.1007/978-3-030-41600-3_11
http://dx.doi.org/10.1007/978-3-030-41600-3_11
http://dx.doi.org/10.1145/3412841.3442051
http://dx.doi.org/10.1145/3194113.3194119
http://dx.doi.org/10.1007/978-981-15-9647-6_70
http://dx.doi.org/10.1007/978-981-15-9647-6_70
http://dx.doi.org/10.1109/SP40000.2020.00032
http://dx.doi.org/10.1007/978-3-030-32101-7_27

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

[71] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, ‘‘VerX: Safety verification of smart contracts,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2020, pp. 1661–1677, doi:
10.1109/SP40000.2020.00024.

[72] T. M. Hewa, Y. Hu, M. Liyanage, S. S. Kanhare, and M. Ylianttila,
‘‘Survey on blockchain-based smart contracts: Technical aspects and
future research,’’ IEEE Access, vol. 9, pp. 87643–87662, 2021, doi:
10.1109/ACCESS.2021.3068178.

[73] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, ‘‘ZEUS: Analyzing safety
of smart contracts,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., vol. 18,
2018, pp. 5489–5501, doi: 10.14722/ndss.2018.23082.

[74] B. Jiang, Y. Liu, and W. K. Chan, ‘‘ContractFuzzer: Fuzzing smart
contracts for vulnerability detection,’’ in Proc. 33rd ACM/IEEE
Int. Conf. Automated Softw. Eng., Sep. 2018, pp. 259–269, doi:
10.1145/3238147.3238177.

[75] S. Azzopardi, J. Ellul, and G. J. Pace, ‘‘Monitoring smart contracts:
ContractLarva and open challenges beyond,’’ in Proc. Int. Conf. Runtime
Verification, in Lecture Notes in Computer Science: Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics, vol. 11237, Nov. 2019, pp. 113–137, doi: 10.1007/978-3-030-03769-
7_8.

[76] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, ‘‘ContractWard:
Automated vulnerability detectionmodels for Ethereum smart contracts,’’
IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1133–1144, Apr. 2021, doi:
10.1109/TNSE.2020.2968505.

[77] X. Wang, J. He, Z. Xie, G. Zhao, and S.-C. Cheung, ‘‘Contract-
Guard: Defend Ethereum smart contract with embedded intrusion detec-
tion,’’ Chin. J. Netw. Inf. Secur., vol. 6, no. 2, pp. 35–55, 2020, doi:
10.1109/TSC.2019.2949561.

[78] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen,
‘‘DEFECTCHECKER: Automated smart contract defect detection
by analyzing EVM bytecode,’’ IEEE Trans. Softw. Eng., early access,
Jan. 27, 2021, doi: 10.1109/TSE.2021.3054928.

[79] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen, ‘‘EASYFLOW:
Keep Ethereum away from overflow,’’ in Proc. IEEE/ACM 41st Int. Conf.
Softw. Eng., Companion (ICSE-Companion), May 2019, pp. 23–26, doi:
10.1109/icse-companion.2019.00029.

[80] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, ‘‘Echidna: Effec-
tive, usable, and fast fuzzing for smart contracts,’’ in Proc. 29th ACM
SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA), Jul. 2020, pp. 557–560,
doi: 10.1145/3395363.3404366.

[81] R. Norvill, B. B. F. Pontiveros, R. State, and A. Cullen, ‘‘Visual
emulation for Ethereum’s virtual machine,’’ in Proc. IEEE/IFIP
Netw. Oper. Manage. Symp. (NOMS), Apr. 2018, pp. 1–4, doi:
10.1109/NOMS.2018.8406332.

[82] Y. Zhou, D. Kumar, S. Bakshi, J.Mason, A.Miller, andM.Bailey, ‘‘Erays:
Reverse engineering Ethereum’s opaque smart contracts,’’ in Proc. 27th
USENIX Secur. Symp., 2018, pp. 1371–1385.

[83] O. Lutz, H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A. Sadeghi,
and F. Koushanfar, ‘‘ESCORT: Ethereum smart contracts vulnerability
detection using deep neural network and transfer learning,’’ CoRR, vol.
abs/2103.12607, 2021.

