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Abstract—Inertial and magnetic sensors offers a sourceless and
mobile option to obtain body posture and motion for personal
sports or healthcare assistants, if sensors could be unobtrusively
integrated in casual garments and accessories. We present in this
paper design, implementation, and evaluation results for a novel
miniature attitude and heading reference system (AHRS) named
ETHOS using current off-the-shelf technologies.

ETHOS has a unit size of 2.5cm3, which is substantially below
most currently marketed attitude heading reference systems,
while the unit contains processing resources to estimate its
orientation online. Results on power consumption in relation to
sampling frequency and sensor use are presented. Moreover two
sensor fusion algorithms to estimate orientation: a quaternion-
based Kalman-, and a complementary filter. Evaluations of
orientation estimation accuracy in static and dynamic conditions
revealed that complementary filtering reached sufficient accuracy
while consuming 46% of a Kalman’s power. The system runtime
of ETHOS was found to be 10 hours at a complementary filter
update rate of 128Hz. Furthermore, we found that a ETHOS
prototype functioned with a sufficient accuracy in estimating hu-
man movement in real-life conditions using an arm rehabilitation
robot.
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I. INTRODUCTION

Body posture and motion is a vital source of information

for various applications in sports, physical rehabilitation and

biomechnanical function assessment, as well as in ergonomics,

gaming, and movie production. Human posture and motion

information is used in these fields to augment the user’s per-

ception, e.g. to train skills while cuing motivation [1]. Alter-

natively, information is embedded into virtual or cross reality

representations, e.g. for gaming entertainment purposes [2].

Acquiring posture and motion information is a key challenge

in many of the aforementioned fields, which can substantially

limit applications. For example, in many functional motion

assessments monitoring should be continuously performed,

body motion should not be restricted, and recording equipment

must be mobile in order to be used outside of laboratory

environments.

Inertial and magnetic sensing concepts that can be attached

to the body fulfill mobility requirements since they operate

sourceless, hence do not require stationary installations to

function. Thus, monitoring of postures and motion in natu-

ral real-life settings could become feasible. Inertial sensors,

as accelerometers and gyroscopes, can be constructed using

the widely adopted MEMS technology and therefore small

device outlines and low weight systems could be achieved. To

this end, uni-modal inertial sensors have been unobtrusively

integrated into textiles and commonly used clothing, e.g.

in [3]. However, accurate orientation estimation and capturing

dynamic body motions in three dimensions requires a combi-

nation of sensors. Typically three accelerometers measuring

linear accelerations, three rate gyroscopes sensing angular

velocity, and three magnetometers that detect the earth mag-

netic field are used. In such attitude and heading reference

systems (AHRS), every sensor is placed orthogonally to others

of the same modality to provide measurements along each

axis [4]–[7].

AHRS allow to compute their orientation and thus orienta-

tion of body movement when attached to the body. Multiple

units can be used form a system measuring joint body segment

orientations. However, size, outline, weight, and computational

requirements are critical and yet unresolved challenges for

continuous mobile and wearable use of AHRS.

In this work we address these challenges by designing and

evaluating a novel miniature AHRS unit, named ETH Ori-

entation Sensor (ETHOS). ETHOS was specifically designed

for wearable use. It uses current off-the-shelf sensor compo-

nents were integrated into a system offering local processing

resources, e.g. to compute orientation online. The system

offers both, local data storage and ultra-low power wireless

transmission options, and scalable processing capacity which

can be adapted to the application’s demands, e.g. regarding

orientation streaming bandwidth.

This paper provides the following contributions:

1) We present the ETHOS system architecture based on

current off-the-shelf sensor component and integra-

tion technologies, with which a PCB form factor of

14x45x4mm3 and weight (without battery) of 4.2 g.

2) ETHOS was evaluated regarding its continuous runtime

and energy consumptions with respect to sensor sam-

pling frequency and orientation estimation performance.

For this purpose, orientation estimation using Kalman

and linear filters are compared.

3) We studied orientation estimation accuracy in a real-

life application using an arm rehabilitation robot. In this

analysis, orientation of the upper body was estimated

and compared to the commercial Xsens system [7].
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II. SYSTEM ARCHITECTURE

ETHOS comprises five principle design blocks, (1) the

main processor, (2) sensors, (3) power conversion and bat-

tery charger, (4) communication interfaces, and (5) system

memory. The front and backside of the system are depicted in

Figure 1.

