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Researchers aim to develop polygenic risk scores as a tool to prevent and more
effectively treat serious diseases, disorders and conditions such as breast cancer,
type 2 diabetes mellitus and coronary heart disease. Recently, machine learning
techniques, in particular deep neural networks, have been increasingly developed to
create polygenic risk scores using electronic health records as well as genomic and
other health data. While the use of artificial intelligence for polygenic risk scores may
enable greater accuracy, performance and prediction, it also presents a range of
increasingly complex ethical challenges. The ethical and social issues of many
polygenic risk score applications in medicine have been widely discussed.
However, in the literature and in practice, the ethical implications of their
confluence with the use of artificial intelligence have not yet been sufficiently
considered. Based on a comprehensive review of the existing literature, we argue
that this stands in need of urgent consideration for research and subsequent
translation into the clinical setting. Considering the many ethical layers involved,
we will first give a brief overview of the development of artificial intelligence-driven
polygenic risk scores, associated ethical and social implications, challenges in
artificial intelligence ethics, and finally, explore potential complexities of
polygenic risk scores driven by artificial intelligence. We point out emerging
complexity regarding fairness, challenges in building trust, explaining and
understanding artificial intelligence and polygenic risk scores as well as regulatory
uncertainties and further challenges. We strongly advocate taking a proactive
approach to embedding ethics in research and implementation processes for
polygenic risk scores driven by artificial intelligence.
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1 Introduction

Machine learning (ML) techniques, in particular deep neural networks (DNNs), are
increasingly being developed to generate polygenic risk scores (PRSs) using electronic
health records (EHRs) as well as genomic and other health data (Ho et al., 2019; Badré
et al., 2021; Elgart et al., 2022). While this may allow greater accuracy, performance and
prediction ability of PRSs, it also presents a range of increasingly complex ethical challenges.
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PRSs are defined as “a weighted sum of the number of risk alleles an
individual carries” (Lewis and Vassos, 2020). In medicine, PRSs
estimate an individual’s risk of a specific condition or disease based
on their genetic makeup. Even though the genomes of individuals are
to a large extent similar, there are genetic differences, which are called
genetic variants (Broad Institute, 2021). If a genetic variant is more
common in individuals who have a specific disease, it may be
associated with an increased risk of that disease (Broad Institute,
2021). A PRS takes into account all these risk variants, however
minimal their effect, to estimate an individual’s risk of developing
a disease (Broad Institute, 2021). Recently, PRSs have been developed
to offer targeted risk prediction for a rapidly increasing number of
conditions, including complex common diseases and conditions, such
as breast cancer (Mavaddat et al., 2019), type 2 diabetes mellitus (Läll
et al., 2017), coronary heart disease (Khera et al., 2016; Inouye et al.,
2018), obesity (Khera et al., 2019), depression (Mitchell et al., 2021)
and schizophrenia (Trubetskoy et al., 2022). Researchers aim to
develop PRSs as a tool to prevent and more effectively treat serious
diseases, disorders and conditions by identifying those at high risk
who would benefit from targeted therapies.

The ethical and social implications of many PRS applications in
medicine have already been widely discussed (e.g., Adeyemo et al.,
2021; Knoppers et al., 2021; Slunecka et al., 2021). However, their
confluence with ML has not yet been sufficiently considered in either
literature or practice. We argue that the interaction between different
and novel layers of ethical and social concerns pertaining to artificial
intelligence (AI) and big data, as well as PRSs in research and
translation into the clinical setting, stand in need of urgent
consideration. This includes ethical aspects of AI as well as ethical

and social implications of precision medicine and PRSs. We highlight
potentially increasing complexities and the need to explore which new
ethical and social issues arise from increased use of AI techniques for
different PRS applications. We do so in the hope that those who aim to
embed PRSs in healthcare systems take a proactive approach to
embedding ethics during the research and implementation process.
After giving a brief overview of the background to AI-driven PRSs, we
consider the many ethical layers involved, beginning with the ethical
and social implications of PRSs, then moving on to the challenges in
AI ethics, and finally, exploring potential complexities of AI-driven
PRSs.

2 Background to PRSs and AI-driven
PRSs

Early studies on PRSs (Purcell et al., 2009; Dudbridge, 2013)
applied the so-called classic PRS method (Choi et al., 2020), where
the risk is calculated as a weighted sum (i.e., a linear regression) of a set
of genetic risk alleles for given single nucleotide polymorphisms
(SNPs) (see also Figure 1). The relevant subset of SNPs is selected
using a genome-wide association study (GWAS), usually conducted in
a cohort different from the target cohort, such that SNPs exceeding a
certain p-value threshold are included in the calculation of the risk in
the target population. Instead of using a subset corresponding to the
significant SNPs, it is possible to include a much larger number of
SNPs in the weighted sum to calculate the risk. When so many SNPs
are included, it is necessary to prevent overfitting by applying
shrinkage on the linear regression weights using either classic