[84] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura, ‘‘Eth2Vec:
Learning contract-wide code representations for vulnerability detec-
tion on Ethereum smart contracts,’’ in Proc. 3rd ACM Int. Symp.
Blockchain Secure Crit. Infrastruct., May 2021, pp. 47–59, doi:
10.1145/3457337.3457841.

[85] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
‘‘Ethainter: A smart contract security analyzer for composite vulnerabili-
ties,’’ in Proc. 41st ACM SIGPLAN Conf. Program. Lang. Design Imple-
ment. (PLDI), Jun. 2020, pp. 454–469, doi: 10.1145/3385412.3385990.

[86] J. Frank, C. Aschermann, and T. Holz, ‘‘ETHBMC: A bounded model
checker for smart contracts,’’ in Proc. 29th USENIX Secur. Symp., 2020,
pp. 2757–2774.

[87] H. Liu, C. Liu,W. Zhao, Y. Jiang, and J. Sun, ‘‘S-gram: Towards semantic-
aware security auditing for Ethereum smart contracts,’’ in Proc. 33rd
ACM/IEEE Int. Conf. Automated Softw. Eng., Sep. 2018, pp. 814–819,
doi: 10.1145/3238147.3240728.

[88] M. Ashouri, ‘‘Etherolic: A practical security analyzer for smart con-
tracts,’’ in Proc. 35th Annu. ACM Symp. Appl. Comput., Mar. 2020,
pp. 353–356, doi: 10.1145/3341105.3374226.

[89] I. Grishchenko, M. Maffei, and C. Schneidewind, ‘‘EtherTrust: Sound
static analysis of Ethereum bytecode,’’ Tech. Rep., 2018. [Online].
Available: https://pdfs.semanticscholar.org/26c2/b7e7479336d44891aa
dda6b5eaae2ca2ee91.pdf

[90] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, ‘‘EthIR:
A framework for high-level analysis of Ethereum bytecode,’’ in Proc.
Int. Symp. Automated Technol. Verification Anal., in Lecture Notes
in Computer Science: Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics, vol. 11138, 2018,
pp. 513–520, doi: 10.1007/978-3-030-01090-4_30.

[91] C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, ‘‘EThor:
Practical and provably sound static analysis of Ethereum smart con-
tracts,’’ inProc. ACMSIGSACConf. Comput. Commun. Secur., Oct. 2020,
pp. 621–640, doi: 10.1145/3372297.3417250.

[92] Q. Zhang, Y. Wang, J. Li, and S. Ma, ‘‘EthPloit: From fuzzing to efficient
exploit generation against smart contracts,’’ in Proc. IEEE 27th Int.
Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2020, pp. 116–126, doi:
10.1109/SANER48275.2020.9054822.

[93] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and X. Shi,
‘‘EVMFuzzer: Detect EVMvulnerabilities via fuzz testing,’’ inProc. 27th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
Aug. 2019, pp. 1110–1114, doi: 10.1145/3338906.3341175.

[94] Z. Yang and H. Lei, ‘‘FEther: An extensible definitional inter-
preter for smart-contract verifications in Coq,’’ IEEE Access, vol. 7,
pp. 37770–37791, 2019, doi: 10.1109/ACCESS.2019.2905428.

[95] A. Mavridou and A. Laszka, ‘‘Tool Demonstration: FSolidM for
designing secure Ethereum smart contracts,’’ in Proc. Int. Conf.
Princ. Secur. Trust, Lecture Notes in Computer Science: Includ-
ing Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics, vol. 10804, 2018, pp. 270–277, doi: 10.1007/
978-3-319-89722-6_11.

[96] Z. Yang, H. Lei, and W. Qian, ‘‘A hybrid formal verification system in
Coq for ensuring the reliability and security of Ethereum-based service
smart contracts,’’ IEEE Access, vol. 8, pp. 21411–21436, 2020, doi:
10.1109/ACCESS.2020.2969437.

