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Abstract—We address the Threshold Information Disclosure
(TID) problem on Ethereum: An arbitrary number of users
commit to the scheduled disclosure of their individual messages
recorded on the Ethereum blockchain if and only if all such mes-
sages are disclosed. Before a disclosure, only the original sender
of each message should know its contents. To accomplish this, we
task a small council with executing a distributed generation and
threshold sharing of an asymmetric key pair. The public key
can be used to encrypt messages which only become readable
once the threshold-shared decryption key is reconstructed at a
predefined point in time and recorded on-chain. With blockchains
like Ethereum, it is possible to coordinate such procedures
and attach economic stakes to the actions of participating
individuals. In this paper, we present ETHTID, an Ethereum
smart contract application to coordinate Threshold Information
Disclosure. We base our implementation on ETHDKG [1], a
smart contract application for distributed key generation and
threshold sharing, and adapt it to fit our differing use case as
well as add functionality to oversee a scheduled reconstruction
of the decryption key. For our main cost saving optimisation, we
show that the security of the underlying cryptographic scheme is
maintained. We evaluate how the execution costs depend on the
size of the council and the threshold and show that the presented
protocol is deployable on Ethereum with a council of more than
200 members with gas savings of 20–40% compared to ETHDKG.

I. INTRODUCTION

In this paper, we make use of threshold cryptography to
achieve Threshold Information Disclosure (TID) on Ethereum,
an established public blockchain, when mutual trust cannot
be assumed and protocol violations need to be discouraged.
Threshold Information Disclosure provides a way for arbitrar-
ily many users to coordinate the disclosure of individually-held
pieces of information: Each user commits to the disclosure
of their information if and only if the information of all
other users is disclosed as well. Before such a disclosure,
each user should only be privy to their own piece of in-
formation. Such a functionality is useful to allow users to
generate and record their submissions independently from
each other with the assurance that no user can prevent the
disclosure of any particular submission. Applications where
independent submissions are useful include scientific evalu-
ation of experimental raw data, security audits of software
by independent groups, and sealed-bid auctions where the
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secrecy of losing bids is not required. To accomplish such
a coordinated information disclosure, an asymmetric key pair
should be generated in such a way that a public encryption
key becomes available immediately but the corresponding
decryption key is threshold-shared among a council that is
tasked with recovering and publishing said key at a predefined
point in the future. Submissions can then be encrypted and
published in the present but only become collectively readable
once the decryption key is published. In the meantime, neither
submitters nor individual members of the council coordinating
the disclosure can decrypt any submissions.

The functionality described above is challenging to achieve
on public blockchain systems like Ethereum due to a core
aspect of their functionality: It is vital that user-generated
information spreads quickly through their global peer-to-peer
networks in order to be recorded on their corresponding
blockchains. This very requirement makes it difficult for
multiple parties to coordinate the release of information:
One party has to go first without knowledge of subsequent
submissions and other parties can wait, observe the sub-
missions of others, and potentially change their submission
accordingly. Individual “commit and reveal” schemes exist,
e.g. based on a cryptographic hash function, to nullify any
ordering advantages, but they introduce the possibility of a
party refusing to reveal their commitment, which may be
unacceptable depending on the use case. In order to enable an
arbitrarily large number of parties to commit to the coordinated
public release of submissions to a blockchain, a delegation
mechanism is therefore needed. To preserve the notion of
decentralisation inherent in public blockchain systems, such
a mechanism can not rely on any trusted third party or
centralised coordinator, either during setup or execution. In
order to be deployable, the entire mechanism must function
within the constraints of the underlying blockchain system.

With ETHDKG, Schindler et al. [1], [2] demonstrated that
a distributed key pair generation for a BLS signature scheme
[3] can be coordinated and recorded with an Ethereum smart
contract. The core of their construction is the well-known
distributed key generation by Feldman [4]. Our use case differs
in two significant ways: First, the asymmetric key pair is
only intended for the encryption of user-defined information
to keep it secret until disclosure; and second, we explicitly
require a scheduled reconstruction of the threshold-shared



secret key to facilitate this disclosure. Based on our use case
and the corresponding cryptographic schemes, we can adapt
ETHDKG to save on deployment and execution costs while
extending it with the functionality necessary to orchestrate
the scheduled key reconstruction. In particular, we show that
biasing attacks as described by Gennaro et al. [5], [6], against
which ETHDKG employs a countermeasure by Neji et al. [7],
are of no concern in our case and we can therefore simplify
the overall protocol to save costs.

The main contributions of this paper are as follows:
• An analysis of the problem of coordinating a distributed

key generation, threshold sharing, and scheduled re-
construction in a context of mutual distrust via a de-
centralised coordinator that can enforce economic pun-
ishments to achieve Threshold Information Disclosure.
We derive requirements independent of the underlying
cryptographic protocol or execution platform.

• A use-case oriented examination of cryptographic
schemes with the goal of minimising deployment and
execution costs of our implementation.

• An argument that our main optimisation maintains the
security of the underlying cryptographic scheme.

• ETHTID, an Ethereum smart contract implementation to
achieve Threshold Information Disclosure.

• An evaluation of ETHTID with regard to deployment and
execution costs to determine its feasibility and limits. In
this way, we demonstrate that a coordinated information
disclosure mechanism is deployable on Ethereum, paving
the way for new decentralised smart contract applications
that were previously impossible.

The remainder of this paper is structured as follows: We
derive general requirements for a decentralised TID coor-
dinator and give a system overview in Section II before
we address related work in Section III. In Section IV, we
review the essential building blocks we make use of and
give a brief rationale for their selection before we describe
our implementation in Section V. We thoroughly evaluate our
implementation in Section VI and discuss the results and open
issues in Section VII. With Section VIII, we conclude.

II. PROBLEM STATEMENT AND SYSTEM OVERVIEW

It is instructive to first consider the problem at hand
separate from an implementation. In this section, we derive
requirements for the coordination activities and underlying
cryptographic primitives with respect to distributed key gen-
eration, threshold sharing, and reconstruction with economic
punishments for the purpose of TID. In addition, we present
a system overview. We assume the reader is familiar with the
basic concepts of threshold cryptography.