FIGURE 1
Classic PRSs and ML-driven PRSs the polygenic risk score for a target individual and phenotype of interest (y) is based on the individual’s genetic data (xg)
but can also include other data types (xe). The score is calculated using a linear regression (with weights β) or amachine learningmodel fθ (e.g. a neural network
with parameters θ). The parameters (β, θ) are learned using a separate training cohort. Note, however, that while the linear regession cofficients β are often
publicly available or can be derived from published summary statistics, to train the neural network fθ it is necessary to have access to individual level data
in the training cohort.
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techniques such as the LASSO or ridge regression (Mak et al., 2017) or
Bayesian methods (Ge et al., 2019), the latter having given rise to some
of the most popular implementations today (Vilhjalmsson et al.,
2015). The SNP weights in a PRS can be derived from effects sizes
published for the GWAS cohort, where the effect of each SNP on the
risk has been estimated one-SNP-at-a-time, by accounting for linkage
disequilibrium (LD) between the SNPs (Choi et al., 2020). Therefore,
to apply classic PRS, individual-level data are only needed for the
target individuals, but not from the GWAS cohort.

Recent years have witnessed attempts to replace the linear
regression in PRS calculations with more sophisticated ML
methods, which promise increased accuracy due to less restrictive
modeling assumptions (Ho et al., 2019; Elgart et al., 2022). For
example, DNNs which belong to the broader class of deep learning
(DL), have been tested in PRSs for breast cancer, leading to improved
scores compared to other statistical and ML estimation methods
(Badré et al., 2021). A DNN processes input SNP data by passing
them successively through multiple layers, where each layer takes the
features from the previous layer as input, updates them, and passes the
updated features forward to the next layer. In this way, features in
higher layers can represent arbitrary, non-linear combinations of
SNPs instead of the simple linear summation in conventional PRSs,
which may better reflect the underlying biology.

Besides applying DL to modeling the genetic component, DL can
alternatively be used to extract additional predictive features from
EHRs (Miotto et al., 2016), which can be combined with the genetic
data as input in PRS calculation (Dias and Torkamani, 2019). For
example, using non-genetic risk factors together with genetic data
improves the accuracy of breast cancer (Lee et al., 2019) and coronary
artery disease (Inouye et al., 2018) risk modeling with the potential to
enhance risk-based screening. However, current models typically
build on combining genetics and EHR features additively (i.e., a
simple summation), leaving room for the development of more
complete approaches, for example a DNN that takes as input the
different risk factors jointly to learn about the complex interplay
between them.

Current research aims to pool and assess genomic data from
biobanks, cohorts or registries on an unprecedented scale by
combining it with environmental, other -omics data and health
data such as EHRs. Considering the increasing heterogeneity of
data that is used in the development of PRSs, more complex uses
of AI have also been employed, such as making use of deep phenotypic
information in medical images and EHRs to support downstream
genetics analyses (Dias and Torkamani, 2019). Currently, PRSs
typically only involve the genetic component, which is easier to
interpret. The challenges in interpretation mainly occur when other
data types are included, such as EHRs or gene expression data, the
latter being different from SNPs that are currently used as data for
PRSs (see also Figure 1). Other such data types are likely to increase in
use, so the major challenges regarding the black box nature of the
DNN models will probably be more relevant in the (near) future.
Although researchers aim to reveal more and more causal relations, to
date, analyses with AI for PRSs are mainly limited to correlations and
improving predictions, which can result in inconclusive evidence (see
Section 4). Barriers to the explainability of AI for PRSs also exist due to
the statistical-probabilistic properties and the difficulty of the model to
uncover the more complex biological, chemical and physical
mechanisms that influenced it. In addition, there is a risk of
potentially superfluous or inflated correlations due to the

limitations of the method through phenomena such as the recently
observed “cross-trait assortative mating” (Border et al., 2022). The
risks of misinterpretation of (AI-driven) PRSs by clinicians, patients
and other stakeholders involved should not be underestimated,
especially as there may be a risk of drawing conclusions about
causal relationships too quickly and where knowledge of statistics
and causality/correlation claims is too low in many groups involved.
Although the difference between causation and correlation is well
understood by scientists, authors point to the need for education of the
public about such differentiations for PRSs (Slunecka et al., 2021).

3 Ethical and social implications of PRSs

The potential benefits of the clinical use of PRSs may be manifold,
both for individuals and/or society: identifying individuals at risk,
improving the precision and range of differential diagnoses and
treatments, as well as promoting the development of intervention
thresholds. Incorporating polygenic risk profiles into population
screening is expected to increase efficiency in contrast to screening
stratified by age (Chowdhury et al., 2013; Torkamani et al., 2018; Kopp
et al., 2020), while use of combined PRSs for various conditions in
healthcare systems may contribute to early identification of potential
non-genetic interventions and increased life expectancy (Meisner
et al., 2020). Thus, PRSs may benefit individuals and represent a
dramatic improvement of public health with potential socio-economic
impacts. This has led to demands by PRS advocates within the medical
community for a radical rethinking of PRSs as clinical instruments
that could inform clinical decisions, such as in the prioritisation of
psychosocial or pharmaceutical interventions “rather than treat/not
treat decisions” (Lewis and Vassos, 2020).