[97] B. Nassirzadeh, H. Sun, S. Banescu, and V. Ganesh, ‘‘Gas gauge: A secu-
rity analysis tool for smart contract out-of-gas vulnerabilities,’’ M.S. the-
sis, Univ. Waterloo, Waterloo, ON, Canada, Aug. 2021.

[98] T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J.
Chen, and X. Zhang, ‘‘GasChecker: Scalable analysis for discover-
ing gas-inefficient smart contracts,’’ IEEE Trans. Emerg. Topics Com-
put., vol. 9, no. 3, pp. 1433–1448, Jul. 2021, doi: 10.1109/TETC.2020.
2979019.

[99] F. Hofmann, S. Wurster, E. Ron, and M. Böhmecke-Schwafert,
‘‘The immutability concept of blockchains and benefits of early standard-
ization,’’ in Proc. ITU Kaleidoscope, Challenges Data-Driven Soc. (ITU
K), Nov. 2017, pp. 1–8.

[100] T. Chen, X. Li, X. Luo, and X. Zhang, ‘‘Under-optimized smart
contracts devour your money,’’ in Proc. IEEE 24th Int. Conf.
Softw. Anal., Evol. Reeng. (SANER), Feb. 2017, pp. 442–446, doi:
10.1109/SANER.2017.7884650.

[101] E. Albert, P. Gordillo, A. Rubio, and I. Sergey, ‘‘Running on fumes:
Preventing out-of-gas vulnerabilities in Ethereum smart contracts using
static resource analysis,’’ in Proc. Int. Conf. Verification Eval. Com-
put. Commun. Syst., in Lecture Notes in Computer Science: Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, vol. 11847, 2019, pp. 63–78, doi: 10.1007/978-3-030-
35092-5_5.

[102] V. Wüstholz and M. Christakis, ‘‘Harvey: A greybox fuzzer for
smart contracts,’’ in Proc. 28th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., Nov. 2020, pp. 1398–1409, doi:
10.1145/3368089.3417064.

[103] C. F. Torres and M. Steichen, ‘‘The art of the scam: Demystifying honey-
pots in Ethereum smart contracts,’’ in Proc. 28th USENIX Secur. Symp.,
2019, pp. 1591–1607.

[104] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu, ‘‘KEVM: A
complete formal semantics of the Ethereum virtual machine,’’ in Proc.
IEEE 31st Comput. Secur. Found. Symp. (CSF), Jul. 2018, pp. 204–217,
doi: 10.1109/CSF.2018.00022.

[105] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
Y. Smaragdakis, ‘‘MadMax: Surviving out-of-gas conditions in
Ethereum smart contracts,’’ Proc. ACM Program. Lang., vol. 2,
pp. 1–27, Nov. 2018, doi: 10.1145/3276486.

[106] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, ‘‘Find-
ing the greedy, prodigal, and suicidal contracts at scale,’’ in Proc.
34th Annu. Comput. Secur. Appl. Conf., Dec. 2018, pp. 653–663, doi:
10.1145/3274694.3274743.

57060 VOLUME 10, 2022

http://dx.doi.org/10.1109/SP40000.2020.00024
http://dx.doi.org/10.1109/ACCESS.2021.3068178
http://dx.doi.org/10.14722/ndss.2018.23082
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1007/978-3-030-03769-7_8
http://dx.doi.org/10.1007/978-3-030-03769-7_8
http://dx.doi.org/10.1109/TNSE.2020.2968505
http://dx.doi.org/10.1109/TSC.2019.2949561
http://dx.doi.org/10.1109/TSE.2021.3054928
http://dx.doi.org/10.1109/icse-companion.2019.00029
http://dx.doi.org/10.1145/3395363.3404366
http://dx.doi.org/10.1109/NOMS.2018.8406332
http://dx.doi.org/10.1145/3457337.3457841
http://dx.doi.org/10.1145/3385412.3385990
http://dx.doi.org/10.1145/3238147.3240728
http://dx.doi.org/10.1145/3341105.3374226
http://dx.doi.org/10.1007/978-3-030-01090-4_30
http://dx.doi.org/10.1145/3372297.3417250
http://dx.doi.org/10.1109/SANER48275.2020.9054822
http://dx.doi.org/10.1145/3338906.3341175
http://dx.doi.org/10.1109/ACCESS.2019.2905428
http://dx.doi.org/10.1007/978-3-319-89722-6_11
http://dx.doi.org/10.1007/978-3-319-89722-6_11
http://dx.doi.org/10.1109/ACCESS.2020.2969437
http://dx.doi.org/10.1109/TETC.2020.2979019
http://dx.doi.org/10.1109/TETC.2020.2979019
http://dx.doi.org/10.1109/SANER.2017.7884650
http://dx.doi.org/10.1007/978-3-030-35092-5_5
http://dx.doi.org/10.1007/978-3-030-35092-5_5
http://dx.doi.org/10.1145/3368089.3417064
http://dx.doi.org/10.1109/CSF.2018.00022
http://dx.doi.org/10.1145/3276486
http://dx.doi.org/10.1145/3274694.3274743