Fig. 1. Front and backside of ETHOS units and installed components.

The final ETHOS unit resulted in WxLxH dimensions of

14x45x4mm3. We implemented the unit in an rectangular

shape to support attachment along body limbs. The system

width was imitated by the width of the microSD socket, the

height is given by heights of ICs and PCB thickness.

Figure 2(a) depicts a housing implementation with WxLxH

dimensions of 24x46x14mm3, where the ETHOS PCB and

battery are stacked. In a bracelet-like design with a side-by-

side alignment of the PCB and battery, a maximum height of

<10mm was achieved (see Fig. 2(b)).

A. Main processor

The central processing unit of ETHOS is a 16-bit

dsPIC (MICROCHIP, dsPIC33FJ128). The dsPIC allows com-

putation of maximum 40MIPS at low power consumption,

and provides sufficient on-board RAM (16 kB) for operation

of filter algorithms. Moreover, it features an integrated real

time clock / calendar, which is crucial for tagging of data and

synchronization of multiple ETHOS units.

B. Onboard sensors

Orientation information can be inferred by fusion of inertial

and magnetic field sensor data. The system gathers the indi-

vidual information by three MEMS devices: an accelerometer,

(a) Stacked system case (b) Bracelet system case

Fig. 2. Two system cases containing each one ETHOS PCB and a battery.
The left picture shows a stacked system housing which minimizes the volume.
The right picture depicts a bracelet-like housing, which is optimized to be
unobtrusively worn for long periods of time.

a gyroscope and a magnetic field sensor. Moreover a temper-

ature sensor and system power monitor are implemented for

automatic self-calibration. All sensors were selected to have

all three axes available and a digital interface to avoid analog

line filter circuitry.

We defined standard sampling frequencies of sensors to 1,

16, 32, 64 and 128Hz.

Accelerometer: A three-axis accelerometer (Linear Tech-

nology, LIS3LV02DL) can be configured to resolve ±2/6 g

with a 16-bit resolution. For inference of orientation a maxi-

mum resolution of 1g is sufficient. Hence, at a configuration

of 2g, a theoretical resolution of 0.06mg/LSB is achieved.

Magnetic field sensor: Earth magnetic is sensed by an

integrated digital compass IC (Honeywell, HMC5843) in all

three axes. The devices has a maximum measurement range

of ±4Ga and a resolution of 12-bit. We configured the device

to operate at a maximum measurement range of 1Ga, as the

earth magnetic field ranges from approximately 0.31-0.58Ga.

Gyroscope and temperature sensor: A three-axes gy-

roscope (Invensense, ITG-3200) allows sensing of the rate

of change with a maximum measurement range of 2000◦/s

at resolution of 16-bit. In a worst case scenario, the zero-

rate (bias) could deviate about 40◦/s over the specified tem-

perature range of the device. Hence, an integrated temperature

sensor is installed for automatic calibration of the zero-rate.

C. Communication interfaces

ANT module: Each board comprises an 8-channel ultra

low power ANT module for wireless communication. ANT

allows interconnection of multiple ETHOS units for creation

of wireless body area networks (BAN). This network could

be extended by other ANT or ANT+ enabled devices, e.g.

a heart rate belt, step-counter, or GPS module. Moreover, it

allows to interface the unit with mobile computers. While the

ANT standard is impractical for streaming of raw data, the

bandwidth would allow a transmission of gathered orientation

data at a maximum frequency of up to 200Hz. The basic

design of the ANT circuitry is based on the BodyANT

modules [8].

USB interface: An USB interface allows bi-directional

transmission of data to external hardware. In a live-mode,

ETHOS allows transmission of gathered data to an external
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TABLE I
STATIC RMS NOISE OF INDIVIDUAL SENSOR AXES AT A SAMPLING

FREQUENCY OF 128 HZ.

Axis

Sensor X Y Z

Acceleration [mg] 0.3 0.16 3.2

Magnetic field [mGa] 2 1.7 2

Gyroscope [◦/ s] 1 1.1 1

PC for live- display or further analysis. In a configuration

mode, previously gathered data can be read out from onboard

memory. The maximum transmission rate is 366kB/s.