While they come with important benefits, discussions in the
literature on the multiple ethical and social implications for the
medical use of PRSs range from social and distributive justice
questions to debates on scientific validity and clinical utility (Babb
de Villiers et al., 2020; Lewis and Vassos, 2020; Knoppers et al., 2021;
Lewis and Green, 2021; Slunecka et al., 2021;Widen et al., 2022). In the
context of PRS development and clinical implementation, ethical
debates reflect those on monogenic genetic findings (Lewis and
Green, 2021). Common concerns relate, for example, to genetic
determinism as well as the concepts of ancestry/ethnicity, where
tools such as AI for risk stratification may not be representative of
human diversity and whose development and use may distract
attention from the social determinants of health (Lewis and Vassos,
2020; Knoppers et al., 2021; Lewis and Green, 2021). Particular
concerns about the risk of genetic discrimination and eugenics are
raised with regard to the application of PRSs for embryo screening
(Treff et al., 2019; Tellier et al., 2021; Turley et al., 2021); most recently
for pre-implantation genetic testing (PGT) (Kozlov, 2022) and
premature direct-to-consumer genetic testing/genetic counselling
(Docherty et al., 2021), which are also intertwined with
marketability and commercialisation. Furthermore, due to
underrepresentation of already underserved communities in the
research process, some authors note that health disparities could
increase through the use of PRSs in the clinical setting (Martin
et al., 2019a).

There has been extensive discussion of the clinical and/or personal
utility of PRSs (Torkamani et al., 2018; Lambert et al., 2019; Wald and
Old, 2019; Lewis and Vassos, 2020; Moorthie et al., 2021; Sud et al.,
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2021). Scientific and clinical validity are challenges on multiple levels
(Janssens, 2019; Lewis and Vassos, 2020; Knoppers et al., 2021), which
touch ethical as well as epistemic concerns. PRSs, for example, do not
cover the full risk for certain diseases because of the multiple factors
involved. This includes e.g. environmental factors (Slunecka et al.,
2021) and complex interactions between environments and PRSs
(Domingue et al., 2020). Due to this complexity, interpretation of
PRSs poses serious challenges, especially in relation to minors (Palk
et al., 2019). From an ethical point of view, the necessity of
communicating the limitations of risk prediction with PRSs
therefore has to be considered in clinical applications. To this end,
“effective and clear risk communication by trained professionals”
should “minimize potential psychosocial effects” (Adeyemo et al.,
2021). However, in this context, there is a lack of standardised PRS
disclosure for individuals (Brockman et al., 2021; Lewis et al., 2022) as
well as for kin, such as cascade screening for family members (Reid
et al., 2021). Tools for standardisation of PRS disclosure have been
developed for certain diseases, such as coronary artery disease (Widen
et al., 2022), but the need for additional research on a broader range of
populations and better standardisation has been emphasised
(Brockman et al., 2021).

Given that PRSs are still an emerging field, there is remarkable
heterogeneity around their application and reporting, thus
constraining the implementation of PRSs in clinical settings
(Slunecka et al., 2021). Publicly accessible catalogues and
reporting standards for PRSs have been developed that are
responsive to the current research landscape to allow reporting
on the design and validation of PRSs within the literature
(Lambert et al., 2021; Slunecka et al., 2021; Wand et al., 2021),
such as the NHGRI-EBI, an extensive database of summary statistics
of GWAS (Buniello et al., 2018). One aim of these efforts is to
generate comparable PRSs metrics of performance (Lambert et al.,
2021). This should increase the reproducibility and transparency of
the PRS development process as well as support studies evaluating
the clinical utility of the respective PRSs (Lambert et al., 2021).
External and systematic PRS studies with benchmarking should also
contribute to these aims (Wand et al., 2021). Another practical
ethical issue is that the application of PRSs for medical purposes
is presently uncertain under the majority of legal frameworks (Lewis
and Vassos, 2020; Adeyemo et al., 2021).

Moreover, some authors also point out the importance of seeing
PRSs in the respective context (Chatterjee et al., 2016; Torkamani
et al., 2018; Slunecka et al., 2021), considering that the scope and
diversity of available data (for instance, ancestry) and the techniques
used to produce and use the scores are continuously changing
(Trubetskoy et al., 2022). This therefore necessitates consideration,
e.g., of the particular PRSs and the disease for which the PRSs were
designed and the sophistication of the PRS itself. Consequently, the
ethical and social implications need to be explored, taking into account
the respective context. For example, specific ethical concerns in PRSs
have been increasingly described for psychiatric conditions from
informational risks in the use of the PRS in clinical setting, to the
research showing links between the condition and social factors such
as socioeconomic status or potential use in prenatal testing among
others (Agerbo et al., 2015; Loh et al., 2015; Martin et al., 2019b; Palk
et al., 2019; Docherty et al., 2021; Murray et al., 2021). This may differ
for other conditions, for instance, in terms of actionability or potential
for stigmatisation.