Threshold Information Disclosure is based on a threshold
council of n members tasked with generating a master public
key mpk such that the corresponding secret key msk can be
recovered after a predefined point in time r by the cooperation
of at least t + 1 council members. TID must satisfy the
following safety and liveness conditions: The master secret
key msk is not available to any party before time r (safety)

and the master secret key msk eventually becomes available
to all parties (liveness).

Note that both conditions refer to parties both actively
participating in the generation, sharing, and reconstruction
phases of threshold cryptography (i.e. the council members) as
well as user parties that may just use mpk and msk. However,
whether or not the safety and liveness conditions hold depends
entirely on the behaviour of the council members. Thus, the
trust assumption of TID is that the council does not reconstruct
the master secret key msk before time r. The prominent means
for achieving such behaviour in practice is an incentive scheme
like the one presented by Yakira et al. [8], coupled with
the assumption that council members act rationally. While
a properly designed incentive scheme is use case dependent
and, therefore, out of scope of this paper, the necessary
functionality to put such an incentive scheme into practice
is made feasible by the proposed smart contract ETHTID.

The threshold cryptographic concept works as follows. First,
a distributed key generation is performed where every council
member contributes randomness to the public key. This leads
to an (n, n)-sharing of the key, i.e. every piece is necessary
for recovery. Second, the members exchange information to
obtain a (t + 1, n)-sharing of the key, so that only t + 1 out
of n pieces are required for the scheduled recovery. Since
every member acts as the dealer of a (t+1, n) secret sharing
scheme in this step and none of them trust each other, we
require verifiable secret sharing (VSS) [4], [9]. VSS prevents
malicious members from distributing shares in such a way that
some subsets of t+1 members recover an incorrect secret key.
The last phase is the coordinated recovery of msk.

It is worth noting that the primary reason for performing a
threshold sharing in the first place is to eliminate single points
of failure and attain a certain degree of resilience. Without it, if
even one council member refuses to cooperate in the recovery,
the master secret key is lost. Once the threshold sharing is
performed, n− t− 1 members can fail, be bribed or coerced
and msk can still be recovered.

As outlined above, council members have to broadcast and
store certain pieces of information to hold each other account-
able. In case a member misbehaves, evidence is broadcast to
the group and each member can act accordingly after verifying
for themselves whether or not the accused member actually
misbehaved. This functionality now needs to be covered by a
(decentralised) coordinator which, in addition to performing
any necessary verification, should also hold and distribute
deposits and rewards accordingly. Therefore, a coordinator has
to fulfil the following requirements:

1) The coordinator must be able to store, and make avail-
able data from council members, thus allowing them to
execute the VSS protocol and detect misbehaviour.

2) The coordinator must be able to perform verification
given previously stored data and submitted evidence.

3) The coordinator must be able to receive, hold, and redis-
tribute assets according to the outcome of verification.

4) The coordinator must have access to a public form of
timekeeping to enforce a schedule.
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Figure 1. General system overview. (1) Initiator deploys TID smart contract
with parameters and incentives. (2) Threshold council members register
with the contract by submitting data and a deposit. (3) Council members
communicate through the smart contract with each other to generate the public
encryption key mpk and establish a threshold sharing of the secret decryption
key msk. In case of misbehaviour, members submit a dispute to the TID
contract to enforce punishments. (4) Users can obtain mpk. (5) At a codified
time, council members submit data to the contract to enable the reconstruction
of msk. (6) Users and the general public can obtain the decryption key msk.
(7) Based on their behaviour, council members receive a reward in addition
to their collateral and are released from their obligation.

While the first requirement can be fulfilled by any form of
“bulletin board”-style public storage system, the last three
requirements lead to the consideration of blockchain-based
consensus systems like Ethereum. In addition to their abil-
ity to perform verification and distribute assets accordingly,
these systems are decentralised and include a timekeeping
mechanism in the form of block height. A smart contract
can therefore act as a coordinator without becoming a single
point of failure. When selecting cryptographic primitives and
a platform for the coordinator, the amount of information that
must be stored and the difficulty of performing verification
become crucial. In Section IV, we present our selection of
components and explain our design decisions.

On the side of the council members, we merely assume that
they have access to the coordinator as a broadcast channel
and are capable of securely storing certain pieces of data
until the time for disclosure. Note that we cannot prevent
any parties from communicating privately with each other
without involving the coordinator. In practice, there should
be mechanisms in place to discourage collusion, like the
construction by Dong et al. [10].

With the general structure and requirements in mind, we can
now outline a system overview as well as the corresponding
workflow. Figure 1 shows the parties and their interactions.

Setup and registration phase: An initiator triggers and
finances the entire procedure. While instantiating the TID
contract, the initiator sets the threshold as a fraction of regis-
tered council members and provides a financial incentive for
participation. Recall from Section I that Threshold Information
Disclosure is a a time-sensitive service. As such, the contract
also enforces a schedule, not just for the reconstruction, but for
all preceding phases as well. In addition, the council members
have to register with the smart contract. The primary task of

the threshold council is to collectively “keep a secret” since a
smart contract is unable to perform this function itself.

Share distribution and dispute phase: Once authorised, the
council members perform a distributed key generation and
submit data to the contract to hold each other accountable.
If they behave correctly, their submitted data serves to prove
their honesty and protects them against false accusations.
However, if they misbehave, the same data, in conjunction with
submitted evidence, will convict them and lead to economic
punishment. Alongside this verification data, council members
may also need to send a security deposit to the contract that
can be destroyed or redistributed in case they misbehave.
Next, the threshold sharing of the key is performed. Once
the council members are registered with the contract, they can
privately exchange data through the smart contract to establish
a (t + 1, n)-sharing of the previously generated key. There
are two cases of misbehaviour that can occur during this
phase: Either a member sends incorrect information or they
do not send any information even though they are supposed
to. While these two cases are handled explicitly in protocols
like the one by Pedersen [11], in practice they reduce to just
the second case: Rather than sending incorrect information,
knowing that the recipient will immediately realise this and
trigger punishments, a mischievous member will rather not
send anything. They can also be handled in a similar way by
the coordinator: A council member that registered but failed to
broadcast the necessary data in time loses their deposit and is
disqualified from the remaining protocol. Likewise, a member
that broadcast incorrect information via the coordinator will
lose their deposit and be disqualified once another member
files a valid dispute. After the threshold sharing is established
and any misbehaving members have been disqualified via a
dispute, the data stored in the contract can be used to derive
the public encryption key mpk, which the users can then obtain
to encrypt their messages.