D. System power

System power is provided by an external lithium-polymer

battery with a nominal voltage of 3.7V. A miniature onboard

LDO provides a constant system voltage of 3.3V and a

maximum current 150mA. If the system is connected to an

USB port the system battery is loaded by an integrated Li-

Ion battery charger. The system supervises system power and

indicates low power by an LED. In our standard configuration

we use a miniature 300mAh battery with WxLxH dimensions

of 20x30x3mm3.

E. System memory

A microSD card slot was installed to store data, timestamps

and system configuration on non-volatile flash memory. mi-

croSD flash memory is of small dimensions, available with

high capacities and can be easily replaced in case of low

memory. A sample-and-store mode results in a maximum

data volume of 10MB/h. Hence, every installed GB of flash

memory covers approximately 4 days of continuously sampled

data, time and calendar information.

III. DEVICE CHARACTERIZATION

A. Sensing accuracy

The noise of individual sensors determines the system

accuracy, if no additional filter is applied. Table I summarizes

the RMS of each individual sensor at a maximum sampling

frequency of 128Hz. The measurements indicate stable sensor

operation and low sensor noise in static conditions.

B. Power consumption and system runtime

The overall system runtime is defined by (1) the battery,

and individual consumption of the sensors, processor, and

periphery. In idle mode, where the processor operates at 8MHz

and sensors are in sleep mode, we measured a minimum

power consumption of 17mA. Further measurements showed

that every additional MIPS consumes 1mA. After enabling

of sensors, the system can enter a sample-and-store (SaS)

mode. In SaS mode, sampled from individual sensors and

stored to the local memory. The SaS mode can be run at a

minimum processor clock frequency of 8MHz for the maxi-

mum sampling frequencies up to 128Hz. Hence the required

TABLE II
POWER CONSUMPTION OF INDIVIDUAL SENSORS AT DEFINED SAMPLING

FREQUENCIES. SENSORS ARE OPERATED AT A VOLTAGE OF 3.3 V.

Sampling frequency [Hz]

Sensor 1 16 32 64 128

Acceleration [mA] 0.7 0.9 1.2 1.7 2.6

Magnetic field [mA] 1.1 1.1 1.2 1.4 1.8

Gyroscope [mA] 6.4 6.5 6.6 6.8 7.3

power depends on the consumption of sensors at specific

sampling frequencies. Table II summarizes the consumption of

sensors at defined sampling frequencies and constant system

voltage of 3.3V. The measurements indicate a specifically low

consumption of the acceleration sensor (max. 2.6mA) and

magnetic field sensor (max. 1.8mA), while the gyroscope ends

up in a relatively higher consumption (max. 7.3mA).

Figure 3 summarizes power consumption and corresponding

runtime of ETHOS at defined sampling frequencies. The

results indicate a sufficient operation time to enable long-term

recordings of >10 hours. If longer run-times are required, the

current miniature battery could be replaced by an alternative

with larger capacity.
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Fig. 3. Power consumption (black) and system runtime (gray) for a 300mAh
battery at different sampling frequencies.

IV. ALGORITHMS FOR COMPUTATION OF ORIENTATION

Orientation of a rigid body in a 3-dimensional Euclidean

space can be described by a set of three Euler angles, denoted

by Φ (roll angle), Θ (pitch angle), and Ψ (yaw angle).

Computation of orientation means that a sensor calculates

three angles around the axes of it’s local frame must be rotated

to be aligned with a global reference frame (typically the

earth). Figure 4(a) illustrates the reference frame as it was

defined on ETHOS.

A. Algorithms for computation of orientation

Orientation from raw sensor data: Plain computation

of Euler angles from raw sensor data can be performed

without application of additional filter [9]. In this approach,

acceleration data is used to infer the roll angle Φ and pitch
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angle Θ, while the yaw angle Ψ requires further information

of the magnetic field sensor. While this approach is feasible

for static postures, it is impractical in cases of dynamics. Low

computational requirements allow operation of the dsPIC at

the minimum mode of 8MHz. Hence, for this basic mode

the power consumption and system runtime are equivalent as

for the sample-and-store mode (compare Fig. 3. However, if

dynamic movements are tracked additional filter are required

for reliable inference of orientation.