4 Challenges in AI ethics

There is much debate on ethical aspects around AI in healthcare
(Morley et al., 2020), the role that AI should play (Rigby, 2019), the
role and ethical implications of “explainability for AI in healthcare”
(Amann et al., 2020), and ethical challenges of ML (Vayena et al.,
2018) and of DL in healthcare (Char et al., 2018; Miotto et al., 2018). In
particular, the following ethical and social challenges are often
discussed in AI ethics (Mittelstadt et al., 2016; Floridi et al., 2021;
Tsamados et al., 2021): How to ensure fairness and justice, overcome
biases, ensure explainability, transparency, traceability, accountability,
privacy, confidentiality, data protection and patient safety–how to
design AI for the common good.

In AI ethics, not only are there normative concerns about
algorithms such as “unfair outcomes” and “transformative effects”,
but also epistemic concerns such as “inconclusive evidence”,
“inscrutable evidence” and “misguided evidence” (Mittelstadt et al.,
2016; Tsamados et al., 2021), and often epistemic and normative
concerns come together as in the case of traceability. Issues such as the
black box problem, accountability and transparency can be subsumed
under inscrutable evidence (Mittelstadt et al., 2016). The black box
problem in ML hinges on the lack of explainability as to how results
are generated. The importance of this is also reflected in European law
like the EU General Data Protection Regulation (GDPR) (European
Parliament and Council of the European Union, 2016), which entails a
general “right to explanation” (Goodman and Flaxman, 2017) for
users and a future where explainability could become a legal
requirement for ML specifically. The proposed Artificial
Intelligence Act of July 2021 explicitly includes the requirement
that AI systems be explainable for high-risk sectors (European
Commission, 2021). The literature in recent years has repeatedly
underlined the need for explainable AI (xAI) in medicine (Ribeiro
et al., 2016; Hudec et al., 2018; Holzinger et al., 2019; Azodi et al.,
2020), which is seen as (part of) a possible solution to many of the
above-mentioned challenges in AI applications in healthcare.

Inconclusive evidence (Mittelstadt et al., 2016) involves ethical
issues of causality and correlation, probabilities and predictions.
Inconclusive evidence and incorrect causal associations and
correlations are a problem for any statistical model, which can be
the result, e.g. of biased sampling or hidden contamination. Authors
generally point to the need to understand causality of the
representations in ML systems (Pearl, 2009; Gershman et al., 2015;
Peters et al., 2017; Holzinger et al., 2019). Furthermore, as
substructures from genomic and population data are correlated,
this can potentially result in false causal associations (Sohail et al.,
2019) and misleading information based on bias embedded in
genomic data (see Section 5.1). Increasing the robustness of the
detected effects across different populations would go some way
towards separating true causal effects from spurious associations.
In genetics, replicating the findings in multiple cohorts is usually a
stipulation, but more work is required to ensure inclusion of more
diverse populations (see Section 5.1).

The topic of “misguided evidence leading to bias” (Mittelstadt
et al., 2016) and “unfair outcomes leading to discrimination“
(Mittelstadt et al., 2016) are key issues in AI ethics. In medical AI,
biases (Obermeyer et al., 2019) abound, and the replication of biases
and the amplification of real-world injustices by algorithms poses a
serious risk.
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There are many different proposals for frameworks on how the
challenges of applying AI in medicine should be addressed ethically,
which principles and values are of particular importance and which
guidelines should be followed. Ethical challenges exist in terms of
principles, not only regarding which principles should be considered
crucial, but also in terms of differences in what the principles mean,
e.g. what justice encompasses, as there are many different forms of
justice derived from different philosophical theories and different
underlying values (Whittlestone et al., 2019). Furthermore, there is
the question of what “for the good of society”means—What would AI
that is focused on the common good look like? This would need to be
discussed and defined in each context (Whittlestone et al., 2019).

Another challenge usually arises when principles conflict with
each other, as is often the case with AI in healthcare. Explainability is
often not technically possible, and the benefits of AI can vary in
significance, so the trade-off would have to be weighed up for each AI
system and context. Another major ethical challenge around AI is
putting principles into practice. Authors point out that attention needs
to be paid to the tensions and conflicts that arise in this process and
that these need to be addressed (Whittlestone et al., 2019) so that risks
can be avoided and the benefits of AI can be reaped.

5 Bringing ethical and social aspects of
PRSs and AI ethics together—New
complexities for AI-driven PRSs?

In bringing ethical and social implications of PRSs and of AI ethics
together, we would like to point out potential new complexities for AI-
driven PRSs. Particularly around the following topic clusters which
will be discussed in detail in what follows.