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

[107] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, ‘‘Manticore: A user-friendly sym-
bolic execution framework for binaries and smart contracts,’’ in Proc.
34th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2019,
pp. 1186–1189, doi: 10.1109/ASE.2019.00133.

[108] Y. Liu, Y. Li, S.-W. Lin, and Q. Yan, ‘‘ModCon: A model-based testing
platform for smart contracts,’’ in Proc. 28th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., Nov. 2020, pp. 1601–1605,
doi: 10.1145/3368089.3417939.

[109] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, ‘‘MuSC: A tool for
mutation testing of Ethereum smart contract,’’ in Proc. 34th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE), Nov. 2019, pp. 1198–1201, doi:
10.1109/ASE.2019.00136.

[110] N. Lu, B. Wang, Y. Zhang, W. Shi, and C. Esposito, ‘‘NeuCheck: A more
practical Ethereum smart contract security analysis tool,’’ Softw., Pract.
Exp., vol. 51, no. 10, pp. 2065–2084, Oct. 2021, doi: 10.1002/spe.2745.

[111] C. F. Torres and J. Schütte, ‘‘Osiris,’’ Nature, vol. 143, no. 3625,
pp. 674–675, 1939, doi: 10.1038/143674d0.

[112] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
‘‘An overview on smart contracts: Challenges, advances and platforms,’’
Future Gener. Comput. Syst., vol. 105, pp. 475–491, Apr. 2020.

[113] M. Suiche, ‘‘Porosity: A decompiler for blockchain-based smart contracts
bytecode,’’ in Proc. DEFCON, vol. 25, 2017, p. 30.

[114] (Aug. 2021). Pakala. [Online]. Available: https://github.com/palkeo/
pakala

[115] (Jun. 2021). Remix-IDE. [Online]. Available: https://github.com/
ethereum/remix-ide

[116] (Aug. 2021). Solgraph. [Online]. Available: https://github.com/
raineorshine/solgraph

[117] Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura, ‘‘RA: Hunting for re-
entrancy attacks in Ethereum smart contracts via static analysis,’’ in Proc.
IEEE Int. Conf. Blockchain (Blockchain), Nov. 2020, pp. 327–336, doi:
10.1109/Blockchain50366.2020.00048.

[118] (2018). RECON Montreal 2018. [Online]. Available: https://github.com/
trailofbits/publications

[119] (Aug. 2021). Solhint. [Online]. Available: https://protofire.github.io/
solhint

[120] (Aug. 2021). Mythril. [Online]. Available: https://github.com/
ConsenSys/mythril

[121] (Nov. 2021). Octopus. [Online]. Available: https://github.com/
pventuzelo/octopus

[122] (Dec. 2021). Conkas. [Online]. Available: https://github.com/nveloso/
conkas

[123] (Dec. 2021) Ethlint. [Online]. Available: https://github.com/
duaraghav8/Ethlint

[124] C. G. Harris, ‘‘The risks and challenges of implementing Ethereum smart
contracts,’’ in Proc. IEEE Int. Conf. Blockchain Cryptocurrency (ICBC),
May 2019, pp. 104–107.