Complementary filter design: Complementary filter ex-

ploit the complementary spectral characteristics of noisy sig-

nals to compute orientation [10]. While complementary filter

can be operated at low computational costs, it has been shown

that they are capable to track orientation of human body limbs

with a sufficient accuracy [4]. We implemented each one Euler

based complementary filter framework for online computation

of orientation on an ETHOS prototype platform, and offline

analysis of data in MATLAB.

Kalman filter design: A Kalman filter is a set of mathe-

matical equations that estimates the state of a process in an op-

timal least-squares sense. As the filter is operated recursively, it

becomes suitable for many real-time applications, like motion

tracking. Here, the state is e.g. the estimated orientation,

and the process is the human motion. While Euler-based

Kalman tracking filter require n = 6 states, they suffer from

singularity problems. However, we implemented a quaternion-

based n = 7 state extended Kalman filter as proposed in

literature [11], [12] in MATLAB. While the computational

complexity of Kalman filter increases with the number of

states in an order of O(n3), a quaternion operation omits

trigonometric functions as they are required in Euler-based

approaches.

B. Orientation accuracy

To determine orientation errors, we used an early prototype

of ETHOS that comprises the same sensing and processing

architecture, see Figure 4(b).

Static orientation error: The static orientation error of

our online complementary filter implementation was evaluated

against an in-house fabricated absolute goniometer reference

device. We mounted the sensor inside the reference device and

manipulated the roll, pitch, and yaw angles independently in

steps of 5◦in the full range of 360◦. The average RMS error

of the complementary filter was 0.5◦for the roll angle Φ, 1.3◦

for the Pitch angle Θ, and 1.8◦for the Yaw angle Ψ.

Orientation error in case of dynamics: We mounted

an ETHOS prototype platform on a standard Xsens MT9

sensor [7] for evaluation of individual accuracy of both filter

approaches. The setup is depicted in Figure 4(b). While

specific dynamics motions were emulated, simultaneously

recorded data of both systems was transfered to a PC and

stored for subsequent offline analysis. After application of

the complementary and Kalman filter to the sensor data, the

resulting orientations were compared to the reference data in

order to compute the individual RMS error.

(a) Defined Euler angles on ETHOS (b) ETHOS prototype on
Xsens reference sensor

Fig. 4. Right: ETHOS prototype unit mounted on a Xsens reference sensor
for evaluation of measurement accuracy.

TABLE III
RMS ERROR OF COMPLEMENTARY AND KALMAN FILTER

IMPLEMENTATIONS DURING INDUCTION OF UNI-AXIAL ACCELERATION

AND ROTATION.

RMS error

Filter Φ Θ Ψ

Accel. Compl. 0.9◦ 1.9◦ 3.5◦

Kalman 0.3◦ 1.3◦ 2◦

Rot. Compl. 1.4◦ 0.9◦ 1.3◦

Kalman 2.1◦ 0.9◦ 1.4◦

We evaluated the filter performance in two possible cases

of random dynamics that could occur and impair accuracy: (1)

random uni-axial acceleration with a maximum amplitude of

20m/s2, and (2) random uni-axial rotations in a goniometer

with a maximum rate of 150◦/s. All tests were performed

axiswise for 4-5s and repeated for three times. Table III

summarizes the RMS error of orientation.

The results show a lower RMS errors for the Kalman filter

estimations than for the complementary filter. However, we

conclude that the performance of the complementary filter

is still sufficient for tracking of human motions. Hence, it’s

online implementation on ETHOS should work reliably for

dynamics as they are expected in human movements.
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Fig. 5. Power consumption (black) and system runtime (gray) of the
complementary filter (straight line) and Kalman filter (dashed line) at different
update rates.
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Fig. 6. Comparison of complementary filter and reference system outputs during execution of arm motions.

C. Power consumption and system runtime

In our MATLAB implementation of the Kalman filter, we

counted in total 3357 floating point operations per orientation

estimation. As the dsPIC on ETHOS is not equipped with

a floating point unit (FPU), the operations are translated by

a mathematical library to multiple fixed point operations.