1) More complexity regarding fairness and justice
2) Challenges in building trust, communication and education
3) Privacy and autonomy challenges
4) Regulatory uncertainties and further challenges

5.1 More complexity regarding fairness and
justice

Although many researchers point out the opportunities of xAI and
interpretable ML (iML), two ethically relevant issues with respect to
explanatory methods remain generally difficult to solve: different
biases within datasets leading to biased DNN and suspicion of bias
in results leading to unfairness (Ras et al., 2018). This could apply also
to ML application for PRSs on multiple levels: many biases in PRS
development can be linked to biases in the combination of EHRs with
genomic and further health data as well as in the substructures of
this data.

Firstly, the majority of genetic studies lack diversity (Sirugo et al.,
2019). PRSs have mainly been developed with datasets from European
populations and predictions of genetic risk are susceptible to unequal
outputs (performance levels) across different populations as they are
underrepresented in training data, which hinders generalisability
(Martin et al., 2019a). Authors observe that research infrastructures
like biobanks may suffer from “recruitment bias” as a risk which
“infringes on the principle of justice, influences representativity of
biobank collections and has implications for the generalizability of

research results and ability to reach full statistical power” (Akyüz et al.,
2021).

Secondly, further data biases can be linked to many other factors.
There is a considerable gap in medical studies on the representation of
women (Daitch et al., 2022) as the case of cardiovascular disease also
shows (Burgess, 2022). More broadly, gender bias can be found in
written documents used for certain ML techniques (Bolukbasi et al.,
2016). Gender bias may also occur when heteronormative paradigms
are not met, e.g., when data on gender and sex do not match and are
therefore automatically excluded for analysis, which is currently a
common practice in genomics (American Medical Association, 2018;
Ganna et al., 2019). EHRs can contain multiple biases resulting e.g.,
from physician bias or certain delivery of care (Ching et al., 2018;
Gianfrancesco et al., 2018), and even laboratory measurements (which
are considered less biased) can show bias resulting from the patient
health state and healthcare process (Pivovarov et al., 2014)—although
they may be representative regarding population (Kerminen et al.,
2019; Adeyemo et al., 2021). Overall, there are substructures in
genomics and other health data that can be linked to actual
differential causal relationships between health outcomes and
putative risk factors. Other substructures can be traced to external
factors such as cultural practices, socioeconomic status and other non-
causal factors that relate to healthcare provision, access to medicine
and clinical trials (Gianfrancesco et al., 2018; Dias and Torkamani,
2019; Sirugo et al., 2019).

Apart from the bias in data, machine bias has to be mentioned in
the context of AI use for PRSs. This encompasses the biases that are
learned by the models (Ching et al., 2018; Dias and Torkamani, 2019).
In this context, one criterion for iML for genetic risk prediction could
be whether a certain model is adequately interpretable for bias to be
detected (Ching et al., 2018; Dias and Torkamani, 2019). Authors call
for standards of fairness in order to diminish disparities caused by bias
of ML in genetic risk prediction (Dias and Torkamani, 2019; McInnes
et al., 2021). Moreover, they point to the necessity for careful
application of AI and differentiation between the various forms of
bias arising when AI is applied to genetic risk prediction (Dias and
Torkamani, 2019). Tools are already being developed to help eliminate
machine bias. This is not only intended to eliminate bias of ML, but
also to create diagnostic systems that are much freer from human bias
than classical diagnostics by physicians allow (Shen et al., 2019). These
and further innovative sorts of techniques should also be consistently
considered for ML use for PRSs.

In addition to injustice due to biases, injustice and unfairness
regarding data access and sharing data and algorithms is also an issue
for AI-driven PRSs. In this regard, biased processes and results are co-
produced, potentially sustaining existing inequalities and unfairnesses.
Further, apart from comprehensibility, accessibility can be considered
as the second main component of transparency in generating
information about how algorithms function (Mittelstadt et al.,
2016). While many advances have been made thanks to
international initiatives and large interdisciplinary research
consortia, authors still highlight the ongoing need to collect,
harmonise and share data in genomics and healthcare (Diao et al.,
2018; Lambert et al., 2021). The Polygenic Risk Score Task Force of the
International Common Disease Alliance has called for the “GWAS
research community, global biobank collaborations, and private
direct-to-consumer companies” (Adeyemo et al., 2021) to create
requirements for public sharing of summary statistics using
standardised formats, with the aim of avoiding the exacerbation of
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worldwide health inequalities (Adeyemo et al., 2021). However,
sharing DL models with the biomedical data and health records of
individuals not only faces legal and technical barriers but also poses a
major “cultural challenge” (Ching et al., 2018). A culture that rewards
discovery rather than the production of data will have a difficult time
motivating researchers to share their hard-earned datasets (Ching
et al., 2018). However, as is pointed out in recent articles, it is this data
that would drive DL (Ching et al., 2018).

