

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Ethyl 2-acetylhydrazono-2-phenylacetate

## Liang-Zhong Xu,\* Xu Yi, Guang-Wei An, Gong-Sheng Zhang and Chun-Fang Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: gknhs@yahoo.com.cn

Received 9 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.110; data-to-parameter ratio = 14.1.

The title compound, C12H14N2O3, was synthesized as an intermediate for the synthesis of metamitron. The benzene ring forms dihedral angles of 86.3 (2) and 10.0  $(3)^{\circ}$  with the ethyl group and the acetylimino plane, respectively. The crystal structure involves intermolecular C-H···O and N- $H \cdots O$  hydrogen bonds.

### **Related literature**

For related literature, see: Glaser et al. (1993); Javier et al. (2006); Pan & Gao (2007).



18227 measured reflections

 $R_{\rm int} = 0.023$ 

2206 independent reflections

1870 reflections with  $I > 2\sigma(I)$ 

### **Experimental**

#### Crystal data

| $C_{12}H_{14}N_2O_3$ | V = 2510.3 (8) Å <sup>3</sup>             |
|----------------------|-------------------------------------------|
| $M_r = 234.25$       | Z = 8                                     |
| Orthorhombic, Pbca   | Mo $K\alpha$ radiation                    |
| a = 9.3039 (19)  Å   | $\mu = 0.09 \text{ mm}^{-1}$              |
| b = 15.752 (3) Å     | T = 153 (2) K                             |
| c = 17.129 (3) Å     | $0.32 \times 0.22 \times 0.10 \text{ mm}$ |
|                      |                                           |

#### Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer Absorption correction: multi-scan (ABSCOR; Higashi 1995)  $T_{\min} = 0.972, \ T_{\max} = 0.991$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.037$ | 156 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.110$               | H-atom parameters constrained                              |
| S = 1.09                        | $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$  |
| 2206 reflections                | $\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                             | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------------------------------------|------|--------------|--------------|---------------------------|
| N2-H2 $A$ ···O3 <sup>i</sup><br>C9-H9 $B$ ···O3 <sup>i</sup> | 0.86 | 2.03         | 2.8737 (16)  | 165<br>124                |
|                                                              | 0.57 | 2.55         | 5.2025 (17)  | 124                       |

Symmetry code: (i) -x + 2, -y, -z + 1.

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2352).

#### References

Glaser, R., Chen, G. S. & Barnes, C. L. (1993). J. Org. Chem. 58, 7446-7455. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Javier, M., Sergio, A. & Salvador, G. (2006). Anal. Chim. Acta, 565, 255-260. Pan, Z. W. & Gao, H. X. (2007). Pesticides, 46, 166-167.

Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Takyo, Japan.

Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

# supporting information

Acta Cryst. (2008). E64, o33 [https://doi.org/10.1107/S1600536807060941]

# Ethyl 2-acetylhydrazono-2-phenylacetate

# Liang-Zhong Xu, Xu Yi, Guang-Wei An, Gong-Sheng Zhang and Chun-Fang Li

### S1. Comment

Metamitron(Trade name: Goltix) is a widely used herbicide for the control of grass and broad-leaved weeds in sugar and red beets, fodder beet, and certain strawberry varieties. The dose rates for metamitron are 0.35–4.2 kg active ingredient/ha for all crops. The currently used weed control strategy in sugarbeet involves a mixture of herbicides(phenmedipham, ethofumesate, metamitron, chloridazon *etc*) to control dicotyledonus weeds. 70% wettable powderand has been used for the control of morel goosefoot chickweed Lamium barbatum *etc*. Metamitron can be used before and after the plantingis. It can be applied to the control of the entire crop growing period with better efficacy when it cooperate with others herbicides and pesticides(Javier *et al.*, 2006). The title compound (I) was synthesized as an intermediate for the synthesis of metamitron. We report here the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Glaser *et al.*, 1993). The benzene ring plane forms dihedral angles of 86.3 (2)° and 10.0 (3)° with the ethyl plane (O1/O2/C7/C8/C9) and the acetylimino plane (O3/N1/N2/C4/C5/C6/C7/C11/C12), respectively. The crystal structure is stabilized by intermolecular C–H–O and N–H–O hydrogen bonds.