Based on the library documentation and related work [13]

we estimated an average of 145 instruction cycles to execute

one FLOP. Hence, the dsPIC needs to perform about 486k

cycles for every estimation of orientation. The available com-

putational power of 40MIPS on ETHOS would be sufficient

for 80 estimations per second. In practice, the estimations

would be restricted to 64Hz, as additional processing power

is required for I/O operations. However, computational op-

timization could reduce the required FLOPS per computed

orientation significantly [14]. Figure 5 depicts the estimated

power consumption of an online Kalman filter implementation

and according runtime utilizing a battery of 300mAh. The plot

considers estimations of up to 64Hz, where a system runtime

of 5.5 hours is predicted.

However, our online complementary filter implementation

is capable to compute Euler-angle orientation for all defined

update rates of up to 128Hz at a minimum processor clock

frequency of 8MHz. As indicated in Figure 5, a system runtime

of up to 12hours is achieved.

The results indicate, that a complementary filter implemen-

tation requires 46% of the computational power at an update

rate of 64Hz.

V. VALIDATION OF THE SYSTEM

We evaluated the effectiveness of our online filter imple-

mentation for realistic human motions in a case study. For this

purpose, we monitored arm motions of a subject performing

exercises with an ARMin arm rehabilitation robot [15]. To

quantify accuracy, we again mounted an ETHOS prototype to a

Xsens reference (compare Fig. 4(b)). Both units were attached

to the arm of a healthy subject, as shown in Figure 7. In total,

six rehabilitation exercises were performed by the ARMin

robot. ARMin was operated in the teach-and-repeat mode. In

a preparing teach step, the therapist performed each of the

six rehabilitation exercises by guiding the patient’s arm, while

the robot recorded the motion path. Subsequently, the subject

repeated the motion five times, while the robot supervised and

supported the execution.

Fig. 7. Experiment setup for evaluating the complementary filter imple-
mentation. Actual arm rehabilitation exercises were executed by a subject,
supervised by the ARMin rehabilitation robot.

Figure 6 shows the computed orientation using our online

complementary filter and the reference Xsens output for an

exemplary motion. The graph indicates that exercises were

repeated in a similar way, while the residuum between both

orientations was small. The overall RMS error of the comple-

mentary filter for all six exercises and each of the five repeti-

tions was 6.1◦ for the roll angle Φ, 2.6◦ for the pitch angle Θ,

and 18.1◦ for the Yaw angle Ψ. We observed relatively large

deviations for the Yaw angle Ψ, especially at negative angles.

At those positions, the arm was moved close to the ARMin

robot, where metal and alternating currents created magnetic

field disturbances. The Yaw angle was specifically affected by

this fields, as it is the only Euler angle that is derived with the

help of magnetic field sensor data. While it remains unclear

to which extend the reference Xsens sensor was affected, a

precedent system calibration of the sensor unit could improve

accuracy.

VI. CONCLUSION

We introduced in this work ETHOS, a miniature attitude

and heading reference system (AHRS) that can be unobtru-

sively integrated into causal garments or accessories. ETHOS
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was implemented in an elongated shape with final WxLxH

dimensions of 14x45x4mm3.

An evaluation of the system noise at selected sampling

frequency of up to 128Hz showed a reliable function of the

system. In sample-and-store mode, the system runtime was

found to be about 10 hours at 128Hz sampling frequency.

Moreover, we evaluated two sensor fusion algorithms to esti-

mate orientation: a quaternion-based Kalman filter, and a com-

plementary filter. Evaluations of the orientation estimation in

static and dynamic conditions revealed that a complementary

filter operates at sufficient accuracy for the dynamics expected

in human movements. ETHOS was shown to be applicable

for tracking human movements under real-life conditions in a

study with an arm rehabilitation robot. The power consumption

of the complementary filter was determined to be 46% lower

than that of a Kalman filter. The system runtime of ETHOS

was found to be 10 hours at a complementary filter update rate

of 128Hz, and 5.5 hours for a Kalman filter with an update

rate of 64Hz.

We expect that miniature design and power-efficient opera-

tion of ETHOS will permit its application in further studies.
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