Apart from well-known privacy regulations and standards in
medical and biological research (Ching et al., 2018), factors such as
the costs related to regulations for medical devices may also play an
important role in access to PRSs, creating inequalities among
populations, subgroups and countries (Adeyemo et al., 2021). Not
only does global cooperation contribute to more equity in medical
research and healthcare, it also serves an important role for the
improvement of clinical validity and utility of PRSs (Adeyemo et al.,
2021; Knoppers et al., 2021). Moreover, an open exchange of AI models
for genetic risk prediction with the medical and scientific communities
is called for to enhance transparency, where the model sharing should
include details such as model weights, source codes and meta diagrams
(Dias and Torkamani, 2019). Synthetic genetic and phenotypic data
(Abadi et al., 2016) is suggested for genomic projects (Moorthie et al.,
2021) and is already being tested in PRS development to provide greater
diversity in genetic data, avoid biases and privacy issues. Furthermore,
protecting data and privacy are very relevant for public-private
partnerships (Murdoch, 2021), which play an increasingly important
role for the implementation and dissemination of PRSs.

5.2 Challenges in building trust,
communication and education

One of the greatest challenges in translating PRSs to the clinical
setting is the communication of PRSs. This includes communication
to and dialogues with the public(s) and patients as well as educating all
other stakeholders involved. The challenge of communicating PRSs in
the clinical setting, particularly for doctors (Fiske et al., 2019), is
magnified when explaining AI-driven PRSs.

In general, we highlight the need for reflection on epistemological
questions around AI use for PRSs and the corresponding normative
aspects. It is important to ask what it means to explain, interpret and
understand AI-driven PRSs. This should ideally incorporate different
perspectives for certain stakeholders and involve further associated
questions, e.g., what researchers consider an explanation to be, what
kind of explanation users want and need (Slunecka et al., 2021) and
what criteria are relevant for explainable PRSs. With the advance of
xAI and iML, it is also worth considering how much/what kind of
explainability is required for the clinical application of PRSs and how
much/what kind of interpretability is clinically meaningful.

With regard to the literature reviewed and the existence of
different definitions of explainability, explicability, interpretability
and comprehensibility in scientific teams and clinical settings, we
argue that awareness of these differences of terms must be raised both
in scientific publications and in practice. This would also have the
ultimate goal of improving the explainability of the risk scores and the
underlying AI mechanisms.

Stakeholders in research and development as well as healthcare
areas are constrained to consider the uncertainty of AI-generated PRS
predictions and thus need to develop means of dealing with them in a

structured, transparent and responsible way. Even if a more
explainable ML for PRSs is developed, the question of how to
communicate and generally deal with uncertainty due to lack of
explainability of ML for PRSs nevertheless requires discussion and
translation into appropriate standards. Embedded ethics approaches
(McLennan et al., 2022) in both the research and clinical settings could
help resolve the challenge of detecting and reflecting on ethical issues
as well as communicating them.

Regarding communication of AI-driven PRSs, there is a clear need
for engagement with technical, medical and ethical aspects of PRSs and
AI for all the different stakeholders involved. We strongly recommend
adopting interactive/participatory engagement practices (Horst et al.,
2017), especially between clinicians and patients for AI-driven PRSs.
This means limiting or avoiding deficit models of communication,
i.e., unchallengeable, non-reflexive (Wynne, 1993) communication,
which sees audiences (including any actors other than experts) as
deficient both in knowledge and capacity to comprehend (Bell et al.,
2008). In light of the developments in e-health, citizen-patients are not
considered passive recipients of information, but rather self-informing,
active individuals (Felt et al., 2009). Furthermore, the respective
educational, socioeconomic and cultural background of individual
patients and their families has to be considered when, for example,
physicians explain PRSs (Slunecka et al., 2021).

In general, one of the biggest challenges of AI-driven PRSs today is
trust in AI/AI-driven PRSs and trust in the medical institutions that
will use these technologies on a large scale. However, there is a lack of
specificity in the literature on issues of trust in the recently developed
AI-driven PRSs. This represents a future issue that will need to be
addressed with interdisciplinary teams.

Problems of AI explainability add complexity to matters of trust
for AI-driven PRSs. Lack of transparency and lack of human
understanding of AI black boxes raises the question of how all
kinds of end-users create their relationship with AI. Scholars
emphasise the importance of explainable AI (Holzinger et al.,
2019) and DL models in medicine by arguing for the trust-building
effect they have (Ribeiro et al., 2016). They point to the importance of
understanding the rationale underlying the predictions of ML
modelling when evaluating trust, which is considered crucial for
decisions on the use of new models and actions based on
predictions (Ribeiro et al., 2016). Interpretability is reflected in the
“fidelity-interpretability trade-off” (Ribeiro et al., 2016) and is key to
building trust in AI among healthcare professionals. Practitioners are
very unlikely to accept a DL system that they do not understand
(Miotto et al., 2018). It is noted that the interpretability of the model in
genomics is critical to convincing health professionals of the validity of
the actions the prediction system recommends, e.g., to explain which
phenotypes drive certain predictions (Miotto et al., 2018).