### **S2. Experimental**

Ethyl benzoylformate 12.1 g (6.8 mmol), was dissolved in 20 ml e thanol in a flask equipped with stirrer and reflux condenser. Acethydrazide 5.1 g(6.8 mmol) was slowly added from a dropping-funnel during 30 minutes while maintaining the temperature at 75–80°C for eight hours. Evaporation of portion of the solvent and cooling down the remaining solution in ice water yielded white crystals out after three hours (11.9 g, yield 78.9%) (Pan *et al.*, 2007). Single crystals suitable for X-ray measurement were obtained by recrystallization from petroleum ether at room temperature.

### S3. Refinement

All H atoms were found on difference maps. All H atoms were positioned geometrically [N—H = 0.86 Å(NH). C—H = 0.93 Å (CH), C—H = 0.97 Å (CH<sub>2</sub>). C—H = 0.96 Å (CH<sub>3</sub>).  $U_{iso}$ (H) = 1.5 x (Methyl) or  $U_{iso}$ (H) = 1.2 x (other groups)].







Figure 2

A packing diagram of the molecule of the title compound, viewed down the *a* axis. Hydrogen bonds are shown as dashed lines.

Ethyl 2-acetylhydrazono-2-phenylacetate

Crystal data

C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub>  $M_r = 234.25$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 9.3039 (19) Å b = 15.752 (3) Å c = 17.129 (3) Å V = 2510.3 (8) Å<sup>3</sup> Z = 8

Data collection

Rigaku R-AXIS Rapid IP area-detector diffractometer Radiation source: Rotating Anode Graphite monochromator  $\omega$  Oscillation scans Absorption correction: multi-scan (*ABSCOR*; Higashi 1995)  $T_{\min} = 0.972, T_{\max} = 0.991$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.037$  $wR(F^2) = 0.110$ S = 1.092206 reflections F(000) = 992  $D_x = 1.240 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2998 reflections  $\theta = 2.3-21.9^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 153 KBlock, colorless  $0.32 \times 0.22 \times 0.10 \text{ mm}$ 

18227 measured reflections 2206 independent reflections 1870 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.023$  $\theta_{max} = 25.0^\circ, \theta_{min} = 3.2^\circ$  $h = -11 \rightarrow 11$  $k = -18 \rightarrow 18$  $l = -20 \rightarrow 20$ 

156 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0576P)^2 + 0.4358P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.002$ 

### Special details

 $\Delta \rho_{\text{max}} = 0.23 \text{ e } \text{Å}^{-3}$   $\Delta \rho_{\text{min}} = -0.12 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL*, Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.030 (2)