[125] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, and A. Rubio,
‘‘SAFEVM: A safety verifier for Ethereum smart contracts,’’ in Proc.
28th ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2019, pp. 390–393,
doi: 10.1145/3293882.3338999.

[126] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, ‘‘Security assurance for smart contract,’’ in Proc. 9th IFIP
Int. Conf. New Technol., Mobility Secur. (NTMS), Feb. 2018, pp. 1–5, doi:
10.1109/NTMS.2018.8328743.

[127] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, ‘‘sCompile: Criti-
cal path identification and analysis for smart contracts,’’ inProc. Int. Conf.
Formal Eng. Methods, in Lecture Notes in Computer Science: Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, vol. 11852, 2019, pp. 286–304, doi: 10.1007/978-3-030-
32409-4_18.

[128] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, ‘‘Securify: Practical security analysis of smart contracts,’’
in Proc. ACM Conf. Comput. Commun. Secur., 2018, pp. 67–82, doi:
10.1145/3243734.3243780.

[129] M. Rodler, W. Li, G. O. Karame, and L. Davi, ‘‘Sereum: Protecting
existing smart contracts against re-entrancy attacks,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., Feb. 2019, pp. 1–15, doi: 10.14722/ndss.2019.
23413.

[130] A. Ali, Z. U. Abideen, and K. Ullah, ‘‘SESCon: Secure Ethereum smart
contracts by vulnerable patterns’ detection,’’ Secur. Commun. Netw.,
vol. 2021, Sep. 2021, pp. 1–14, doi: 10.1155/2021/2897565.

[131] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, ‘‘sFuzz: An
efficient adaptive fuzzer for solidity smart contracts,’’ in Proc. Int. Conf.
Softw. Eng., 2020, pp. 778–788, doi: 10.1145/3377811.3380334.

[132] C. Peng, S. Akca, and A. Rajan, ‘‘SIF: A framework for solid-
ity contract instrumentation and analysis,’’ in Proc. 26th Asia–Pacific
Softw. Eng. Conf. (APSEC), Dec. 2019, pp. 466–473, doi: 10.1109/
APSEC48747.2019.00069.

[133] J. Feist, G. Grieco, and A. Groce, ‘‘Slither: A static analysis framework
for smart contracts,’’ in Proc. IEEE/ACM 2nd Int. Workshop Emerg.
Trends Softw. Eng. Blockchain (WETSEB), May 2019, pp. 8–15, 2019,
doi: 10.1109/WETSEB.2019.00008.

[134] M. Denker, Blockchain and Web 3.0. Evanston, IL, USA: Routledge,
2019, doi: 10.4324/9780429029530.

[135] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, ‘‘SmartBugs: A frame-
work to analyze solidity smart contracts,’’ in Proc. 35th IEEE/ACM
Int. Conf. Automated Softw. Eng., Dec. 2020, pp. 1349–1352, doi:
10.1145/3324884.3415298.

[136] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, ‘‘SmartCheck: Static analysis
of Ethereum smart contracts,’’ in Proc. 1st Int. Workshop
Emerg. Trends Softw. Eng. Blockchain, May 2018, pp. 9–16, doi:
10.1145/3194113.3194115.

[137] Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo, and J. Grundy,
‘‘SmartEmbed: A tool for clone and bug detection in smart con-
tracts through structural code embedding,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol. (ICSME), Sep. 2019, pp. 394–397, doi:
10.1109/ICSME.2019.00067.

[138] G. A. Pierro, ‘‘Smart-graph: Graphical representations for smart
contract on the Ethereum blockchain,’’ in Proc. IEEE Int. Conf.
Softw. Anal., Evol. Reeng. (SANER), Mar. 2021, pp. 708–714, doi:
10.1109/SANER50967.2021.00090.

[139] E. Albert, J. Correas, P. Gordillo, G. Román-Díez, and A. Rubio,
‘‘GASOL: Gas analysis and optimization for Ethereum smart contracts,’’
in Tools and Algorithms for the Construction and Analysis of Sys-
tems (Lecture Notes in Computer Science), vol. 12079, A. Biere and
D. Parker, Eds. Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-
030-45237-7_7.