Reconstruction phase: Once the predefined time for recon-
struction r has come, members of the council are incentivised
to submit data necessary for the reconstruction of msk to the
contract. If at least t+1 members cooperate, the secret key can
be recovered via the previously established threshold sharing.
A member can then post msk to the coordinator and both
the users and the general public can obtain it to decrypt all
previously published messages, thus achieving a coordinated
disclosure. Lastly, the members of the threshold council can
reclaim their deposit in addition to their share of the reward
for their service.

III. RELATED WORK

Coordinating the release of information has previously been
tackled in two distinct ways, either through time-lock puzzles
or with trusted third party custodians in either centralised or
decentralised fashion. When comparing the work presented
here with previous approaches, it is helpful to consider the
number of parties that can coordinate the timed release of
information without disclosing it to each other and to how
many other parties the information is disclosed to.



Time-lock puzzles [12]–[14] bear similarities to our use
case in that they can “send information into the future”. The
receiver of a puzzle is required to do some inefficient but
feasible computation that is expected to take at least a certain
amount of time to solve it. The time it takes a recipient to
solve the puzzle and recover the decryption key can only be
estimated by the sender. Additionally, the recipient must exert
computational effort to eventually receive the encrypted in-
formation. These schemes generally constitute a “one-sender-
to-one-recipient” timed release functionality with low timing
accuracy but without a trusted third party.

Another solution to timed-release encryption makes use of
a trusted party that releases decryption keys at the right time
[12], [15]–[17]. To circumvent a single point of failure that
a trusted party poses, it is possible to securely distribute the
task to multiple parties, such that it is sufficient that some
amount of them behave honestly. Some of these works allow
for multiple recipients with more or less favourable scalability
or setup procedures, but lacking a distributed key setup they
only support a timed release for individual senders.

Benhamouda et al. [18] present a concept that allows the
Algorand blockchain itself to act as a long-term secret keeper
through a randomised sequence of anonymous committees.
They list functionalities like the one we present here as future
achievable goals of their concept. While their approach is
more general and possibly covers the TID functionality, our
approach is practically feasible on an established blockchain.
However, their “cryptographic sortition” approach to forming
committees may be transferable to our concept as a counter-
measure to Sybil attacks. It will be interesting to see the future
developments of Algorand and its capabilities.

In 2018, two projects appeared independently of each other
within the Ethereum ecosystem that combined threshold se-
cret sharing with Ethereum smart contracts: Kill Cord1 and
Kimono2. While the development of Kill Cord seems to be
ongoing, Kimino appears to be abandoned and defunct. Both
use Shamir’s secret sharing [19] to fragment a decryption key
and entrust the resulting shares to Ethereum nodes which are
then incentivised via smart contracts to only post their shares
at a certain time. In the case of Kill Cord, the creator of such a
key can delay the designated time of disclosure by “checking
in” to a smart contract, thus providing the functionality of a
deadman switch. However, in both cases, the initiator of the
protocol generates the key and acts as a trusted dealer, making
both systems “one-to-many” compared to our construction
which achieves a coordinated “many-to-many” release.

IV. BACKGROUND: BUILDING BLOCKS

When implementing the coordinator as a smart contract on
a public blockchain, it is important to minimise the incurred
operational costs. These are (1) broadcast information which
may be stored on the blockchain entirely or partially and (2)
computations performed by the smart contract, mostly during

1https://github.com/nomasters/killcord
2https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-
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optional verification. Thus, the following building blocks were
chosen according to these two metrics while still fulfilling the
requirements mentioned in Section II.

First, we need a public key encryption scheme. The obvious
candidates are the ElGamal and RSA cryptosystems. We chose
ElGamal for several reasons: It can be used over elliptic curves
thus achieving short public and secret keys; more importantly
it is easy to generate a distributed public key for it. Generation
of RSA keys involves probabilistic prime number generation
and typically requires several iterations until suitable primes
are found. While there are several works on distributed key
generation for RSA [20]–[24], they are much less efficient
than the distributed key generation protocol for ElGamal due
to Feldman [4], based on the threshold secret sharing scheme
by Shamir [19]. It is important to note that, while we actually
employ this primitive on an elliptic curve, we will use the more
common notation of multiplicative groups here. In the second
part of this section, we briefly cover the aspects of Ethereum
that are necessary for our implementation and evaluation.

A. Distributed Key Generation

Our goal is to generate an ElGamal public key for which
the corresponding secret key is (t+1, n)-secret shared among
the council members that generated it. We first briefly recall
Shamir’s threshold secret sharing scheme [19]: To share a
secret s, a random polynomial p of degree t with p(0) = s is
drawn and each party i is given p(i) as its share. Since p has
degree t, it is possible to uniquely reconstruct p, and thus find
s, given t+ 1 such shares, but t shares reveal no information
at all about s. Handling data related to these polynomials is
at the very core of the TID coordinator.

To generate a threshold shared ElGamal key, we use a
variant of the Joint-Feldman DKG [4] similar to the one by
Pedersen [11], which we also briefly recall. One important
difference between these VSS protocols in theory and our
practical implementation is the use of private communication
channels between members. In order for the TID coordinator
to efficiently arbitrate disputes, all communication between
members must flow through it. We therefore adopt from
ETHDKG [1] a symmetrical encryption scheme for the confi-
dential exchange of information between members and a non-
interactive zero-knowledge proof and verification scheme as a
part of dispute resolution. The end result is that a dispute can
be completed non-interactively in a single transaction.