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| 01   | 0.98377 (12) | 0.11865 (7)  | 0.70415 (6)  | 0.0676 (4)                  |  |
| O2   | 0.84719 (10) | 0.19284 (6)  | 0.62123 (6)  | 0.0504 (3)                  |  |
| O3   | 1.14302 (12) | -0.00717 (6) | 0.44126 (6)  | 0.0628 (3)                  |  |
| N1   | 1.16667 (12) | 0.17432 (7)  | 0.55542 (6)  | 0.0456 (3)                  |  |
| N2   | 1.11668 (13) | 0.09905 (7)  | 0.52543 (6)  | 0.0485 (3)                  |  |
| H2A  | 1.0369       | 0.0782       | 0.5420       | 0.058*                      |  |
| C1   | 1.26329 (16) | 0.33271 (9)  | 0.60630 (8)  | 0.0514 (4)                  |  |
| H1B  | 1.3104       | 0.3071       | 0.5646       | 0.062*                      |  |
| C2   | 1.30914 (19) | 0.41054 (10) | 0.63304 (9)  | 0.0616 (4)                  |  |
| H2B  | 1.3875       | 0.4369       | 0.6096       | 0.074*                      |  |
| C3   | 1.2401 (2)   | 0.44963 (10) | 0.69408 (10) | 0.0682 (5)                  |  |
| H3A  | 1.2713       | 0.5024       | 0.7117       | 0.082*                      |  |
| C4   | 1.1246 (2)   | 0.41045 (10) | 0.72922 (10) | 0.0675 (5)                  |  |
| H4A  | 1.0776       | 0.4368       | 0.7706       | 0.081*                      |  |
| C5   | 1.07824 (17) | 0.33195 (9)  | 0.70302 (8)  | 0.0538 (4)                  |  |
| H5A  | 1.0005       | 0.3057       | 0.7271       | 0.065*                      |  |
| C6   | 1.14696 (14) | 0.29215 (8)  | 0.64113 (7)  | 0.0416 (3)                  |  |
| C7   | 1.09697 (14) | 0.20901 (8)  | 0.61165 (7)  | 0.0405 (3)                  |  |
| C8   | 0.97033 (15) | 0.16787 (8)  | 0.65146 (7)  | 0.0422 (3)                  |  |
| C9   | 0.71683 (16) | 0.15866 (11) | 0.65747 (9)  | 0.0574 (4)                  |  |
| H9A  | 0.7085       | 0.1788       | 0.7108       | 0.069*                      |  |
| H9B  | 0.7202       | 0.0971       | 0.6582       | 0.069*                      |  |
| C10  | 0.5936 (2)   | 0.18798 (17) | 0.61093 (13) | 0.1044 (9)                  |  |
| H10A | 0.5062       | 0.1667       | 0.6334       | 0.157*                      |  |
| H10B | 0.6029       | 0.1675       | 0.5584       | 0.157*                      |  |
| H10C | 0.5914       | 0.2489       | 0.6107       | 0.157*                      |  |
| C11  | 1.19254 (16) | 0.05777 (9)  | 0.46999 (8)  | 0.0494 (4)                  |  |
| C12  | 1.33423 (19) | 0.09243 (12) | 0.44570 (12) | 0.0758 (5)                  |  |
| H12A | 1.3687       | 0.0617       | 0.4011       | 0.114*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| H12B | 1.4015 | 0.0867 | 0.4878 | 0.114* |
|------|--------|--------|--------|--------|
| H12C | 1.3240 | 0.1513 | 0.4325 | 0.114* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|-------------|-------------|--------------|--------------|-----------------|
| 01  | 0.0664 (7)  | 0.0730 (7)  | 0.0634 (6)  | -0.0111 (6)  | -0.0089 (5)  | 0.0261 (6)      |
| O2  | 0.0413 (6)  | 0.0526 (6)  | 0.0575 (6)  | 0.0010 (4)   | 0.0043 (4)   | 0.0092 (4)      |
| O3  | 0.0619 (7)  | 0.0551 (6)  | 0.0715 (7)  | -0.0139 (5)  | 0.0159 (5)   | -0.0241 (5)     |
| N1  | 0.0468 (6)  | 0.0391 (6)  | 0.0508 (6)  | -0.0053 (5)  | 0.0006 (5)   | -0.0052 (5)     |
| N2  | 0.0485 (7)  | 0.0406 (6)  | 0.0564 (7)  | -0.0102 (5)  | 0.0089 (5)   | -0.0100 (5)     |
| C1  | 0.0531 (8)  | 0.0463 (8)  | 0.0548 (8)  | -0.0067 (6)  | 0.0027 (7)   | -0.0031 (6)     |
| C2  | 0.0647 (10) | 0.0519 (9)  | 0.0682 (10) | -0.0166 (8)  | 0.0005 (8)   | -0.0013 (7)     |
| C3  | 0.0787 (12) | 0.0473 (9)  | 0.0785 (11) | -0.0158 (8)  | -0.0044 (9)  | -0.0145 (8)     |
| C4  | 0.0750 (11) | 0.0591 (9)  | 0.0683 (10) | -0.0048 (8)  | 0.0055 (8)   | -0.0229 (8)     |
| C5  | 0.0539 (9)  | 0.0521 (8)  | 0.0553 (8)  | -0.0055 (7)  | 0.0032 (7)   | -0.0076 (7)     |
| C6  | 0.0435 (7)  | 0.0372 (7)  | 0.0442 (7)  | 0.0002 (5)   | -0.0062 (5)  | -0.0004 (5)     |
| C7  | 0.0406 (7)  | 0.0372 (7)  | 0.0436 (7)  | -0.0002 (5)  | -0.0036 (5)  | 0.0007 (5)      |
| C8  | 0.0473 (8)  | 0.0376 (7)  | 0.0416 (7)  | -0.0023 (5)  | -0.0030 (6)  | -0.0020 (6)     |
| C9  | 0.0470 (9)  | 0.0641 (9)  | 0.0610 (9)  | -0.0050 (7)  | 0.0153 (7)   | -0.0018 (7)     |
| C10 | 0.0464 (11) | 0.174 (3)   | 0.0925 (14) | -0.0096 (13) | -0.0001 (10) | 0.0327 (15)     |
| C11 | 0.0495 (8)  | 0.0437 (7)  | 0.0551 (8)  | -0.0041 (6)  | 0.0056 (6)   | -0.0057 (6)     |
| C12 | 0.0617 (10) | 0.0691 (11) | 0.0964 (13) | -0.0160 (8)  | 0.0270 (9)   | -0.0234 (10)    |
|     |             |             |             |              |              |                 |