[140] L. Mazurek, ‘‘EthVer: Formal verification of randomized Ethereum smart
contracts,’’ in Financial Cryptography and Data Security. FC 2021 Inter-
national Workshops (Lecture Notes in Computer Science), vol. 12676,
M. Bernhard, Ed. Berlin, Germany: Springer, 2021, doi: 10.1007/978-3-
662-63958-0_30.

[141] P. Praitheeshan, L. Pan, X. Zheng, A. Jolfaei, and R. Doss, ‘‘Sol-
Guard: Preventing external call issues in smart contract-based multi-
agent robotic systems,’’ Inf. Sci., vol. 579, pp. 150–166, Nov. 2021, doi:
10.1016/j.ins.2021.08.007.

[142] N. Atzei, M. Bartoletti, and T. Cimoli, ‘‘A survey of attacks on Ethereum
smart contracts (SoK),’’ in Principles of Security and Trust (Lecture
Notes in Computer Science), vol. 10204, M. Maffei and M. Ryan, Eds.
Berlin, Germany: Springer, 2017, doi: 10.1007/978-3-662-54455-6_8.

[143] (Mar. 2021). SolidiFI Benchmark. [Online]. Available: https://github.
com/smartbugs/SolidiFI-benchmark

SATPAL SINGH KUSHWAHA (Member, IEEE)
received the B.E. degree in information technol-
ogy from the University of Rajasthan, in 2006,
and the M.Tech. degree in computer science and
engineering from Rajasthan Technical University,
Kota, in 2012. He is currently a Ph.D. Research
Scholar with the Department of Computer Science
and Engineering, Manipal University Jaipur. As an
author, he published three books and researching
multiple areas in network and security, information

retrieval, and image processing. He also published several research papers
in reputed conferences and journals. During his tenure, he has enhanced
the classroom’s learning environment, academic, and professional programs
to cater to changing industry needs in a dynamic business environment
through a goodmix of theoretical and industry trainingmodules. His research
interests include blockchain technology and ethereum smart contract. He is
an Active Member of IEI. He has cleared various international certification
programs, such as Microsoft Certified Professional using C# (MCP).

VOLUME 10, 2022 57061

http://dx.doi.org/10.1109/ASE.2019.00133
http://dx.doi.org/10.1145/3368089.3417939
http://dx.doi.org/10.1109/ASE.2019.00136
http://dx.doi.org/10.1002/spe.2745
http://dx.doi.org/10.1038/143674d0
http://dx.doi.org/10.1109/Blockchain50366.2020.00048
http://dx.doi.org/10.1145/3293882.3338999
http://dx.doi.org/10.1109/NTMS.2018.8328743
http://dx.doi.org/10.1007/978-3-030-32409-4_18
http://dx.doi.org/10.1007/978-3-030-32409-4_18
http://dx.doi.org/10.1145/3243734.3243780
http://dx.doi.org/10.14722/ndss.2019.23413
http://dx.doi.org/10.14722/ndss.2019.23413
http://dx.doi.org/10.1155/2021/2897565
http://dx.doi.org/10.1145/3377811.3380334
http://dx.doi.org/10.1109/APSEC48747.2019.00069
http://dx.doi.org/10.1109/APSEC48747.2019.00069
http://dx.doi.org/10.1109/WETSEB.2019.00008
http://dx.doi.org/10.4324/9780429029530
http://dx.doi.org/10.1145/3324884.3415298
http://dx.doi.org/10.1145/3194113.3194115
http://dx.doi.org/10.1109/ICSME.2019.00067
http://dx.doi.org/10.1109/SANER50967.2021.00090
http://dx.doi.org/10.1007/978-3-030-45237-7_7
http://dx.doi.org/10.1007/978-3-030-45237-7_7
http://dx.doi.org/10.1007/978-3-662-63958-0_30
http://dx.doi.org/10.1007/978-3-662-63958-0_30
http://dx.doi.org/10.1016/j.ins.2021.08.007
http://dx.doi.org/10.1007/978-3-662-54455-6_8