We can now review the cryptographic procedures at the core
of our implementation. Let G be a cyclic group of prime order
p with generator g for which the decisional Diffie-Hellman
problem is hard. First note that it is easy to generate an
ElGamal public key where each member holds an additive
share of the secret key and all n council members have to
cooperate to reconstruct it: Each party i chooses ski ∈ Zp,
calculates pki := gski and broadcasts pki. The master public
key is then mpk :=

∏n
i=1 pki =

∏n
i=1 g

ski = g
∑n

i=1 ski

and the secret key msk :=
∑n

i=1 ski is (n, n)-secret shared
among all members. This is quite beneficial in our use case,
because it allows executing the distributed key generation and

https://github.com/nomasters/killcord
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threshold sharing simultaneously. With this construction, it
is also possible to disqualify members for misbehaviour and
simply discard their pieces of msk and mpk as outlined below.

To achieve a (t + 1, n)-threshold secret sharing of the
(not yet reconstructed) master secret key msk, each member
individually (t + 1, n)-shares its contribution ski among all
n council members using Shamir secret sharing. We will
use the term shadow for shares of ski, while reserving the
term share for shares of the master secret key msk. Since
Shamir secret sharing is additively homomorphic, i.e. adding
up shares of two secrets and then performing a reconstruction
yields the same result as reconstructing the secrets individually
and then adding them together, each member can combine
all valid shadows that they received into a single share of
the master secret key. To prevent malicious members from
sending inconsistent shadows during this phase, we employ the
following consistency checks: When members pick a random
polynomial pi = ski +

∑t
k=1 ai,kX

k, they also compute
verification values Ai,k = gai,k and broadcast {Ai,k}tk=1 in
addition to pki. They also privately send to member j the
shadow ui,j = pi(j) and treat pi(i) as their own shadow.
When member j receives a shadow ui,j from member i, they
check whether it agrees with the polynomial broadcast:

gui,j
?
= pki

t∏
k=1

Ajk

i,k = gski+
∑t

k=1 ai,kj
k

= gpi(j) (1)

If this check fails, the party reveals the invalid shadow ui,j

to the coordinator and party i is excluded if the complaint is
valid, i.e. the shadow is inconsistent with the corresponding
polynomial broadcast. Notice that the coordinator needs access
to the verification values pki and {Ai,k}tk=1 of the accused
member i in order to evaluate Equation (1) as part of a
dispute. Rather than storing these values on-chain, we adopt
the strategy of ETHDKG to store a hash of the previous
broadcast and let the accusing member resubmit it. Checking
Equation (1) ensures that all shadows ui,j lie on the same
degree t polynomial and thus reconstruction from any t + 1
shadows will yield the same value, namely ski.

Finally, each party i adds up all n shadows ui,j it has,
where n−1 shadows were received from other parties and one
comes from evaluating its own polynomial, to get a share si of
the polynomial p =

∑n
i=1 pi, for which it holds that p(0) =∑n

i=1 pi(0) =
∑n

i=1 ski = msk. Since polynomial p is of
degree t, msk can be recovered by a group of t+1 cooperating
members i1, . . . , it+1 through Lagrange interpolation:

msk =

t+1∑
k=1

∏
l ̸=k

il
il − ik

sik

 . (2)

With any fewer shares, no useful information of msk can
be derived. Fortunately, Equation (2) does not need to be
evaluated by the coordinator. Instead, a council member can
submit msk and the coordinator can verify it against the master
public key mpk.

To transmit shadows confidentially over the coordinator,
Schindler et al. [1] employ a symmetric key encryption scheme

inspired by the Diffie-Hellman key exchange [25] and ElGa-
mal encryption [26]. At the beginning of the protocol, every
council member i submits a public encryption key p̂ki = gŝki

to the coordinator while keeping ŝki to themselves. Note that
ŝki is distinct from ski, the contribution of member i to the
master secret key. Every council member i can then compute
a symmetric encryption key for another council member j as:

kij = p̂k
ŝki
j = p̂k

ŝkj
i = gŝki ŝkj . (3)

With this key, shadows can then be encrypted before being
broadcast via the coordinator.

In order to file a dispute, a council member j reveals to the
coordinator the symmetric encryption key kij used by member
i whom he accuses of sending an incorrect shadow. To prove
the correctness of this key without revealing ŝkj , Schindler
et al. [1] employ a non-interactive zero knowledge proof and
verification scheme that we adopt without any changes. For
the purpose of this paper, it suffices to know that unfounded
disputes with an incorrect decryption key are not accepted
by the coordinator. By resubmitting the broadcast message of
the accused member as part of the dispute, the coordinator
can decrypt the shadow in question, check its validity against
the verification values of the sender i with Equation (1), and
disqualify member i if the shadow is found invalid.

B. Ethereum

With the previous section covering the cryptographic pro-
cedure we employ, we now turn to the environment and
mechanisms to realise it.

We assume general familiarity with Ethereum [27] including
transactions, the gas cost mechanism, and the underlying
blockchain and peer-to-peer infrastructure. The components
of Ethereum that are most crucial for our implementation are
precompiled contracts for the elliptic curve operations that
we rely on. The term is rather misleading since they are
not actually smart contracts that were compiled and stored
at specific addresses on the blockchain, but rather optimised
implementations of certain functions external to the EVM that
are called as if they were contracts. In our case, we rely on two
precompiled contracts for addition and scalar multiplication on
the Barreto-Naehrig [28] curve as defined by EIP-1963, which
were deployed with the Byzantium hardfork in 2017. At the
end of 2019, the gas costs for both of these contracts were
substantially reduced per EIP-11084, which was deployed as
part of the Istanbul hardfork.

At the time of writing, the amount of gas that can be
spent within a single block is approximately 15 000 000, any
transaction that exceeds this limit is practically impossible
to execute. This gas limit per block can be influenced by
miners and therefore changes over time. Lastly, the gas price
is a mechanism to incentivise miners to include transactions
into blocks. While the exact amount of gas that a transaction
consumes is determined through execution, the gas price gives

3https://eips.ethereum.org/EIPS/eip-196
4https://eips.ethereum.org/EIPS/eip-1108
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Table I
NOTATION OVERVIEW.