The High-Level Expert Group on AI of the European Commission
proposes trust as one of the defining principles for their AI ethics
guidelines (High-Level Expert Group on AI, 2019). However, the
technical solutions to the issue of trust, as discussed above, are unlikely
to become available in definitive form. We therefore suggest that the
social and relational considerations are paramount if we are to create a
workable framework for establishing trust. This means the question of
how trust is built needs to be addressed by adopting a more reflexive
and interdisciplinary perspective. This also includes discussion of the
trustworthiness of AI use for PRSs. Which is to say, discussions about
dependable, trustworthy ML use for the PRSs and what requirements
and criteria should be placed on the trustworthiness of AI for PRSs
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must perforce address contextual questions, such as what trust means
in a particular situation or context. The FUTURE-AI initiative has
created dynamic best practices for trustworthy AI in healthcare
(Future AI, 2022). Empirical and theoretical studies on the ethical
and social issues of AI-driven PRSs and trustworthiness are needed so
that this knowledge can then be integrated into the development and
application of AI-driven PRSs.

Overall, we recognise that education and training of AI-driven
PRSs would need to cover tech/AI literacy, risk interpretation/
statistical knowledge, genomics/PRS knowledge, communication
skills and ethical reflection skills of the stakeholders involved—of
course with different granularities depending on the stakeholders:
patients, relatives of patients, various public(s), healthcare
professionals, medical/nursing students, researchers, technicians,
ethics committees, clinical ethics teams, business partners and all
the other stakeholders involved in research and development as well as
the translation, implementation and application of AI-driven PRSs.

For AI in medicine generally, there is a need to increase education and
training for different stakeholders in the healthcare system on applications
of technology driven by data (Meskó et al., 2017; Xu et al., 2019). ForML in
genomics, authors stress the need to bridge the gaps regarding clinical
knowledge and interpreting models (Diao et al., 2018). Others consider the
training of clinical staff to be a major challenge for the implementation of
PRSs in the clinical setting (Torkamani et al., 2018; Slunecka et al., 2021).
The unique nuances of PRSs and GWAS development are mostly
unfamiliar to clinicians at this point (Martin et al., 2019a). Concrete
suggestions have been made for enhancing education about PRSs for
inclusion in the regular curriculum for medical students and in the
ongoing education for medical professionals, covering the limitations of
PRSs and different forms of risk (Slunecka et al., 2021). In addition, there are
different proposals for how experts in genetic risk assessments could be
involved in the clinical setting. Furthermore, education of the public(s) is
crucial in implementing PRSs for public screening. The website of the
National Human Genome Research Institute of the National Institutes of
Health (UK), for instance, aims to explain to the public how PRSs work and
how to interpret them.Apart from that, sensitivity, reflection and discussion
on relationality and power relations of patients, doctors, healthcare and
research institutions as well as biotechnology/genomics companies are
important issues in the development of AI-driven PRSs. Based on a
renewed understanding of how citizens engage with physicians and
information technologies in health setting (Felt et al., 2009),
empowering citizens and patients is among the key developments for
the application of AI-driven PRSs.

5.3 Privacy and autonomy challenges

When large amounts of genomic data and EHRs are used to generate
PRSs with AI, privacy is a key issue. A crunch question is whether
protection of personal/patient data trumps transparency and right of
access to data or vice versa. There are also multiple questions revolving
around the extent to which anonymisation can be ensured with the large
amounts of data used for PRSs, new AI technologies and what informed
consent should look like for different uses of PRSs driven by them. For
example, the differential privacymethod, in which noise is added to data to
prevent revealing individual information in case summaries of the data
were to be published, does not scale easily to high-dimensional genetic data
(Roth and Dwork, 2013). While there are efforts in medicine and PRS
development aimed at protecting privacy (Abadi et al., 2016; Simmons

et al., 2016; Ching et al., 2018; Beaulieu-Jones et al., 2019; Zhang et al.,
2021), it is unclear how these could be implemented or policed on a large
scale for AI-driven PRSs. Despite the discourse of exceptionalism of big
data research, privacy is still an issue that is tightly entangled with
autonomy (Rothstein, 2015). However, in a data-rich environment,
genomic data, which is by definition shared in differing amounts with
biological relatives, poses further challenges to our understandings and
practices of privacy and autonomy, but also anonymisation or risk of
genomic identifiability, raising the necessity for a “post-identifiability” lens
(Akyüz et al., 2023). Thus, privacy and autonomy are challenges in their
own right due to the peculiarity of genomic data.

5.4 Regulatory uncertainties and further
challenges

As for healthcare in general, the need for complementary measures to
explainability such as regulation (Markus et al., 2021), enhancing the
quality of healthcare data for DL (Miotto et al., 2018) and external
validation (Markus et al., 2021) have to be considered for AI-driven
PRSs. The need for regulatory measures for PRSs in general is highlighted
in the literature reviewed (Adeyemo et al., 2021; Knoppers et al., 2021;
Slunecka et al., 2021). Standardisation of regulation frameworks for PRSs
as medical devices (Adeyemo et al., 2021) is urgently required. With AI-
driven PRSs, it is even more important to establish internationally
standardised regulation frameworks which are responsive to the
dynamic and fast-evolving technical and scientific findings around
PRSs. Flexible, on-demand “ad hoc” guidance to positively enhance
ongoing algorithm improvement (Vayena et al., 2018; Dias and
Torkamani, 2019) would support the ethically sound development of
AI-driven PRSs. However, regulatory measures can be a burden for people
with access to PRS technology (Knoppers et al., 2021). In this sense, the
challenge of creating a balance between sufficient regulation and rapid
scientific advancement in the application of AI for PRSs must be
considered in the development of AI-driven PRSs.