S. Singh Kushwaha et al.: Ethereum Smart Contract Analysis Tools: A Systematic Review

SANDEEP JOSHI (Senior Member, IEEE)
received the B.E., M.Tech., and Ph.D. degrees in
computer science and engineering. He is currently
a Senior Academician with experience in provid-
ing visionary leadership to students & imparting
quality management education to a wide range of
aspiring professionals. He mentored and guided
the students towards the successful future as a Pro-
fessor at Manipal University Jaipur, India. He pos-
sess profound knowledge of computer networks,

network protocol, computer network & security, advance data structure &
algorithms, web technology, and system software engineering with passion
for learning. He always tries to keep myself up to date with the latest trends
and techniques of the industry. During his tenure, he has enhanced the learn-
ing environment in the classroom, designed academic/professional programs
to cater to changing industry needs in a dynamic business environment
through a good mix of theoretical and industry training modules and worked
with lecturers to develop and maintain high curriculum standards, develop
mission statements, and set performance goals and objectives. He has proven
competencies in designing course curriculum and implementing innovative
instructional methodologies and equipped to provide authoritative leadership
to both academic as well as administrative personnel in the wider issues of
running/managing an academic institution of higher learning.

DILBAG SINGH (SeniorMember, IEEE) received
the Ph.D. degree in computer science and engi-
neering from the Thapar Institute of Engineering
and Technology, India, in 2019. He worked as
an Assistant Professor in three well-known uni-
versities of India, such as Chandigarh University,
Manipal University Jaipur, and Bennett University.
He has published more than 80 research articles in
SCI/SCIE indexed journals. He has also submitted
five patents, published three books, and two book

chapters. His H-index is 32. His research interests include image processing,
computer vision, deep learning, metaheuristic techniques, and information
security. He has also acted as a lead guest editor/editorial board member of
many SCI/SCIE indexed journals. He was in the top 2% list issues by ‘‘World
Ranking of Top 2% Scientists’’ in 2021.

MANJIT KAUR (Member, IEEE) received the
Master of Engineering degree in information tech-
nology from PunjabUniversity, Chandigarh, India,
in 2011, and the Ph.D. degree from the Thapar
Institute of Engineering and Technology, Patiala,
India, in 2019. She worked as an Assistant Profes-
sor in three well-known universities of India, such
as Chandigarh University, Mohali, India, Manipal
University Jaipur, Jaipur, India, and Bennett Uni-
versity, Greater Noida, India. In 2021, she moved

to the School of Electrical Engineering and Computer Science, Gwangju
Institute of Science and Technology, Gwangju, South Korea, where she is
currently affiliated. Her research interests include post-quantum cryptogra-
phy, fully homomorphic encryption, and privacy-preserving machine learn-
ing, wireless sensor networks, digital image processing, and metaheuristic
techniques. She was in the top 2% list issues by ‘‘World Ranking of Top 2%
Scientists,’’ in 2021. She was part of the 14 Web of Science/Scopus indexed
conferences.

HEUNG-NO LEE (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the University of
California at Los Angeles, Los Angeles, CA, USA,
in 1993, 1994, and 1999, respectively. He was
with HRL Laboratories, LLC, Malibu, CA, USA,
as a Research Staff Member, from 1999 to 2002.
From 2002 to 2008, he was an Assistant Profes-
sor with the University of Pittsburgh, Pittsburgh,
PA, USA. In 2009, he moved to the School of

Electrical Engineering and Computer Science, Gwangju Institute of Science
and Technology, Gwangju, South Korea, where he is currently affiliated.
His research interests include information theory, signal processing the-
ory, blockchain, communications/networking theory, and their application
to wireless communications and networking, compressive sensing, future
internet, and brain–computer interface. He has received several prestigious
national awards, including the Top 100 National Research and Development
Award in 2012, the Top 50 Achievements of Fundamental Researches Award
in 2013, and Science/Engineer of the Month (January 2014).

57062 VOLUME 10, 2022