Symbol Description

n Size of threshold council.
t Threshold. t+ 1 cooperating council members can

reconstruct the shared secret.
r Time for reconstruction of the shared secret.
⟨mpk,msk⟩ Master public and secret key. The latter is

threshold-shared among the council.
⟨pki, ski⟩ Contributions of council member i to mpk and msk.
uij , uij Decrypted and encrypted shadow from council

member i to member j.
si Share of msk held by council member i.
⟨p̂ki, ŝki⟩ Key pair of council member i used to generate

symmetric key kij .
kij Symmetric key between council members i and j,

used to encrypt shadows.
π(kij) Zero knowledge proof of correctness for kij ,

submitted as part of dispute.

miners an easy way to prioritise transactions. The higher the
gas price, the more a miner is rewarded for including it
into their block, regardless of how much gas the transaction
actually consumes during execution.

V. ETHTID

In this section, we describe ETHTID, a deployable concept
for a decentralised Threshold Information Disclosure proce-
dure as an Ethereum smart contract, based on ETHDKG [1],
[2]. We inherit the general structure from ETHDKG but
optimise (simplify) and extend the implementation for our use
case and requirements. To facilitate reading as well as the
mapping between Section IV and Section V, we provide an
overview of our notation in Table I.

The goal of ETHDKG was to establish a group BLS
signature [3], whereas we only need an ElGamal key pair for
encryption and eventual decryption. The first optimisation is
rather straightforward: We can do without the bilinearity of the
BN curve. The main benefit is that the ETHTID contract does
not need to perform any pairing checks, thus saving costs. The
reason we still use the BN curve is that it is currently the only
elliptic curve available on Ethereum. Using a simpler curve
by implementing the necessary operations ourselves would be
prohibitively expensive.

The second optimisation is more intricate but also more
significant in terms of cost savings. Gennaro et al. [5], [6]
thoroughly examined how an attacker can bias the result
of a distributed key generation by entering under the guise
of multiple identities and then selectively denouncing some
of them. The core issue is that all information necessary
to compute the result of the protocol, mpk in our case, is
known before the last opportunity to disqualify participants. In
ETHDKG [1], Schindler et al. employed a countermeasure by
Neji et al. [7] that involved an additional round of broadcasts
and an optional reconstruction in case any party did not
perform this broadcast. Instead of preventing biasing attacks
in this way, we can simply accept them. This is because
they do not impact the security of the ElGamal encryption

scheme: Assume an attacker waits and observes all pki from
honest parties, computing m̃pk =

∏
pki. The attacker may

then choose any value b and force the resulting public key
of the protocol to be mpk = m̃pk · gb. Whatever attack an
adversary can perform against this biased public key mpk can
also be performed against the unbiased public key m̃pk. Given
m̃pk and a cipher text c̃ = (c̃1, c̃2) := (gr, m̃pkr ·m), and given
b, this cipher text can be transformed to the biased public key
mpk: c = (c1, c2) := (c̃1, c̃2 · c̃b1) = (gr, m̃pkr · grb · m) =
(gr, (m̃pk · gb)r · m) which is a valid cipher text under
mpk = m̃pk · gb. Simply put, an attacker gains no advantage
from biasing the ElGamal key pair, so we can simplify our
protocol to save costs. It is crucial to note that this optimisation
is only viable because the key pair in question is meant to be
used solely for ElGamal encryption.

With these optimisations and the extension of a scheduled
key recovery, ETHTID proceeds in five phases: Setup, Reg-
istration, Share Distribution, Dispute (if needed), and Recon-
struction. We first consider an execution without misbehav-
ing parties before examining different cases of misbehaviour
and the contract’s ability to handle them. Table II gives an
overview of the functions the TID contract provides and a
brief explanation of what their execution encompasses.

A. Execution without Misbehaviour

First, the initiator deploys the ETHTID contract by sub-
mitting a corresponding transaction to the Ethereum peer-to-
peer network. As a part of the deployment transaction, the
initiator also sets the threshold t as a fraction of the council
members registered by the end of the next phase. The initiator
also sets the schedule for the subsequent phases at this point,
most crucially the time for the coordinated recovery r, via
block heights of the Ethereum blockchain. All of these settings
are write-once and cannot be changed afterwards. In practice,
the initiator would also supply the contract with a reward to
incentivise correct participation.

During the Registration phase, council members call REG-
ISTER() and submit a public key to be used for the confidential
exchange of shadows. For the sake of simplicity, we use a first-
come-first-served method here, but more intricate approaches
could be used in practice, notably to defend against Sybil
attacks. Depending on the incentive scheme, council members
would also submit a deposit as part of their registration.

With the beginning of the Share Distribution phase, regis-
tration is no longer possible. Each registered council member
i draws a random individual secret ski, embeds it into their
random individual polynomial pi = ski +

∑t
k=1 ai,kX

k of
degree t, and generates verification values as described in
Section IV-A: pki = gski , {Ai,k = gai,k}k∈{1,...,t}. Member
i encrypts the shadow uij = pi(j) via a one-time pad
based on the symmetric encryption key kij (see Equation (3))
using a cryptographic hash function H(kij ||j). This way, the
shadows uij and uji are not encrypted with the same one-time
pad but both recipients are still able to decrypt them. Each
member then calls DISTRIBUTE SHARES() to broadcast both
the encrypted shadows for other members {uij}j ̸=i as well as



Table II
INTERFACE OF THE ETHTID CONTRACT.

Function Description

REGISTER(p̂ki) Council member commit to the participation in the protocol and submit p̂ki for the encryption of shadows.
DISTRIBUTE SHARES(

{uij}j ̸=i, pki, {Ai,k}tk=1)
After the registration phase, each member i calls this function to submit encrypted shadows for all other
members and verification values for their polynomial. A hash of the arguments is stored in addition to pki.

SUBMIT DISPUTE(
{uij}j ̸=i, pki, {Ai,k}tk=1, kij , π(kij))

If a member j finds one of their received shadows to be invalid, they call this function and submit the
DISTRIBUTE SHARES() broadcast of the offending member i as well as the corresponding symmetric
encryption key and correctness proof. The contract checks the integrity of the broadcast via its stored hash,
validates the proof, decrypts the shadow, checks its validity via Equation (1) and disqualifies the offending
member if the shadow is indeed invalid. If any of these steps fails, the dispute has no effect.

GENERATE MPK() Once the dispute phase ends, this function must be called once by a member to generate the master public
key mpk from the contributions of the remaining, qualified members.