Beyond the ethical concerns mentioned above, further ethical
challenges of AI-driven PRSs, such as informed consent procedures
for AI-driven PRSs in absentia of explainability could become even
more relevant in the future. In addition, the importance of AI for
ethics committees has to be emphasised as does the need to involve
research ethics committees and clinical ethics committees in the
translation and implementation of AI-driven PRSs.

6 Conclusion

Our article has delineated the multiple layers of ethical and social
concerns associated with PRSs, AI for PRSs and AI-driven PRSs in
medicine. A clear limitation of most ML-based approaches compared
with the classic PRSmethod is the requirement for individual level data
to train the models, whereas the latter uses publicly available summary
statistics about estimated effect sizes. Hence, there is room for development
of new ways to leverage published summary statistics in training of more
flexible ML-based PRS methods. Another limitation and future challenge
common to all PRS methods is the poor generalisability of the scores in
populations with different ancestries, which also stems from different allele
frequencies, linkage disequilibrium and genetic effect sizes in different
populations (Wang et al., 2022). Regarding the use of AI in PRS, there
is great potential for improvement by developing models that integrate a
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variety of health data types and risk factors into comprehensive predictors of
disease risk (Dias and Torkamani, 2019). The clinical utility of PRSs is
currently hotly debated; thus, more research is warranted on the best ways
to implement PRSs as part of clinical practice, either to improve diagnoses,
personalise treatments, or as part of preventive medicine (Torkamani et al.,
2018; Choi et al., 2020). In particular, the additional challenges for the
clinical implementation posed by the AI based PRS methods remain to be
addressed. Furthermore, our discussion of some of the ethical issues that
need to be considered in AI-driven PRS is in noway exhaustive. Rather, this
article can serve as a basis for further discussions of the ethical challenges
that could arise from the future application of AI-driven PRSs.

Where PRSs, ML and big data are part of the picture, we have teased
out the more complex ethical challenges emerging from the relation
between them, as well as pertaining to them individually. Based on a
comprehensive review of the existing literature, we argue that this stands in
need of urgent consideration for research and translation into the clinical
setting. Different layers of ethical implications could lead tomore challenges
for explainability of AI-driven PRSs,more complexity of fairness with biases
in data (sets) and ML for PRSs and biased outputs, more challenges in
building trust, communication and education as well as regulatory
uncertainties for and challenges in privacy and autonomy of AI-driven
PRSs. Among these, wewould especially like to highlight a lack of specificity
in the literature on issues of trust in the more recent instantiations of AI-
driven PRSs.Wemaintain that this is a future challenge that will need to be
addressed in interdisciplinary, multi-stakeholder teams. The fact that the
lack of explainability seems to be an inherent problem of certain ML
techniques, which may never be fully solved, should not hinder efforts to
make ML for PRSs more explainable and trustworthy for all stakeholders
involved in the healthcare system. It has become clear that much of the
more explainable PRSs depends not only on more explainable ML
techniques, but also on awareness, context- and user-specific
communication and engagement, education and training for all
stakeholders. In addition, there are limitations to the influence of
explainable ML that relate to ethical and social aspects associated with
large amounts of data, such as EHRs, genomic andother health data fed into
ML models. Apart from more technical research on e.g. techniques of
explainable ML for PRSs, more ethical analyses are needed, covering
epistemic and normative aspects of AI-driven PRSs including methods
of normative and empirical ethics. We have also pointed out that hitherto
there are few to no regulatory guidelines, and a lack of commensurate up-to-
date research, let alone clear advice on how to communicate the potential
implications, costs or benefits of these technological advances to and
between the various stakeholders involved. For this, technical and
bioethical content as well as discussions on the larger societal
implications and public health aspects should also be included in the
training for students and healthcare professionals. Although there are efforts
to address the ethical and regulatory challenges of AI-driven PRSs, more
work is required when AI tools are used with more complex health data
such as EHRs and medical images or real world data. This should be an
important item on the agenda of citizens, policymakers, scientists and
funders of AI-driven PRS development as a co-production. This approach
would make an important contribution to the clinical utility of PRSs in
terms of transparency, responsibility and finally trustworthiness.

If we fail to address these challenges, the danger is that not only will
advances in AI and/or the applications of PRSs outstrip our ability to
understand or regulate them, but that the potential for overreliance and
indeed misapplication or misuse from an ethical and social standpoint
may create further and insurmountable complexities in the future.
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