SUBMIT SECRET(ski, si) At the time of disclosure, members call this function to broadcast both ski and si.
SUBMIT MSK(msk) Once enough members broadcast their share, a member can reconstruct the master secret key and submit

it with this function. The contract checks the submission against the master public key determined in
GENERATE MPK().

the verification values from above. The smart contract stores
a hash over the encrypted shadows and verification values for
a possible dispute. In this way both the (n, n) and (t+ 1, n)-
sharing of msk, as described in Section IV-A, are performed
in a single step. Note, however, that council members who
broadcast invalid shadows can still be disqualified via the
Dispute phase that we examine closer in the next section.

With the end of the Dispute phase, all remaining council
members can combine their shadows to generate their thresh-
old share si of the master secret key msk. Council members
are meant to keep both si and their individual secret ski private
until the scheduled time for disclosure and only then broadcast
both via SUBMIT SECRET(). As soon as t+1 members do this,
anyone can compute the master secret key msk via Equation (2)
and submit it to the contract via SUBMIT MSK() to conclude
the functional part of the protocol. It is worth noting that the
smart contract performs no checks on ski or si as part of
SUBMIT SECRET(). While the former is trivial, the latter is
rather infeasible as it would require the resubmission of the
DISTRIBUTE SHARES() broadcast messages of all qualified
council members and the combination of all verification values
into those of the group polynomial. We argue that neither of
these checks are necessary in practice, since the council is
collectively under pressure to produce the master secret key
in order to earn their reward and reclaim their security deposit.

B. Misbehaviour Detection and Dispute Handling

The first general class of misbehaviour that smart contracts
handle rather easily is inactivity. If a member is expected to
call a function but fails to do so within a certain amount
of time, designated by block height in Ethereum, a smart
contract can notice the passing of a predefined deadline during
a transaction and act accordingly. There are two opportunities
for a council member to be inactive in ETHTID: during the
Share Distribution and the Reconstruction phase. If a council
member registers but fails to call DISTRIBUTE SHARES(), they
would lose their security deposit and the protocol proceeds
without them. In the case that too many council members

remain inactive in this way, the entire protocol would have
to be restarted with a new council. Due to the established
threshold sharing of msk, up to n− t−1 council members can
refrain from calling SUBMIT SECRET() without consequence,
as the remaining members are still able to complete the recon-
struction. Consequently, if one more member remains inactive
during this phase, msk cannot be recovered. In practice, this
outcome would be discouraged via an incentive scheme [8].

The more interesting case of misbehaviour revolves around
the validity of shadows broadcast via DISTRIBUTE SHARES(),
which our implementation inherits from ETHDKG [1]. Based
on the verification values that a council member must broad-
cast alongside the encrypted shadows, other members can
verify the correctness of all received and decrypted shadows
via Equation (1). If a member j detects an invalid shadow, they
should call SUBMIT DISPUTE() and resubmit the broadcast of
the accused member i along with the corresponding symmetric
encryption key kij and a zero-knowledge correctness proof.
The ETHTID contract verifies the integrity of the broadcast
via the previously stored hash, verifies the correctness proof,
decrypts the shadow in question and checks its validity via
Equation (1). If the shadow is indeed invalid, the accused
member is disqualified from the remaining protocol and their
security deposit could be destroyed or redistributed. It is worth
noting that unfounded disputes have no consequences other
than the execution costs for the accusing member. Similarly,
a single valid dispute suffices to disqualify a misbehaving
member, regardless of how many invalid shadows they may
have sent. In such a case, only the first dispute would involve
the costly verification of a shadow, whereas any subsequent
disputes against the same offending member would be recog-
nised as moot and not incur any significant cost.

VI. EVALUATION

With the functionality of the smart contract described in
the previous section, we now examine the deployment and
execution costs of the proposed construction. We performed



Table III
COST OF FUNCTIONS INDEPENDENT OF THRESHOLD t AND NUMBER OF
COUNCIL MEMBERS n. CONVERSION RATES: USD1967.67 PER ETHER,

ETH191.87× 10−9 PER GAS.

Function Gas USD

Contract Deployment 1 881 722 710.42
REGISTER() 106 407 40.17
SUBMIT SECRET() 25 196 9.51
SUBMIT MSK() 52 225 19.72

this evaluation with Ganache5 (v2.13.2) and compiled the
smart contract with solc (v0.5.17). At the time of writing,
the active Ethereum hard fork was Muir Glacier, so we set
our local development blockchain accordingly. Recall that the
Istanbul hard fork, which preceded Muir Glacier, included
gas cost reductions for the precompiled contracts that we use
for elliptic curve operations. We adapted the accompanying
Python application of ETHDKG [1] in conjunction with its
smart contract (see Appendix A). The Python application
serves to both check the smart contract operations for cor-
rectness as well as automate the gas cost evaluation.

Using the setup from above, we compiled and deployed our
contract with thresholds of t = ⌈n/2⌉−1 and t = ⌈2n/3⌉−1
before executing the protocol described in Section V with
a varying number of council members and recording the
gas costs for individual transactions. Since we observed very
regular costs, we capped our evaluation at n = 256.

While the gas costs are constant, barring any improvements
to the contract or gas price altering hard forks like Istanbul,
the monetary costs are subject to market forces and network
utilisation and, thus, fluctuate over time. For a better intuition,
we report execution costs in both gas and USD, using the
daily average exchange rates of 1st April 2021 as reported
by Etherscan6: USD1967.67 per Ether and a gas price of
ETH191.87 × 10−9. It should be noted that both of these
exchange rates have risen significantly since the end of 2020
and should therefore only be considered a snap shot. With
future improvements to Ethereum as part of the ETH2.0 road
map, transaction costs are expected to fall again.

Table III shows the execution costs of functions that are
independent of the threshold t and council size n. Recall
that SUBMIT SECRET() is merely a broadcast of two values
without any checks and SUBMIT MSK() only verifies that the
submitted master secret key is consistent with the previously
generated master public key.

Figure 2 shows the execution costs for the DIS-
TRIBUTE SHARES() broadcast per council member as well
as the execution cost of GENERATE MPK(). These costs of
DISTRIBUTE SHARES() scale in both the size of the council
n and the threshold t since the broadcast consists of n − 1
encrypted shadows and t+1 verification values. Even though
only one verification value and a hash over the broadcast
payload is persistently stored on-chain, sending all this data

5https://www.trufflesuite.com/ganache
6https://etherscan.io
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Figure 3. Execution costs of SUBMIT DISPUTE() with threshold ratios of
t = ⌈n/2⌉ − 1 and t = ⌈2n/3⌉ − 1. Conversion rates: USD1967.67 per
Ether, ETH191.87× 10−9 per gas.

with a transaction still incurs costs. The costs for GENER-
ATE MPK() are independent of the threshold since it only
involves combining the pki of all n qualified council members.

Figure 3 shows the execution costs for a valid SUB-
MIT DISPUTE() transaction. The brunt of these costs are
caused by the evaluation of Equation (1), which scales with
threshold t as it determines the degree of the sharing poly-
nomials. Since the DISTRIBUTE SHARES() broadcast of an
offending council member must be resubmitted as part of the
dispute, the council size n has a very slight influence as well.
To see this, compare the costs of n = 192, t = ⌈2n/3⌉ − 1 =
127 of 1 465 837 gas and n = 256, t = ⌈n/2⌉ − 1 = 127
of 1 504 658 gas. Since the dispute mechanism is unchanged
compared to ETHDKG [1], this evaluation incidentally also
shows the effect of the cost reductions to the elliptic curve
operations that were part of the Istanbul hard fork.

Based on these measurements, we can determine the fol-
lowing lower bounds for the deployment and execution costs,
based on the selection of n and t:

Gast=⌈n/2⌉−1(n) = 2100565 + 127100n

USDt=⌈n/2⌉−1(n) = 793.04 + 47.98n

Gast=⌈2n/3⌉−1(n) = 2101773 + 131723n

USDt=⌈2n/3⌉−1(n) = 793.50 + 49.73n.

https://www.trufflesuite.com/ganache
https://etherscan.io
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Figure 5. Relative cost savings achieved by ETHTID compared to ETHDKG.
Happy case: Everything goes as expected. Sad case: One incorrect share
distribution and dispute and only t+ 1 council members remain to complete
each protocol.

Note that these bounds represent a best case scenario without
any disputes and where each phase is completed with the
minimally necessary transactions: One contract deployment,
n calls of REGISTER() and DISTRIBUTE SHARES(), one call
of GENERATE MPK(), t+ 1 calls of SUBMIT SECRET(), and
one call of SUBMIT MSK().

To demonstrate the amount of gas saved by our adaptations,
we evaluated both ETHDKG and ETHTID on the Muir
Glacier hard fork in two secnarios: A happy case where
everything goes as planned and no council member misbe-
haves or becomes inactive, similar to the description in the
previous paragraph; and a sad case where one council member
distributes invalid shares and all but the minimally required
t + 1 council members become inactive after the distribution
of shares. It is important to note that ETHDKG lacks the
functionality necessary for a scheduled reconstruction of msk.
However, the added deployment costs should be minimal and
our measurements of Table III show that the added execution
costs are very low as well. The costs for SUBMIT MSK()
would be higher by a constant amount for ETHDKG since
an additional pairing check would be necessary but it would
still not present a significant increase to the overall costs.

Figure 4 shows a direct comparison of the total costs of
ETHDKG and ETHTID and Figure 5 illustrates the relative

gas savings. It is very clear that the additional broadcast and
optional reconstruction phases of ETHDKG for the biasing
countermeasure due to Neji et al. [7] are the main sources
for gas savings, as demonstrated by the difference between
happy and sad case. Nevertheless, even in the happy case, we
observe gas savings of 20–40%. It is also noteworthy how the
happy and sad cases for ETHTID show very similar costs.
This is due to the only difference in execution being a call of
SUBMIT DISPUTE() to disqualify a member who performed
an invalid share distribution.

VII. DISCUSSION AND FUTURE WORK

First and foremost, we can deduce from the results of Sec-
tion VI that ETHTID is indeed deployable on Ethereum and
able to execute the distributed key generation and threshold
sharing by Feldman [4] as well as a coordinated reconstruc-
tion. With up to 256 council members, all of the mandatory
transactions or optional disputes stay far below the current
block gas limit of 15 000 000, although the current market
situation makes practical executions financially challenging,
except for small council sizes. The results outlined above also
allow estimating the expected total execution costs for any
choice of council size n and certain threshold ratios t, thus
allowing a quantitative cost-benefit analysis for a particular
instantiation. A low threshold makes it difficult to prevent the
coordinated disclosure but also lowers the bar for an attacker
to obtain the master secret key through bribery or compromise
of council members. A high threshold raises this bar but
also lowers the number of members that can drop out of the
protocol through inaction or valid dispute before the secret
key is lost. The incentive scheme by Yakira et al. [8] also
reflects this trade-off with the ratio t/n and could be used in
conjunction with ETHTID with minor adjustments.

Currently, the ETHTID contract is only able to run the
TID protocol once. With some adjustments, it could be made
reusable, which would allow an amortisation of deployment
costs. However, in order to reuse prior council member
registrations, the one-time pad construction for the distri-
bution of shadows would have to be altered, as it would
currently weaken with every reuse. A more challenging avenue
for future work revolves around a “snitching” mechanism
to discourage council members from colluding by sharing
information that is meant to be kept secret. However, such
a mechanism could also entice council members to collude,
recover the secret of a particular member, and frame them. A
similar functionality, albeit without any negative consequences
for the targeted party, is a core component of ETHDKG [1]. In
order for an anti-collusion mechanism like the one by Dong
et al. [10] to be applicable, information that would have to
be shared in a collusion must be efficiently verifiable by the
smart contract.

It is important to discuss both the assumptions we base
our constructions on as well as the freedoms it provides in
its applications. Mainly, the selection of council members
is a linchpin that can render all efforts meaningless if not
done with the utmost care. Since systems like Ethereum lack



identity management that would prevent an individual from
hiding behind multiple seemingly unrelated accounts, selecting
a subset of n threshold council members where at most t
collude becomes a challenge in itself. Recently, proof-of-work-
based Sybil defences that could be applicable to our concept
have been developed [29] that are currently being refined and
improved [30]. An alternative to the first-come-first-served
selection method we used for simplicity would be a manual
preselection of council members by the initiator. For example,
if conventional notaries or respected institutions or individuals
offer their service as a temporary secret keeper for a procedure
such as the one presented here, letting the initiator select
council members might be a viable option. Similarly, a form of
“reputation and collateral” system that spans across multiple
instantiations of the TID protocol could be used to build trust
in participants over time. Users of the temporally decoupled
key pair could then judge for themselves whether or not they
are satisfied with the selection of secret keepers.

While the responsibility of selecting council members seems
daunting, the freedom that the protocol described here yields
is also noteworthy. By encrypting a random symmetric key
with the ElGamal master public key, the submissions of users
can have any size or structure but their disclosure can still
be coordinated by the threshold council holding the master
secret key shares. With a reference to the coordinating smart
contract attached to encrypted submissions, no further actions
by users is required for the scheduled disclosure. It is worth
noting here that enforcing the correctness or even usefulness
of individual submissions is not achieved by the TID contract
described here. Checking and possibly rewarding submissions
as part of an actual use case is a problem that can be tackled
now that the coordinated disclosure is practically feasible.

One aspect of disclosure that is fundamental to this kind of
procedure is that, after t council members publish their share,
all remaining n−t participants are in the advantageous position
of being able to privately reconstruct the decryption key and
thus learn the contents of all submissions before anyone else.
An attacker who wishes to prevent the reconstruction of the
master secret key and the disclosure of submissions would
have to coerce these n− t members to keep their share hidden
or to destroy it. Compared to cryptographic protocols where
only one participant enjoys this privileged role and can thus
prevent the protocol from completing by not cooperating, this
is certainly preferable in terms of resilience. The incentive
scheme by Yakira et al. [8] deals with this by rewarding or
punishing the entire council as a whole, depending on whether
or not the reconstruction completes in time. This is quite
fortunate as determining guilt or innocence on a per-member
basis is currently infeasible, due to the effort in combining all
verification values to check the validity of a submitted share. In
light of this, selecting appropriate values for n and t becomes
even more interesting.

On the topic of attackers, intertwining cryptography and
economics in this fashion presents various opportunities to ex-
pand existing attacker models that are currently rather binary,
with participants either adhering to the protocol completely or

being under the full control of an attacker. Similarly, the goal
of an attacker is usually quite singular in these models, be it
extracting a secret or distinguishing between two messages,
to name two common examples. With economic incentives
in a practical setting, both the states of participants and the
goals of an attacker become more varied. For example, council
members could follow the protocol but look to sell their secrets
and shares to an attacker to maximise their profit. Attackers
could also look to cause as much disruption as possible for a
given budget they are willing to lose. Handling such scenarios
without giving council members or users perverse incentives
is the main challenge when adapting an incentive scheme for
the protocol presented here.

Lastly, we look towards future developments in Ethereum
and possible improvements to our implementation they could
present. Currently, only the Barreto-Naehrig curve [28] is
supported via precompiled contracts in Ethereum. While its bi-
linearity property makes it quite useful for certain applications,
it would not have been the first choice for our implementation
if more suitable alternatives were available. Using other curves
via custom implementations in Solidity is technically possible,
but prohibitively expensive in execution. More precompiled
contracts for elliptic curve cryptography are currently being
discussed7, which would include curves that are more suitable
to our use case like secp256k1 or Ed25519.

VIII. CONCLUSION

In this paper, we presented ETHTID, an Ethereum smart
contract that acts as a coordinator and arbiter of conflict for a
distributed key generation, threshold sharing, and coordinated
reconstruction to facilitate Threshold Information Disclosure
in a context of mutual distrust. We demonstrated the de-
ployability of the construction experimentally and provided
measurements to estimate the overall execution costs based
on council size and threshold for disclosure. With ETHTID
providing a functionality that Ethereum does not offer in-
nately, namely the coordinated disclosure of arbitrary data
by mutually distrustful parties, new applications may become
possible, particularly when it comes to publishing records from
multiple parties independently. While our results are generally
positive, we also highlight areas where both the tools available
in Ethereum as well as their application can be improved.
Simpler, more efficient, and cheaper elliptic curves would fit
the presented application better. Augmenting the presented
smart contract to be reusable and refining the cryptographic
construction to support a “snitching” mechanism in conjunc-
tion with an incentive scheme in order to discourage premature
sharing of secrets appear to be interesting future work.
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APPENDIX

In this appendix, we briefly explain the differences between
the ETHDKG and ETHTID smart contracts.

ETHTID does not require the cryptographic constants for
the “generator switch” from g to h, so the constants H1x,
H1y, H2xi, H2x, H2yi, H2y are removed. Similarly, the
events KeyShareSubmission and KeyShareRecovery
are no longer needed and can be removed. A new event
SecretSubmission is added to simplify the reconstruction
phase. The mapping key_shares is not needed anymore
since the mapping commitments_1st_coefficient
contains the corresponding values for the generator g. Next to
master_public_key, EHTTID is also intended to store
master_secret_key. For the scheduling, the variable
T_KEY_SHARE_SUBMISSION_END is no longer needed but
two new variables are introduced to govern the reconstruction
phase: T_SKEY_RECON_BEGIN, where the block height for
the beginning of the reconstruction phase will be stored
once it is determined through the publication of mpk and
DELTA_HOLD, a hard coded constant to determine how many
blocks should pass between the publication of mpk and the
beginning of the reconstruction phase. The constructor()
is altered accordingly.

The functions register(), distribute_shares(),
and dispute() are unchanged whereas
the functions submit_key_share() and
recover_key_shares() are removed entirely.
The function submit_master_public_key() no
longer needs to receive mpk as an argument, instead
the contract can construct mpk from the mapping
commitments_1st_coefficient. Additionally,
the beginning of the reconstruction phase is set
as T_SKEY_RECON_BEGIN = block.number +
DELTA_HOLD. As part of this simplification, the pairing
check can also be dropped. Lastly, ETHTID includes
the broadcast helper function submit_secret() to
submit individual secrets and shares and the function
submit_master_secret_key() to persist msk after
checking it against mpk.
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