# Geometric parameters (Å, °)

| 01-C8      | 1.1964 (16) | C4—H4A    | 0.9300      |
|------------|-------------|-----------|-------------|
| O2—C8      | 1.3173 (16) | C5—C6     | 1.3878 (19) |
| О2—С9      | 1.4650 (17) | C5—H5A    | 0.9300      |
| O3—C11     | 1.2251 (16) | C6—C7     | 1.4787 (18) |
| N1—C7      | 1.2832 (17) | C7—C8     | 1.5078 (19) |
| N1—N2      | 1.3733 (15) | C9—C10    | 1.471 (2)   |
| N2—C11     | 1.3501 (18) | С9—Н9А    | 0.9700      |
| N2—H2A     | 0.8600      | С9—Н9В    | 0.9700      |
| C1—C2      | 1.377 (2)   | C10—H10A  | 0.9600      |
| C1—C6      | 1.391 (2)   | C10—H10B  | 0.9600      |
| C1—H1B     | 0.9300      | C10—H10C  | 0.9600      |
| С2—С3      | 1.373 (2)   | C11—C12   | 1.486 (2)   |
| C2—H2B     | 0.9300      | C12—H12A  | 0.9600      |
| C3—C4      | 1.378 (2)   | C12—H12B  | 0.9600      |
| С3—НЗА     | 0.9300      | C12—H12C  | 0.9600      |
| C4—C5      | 1.384 (2)   |           |             |
| C8—O2—C9   | 116.34 (11) | C6—C7—C8  | 118.16 (11) |
| C7—N1—N2   | 118.50 (11) | O1—C8—O2  | 125.51 (13) |
| C11—N2—N1  | 120.12 (11) | O1—C8—C7  | 122.55 (12) |
| C11—N2—H2A | 119.9       | O2—C8—C7  | 111.94 (11) |
| N1—N2—H2A  | 119.9       | O2—C9—C10 | 107.46 (13) |
|            |             |           |             |

| C2—C1—C6     | 120.50 (14)  | O2—C9—H9A     | 110.2        |
|--------------|--------------|---------------|--------------|
| C2—C1—H1B    | 119.8        | С10—С9—Н9А    | 110.2        |
| C6—C1—H1B    | 119.8        | O2—C9—H9B     | 110.2        |
| C3—C2—C1     | 120.52 (15)  | С10—С9—Н9В    | 110.2        |
| С3—С2—Н2В    | 119.7        | H9A—C9—H9B    | 108.5        |
| C1—C2—H2B    | 119.7        | C9—C10—H10A   | 109.5        |
| C2—C3—C4     | 119.78 (15)  | C9—C10—H10B   | 109.5        |
| С2—С3—НЗА    | 120.1        | H10A—C10—H10B | 109.5        |
| С4—С3—НЗА    | 120.1        | C9—C10—H10C   | 109.5        |
| C3—C4—C5     | 120.10 (15)  | H10A—C10—H10C | 109.5        |
| C3—C4—H4A    | 120.0        | H10B—C10—H10C | 109.5        |
| C5—C4—H4A    | 120.0        | O3—C11—N2     | 119.22 (13)  |
| C4—C5—C6     | 120.51 (15)  | O3—C11—C12    | 121.86 (13)  |
| С4—С5—Н5А    | 119.7        | N2-C11-C12    | 118.92 (13)  |
| С6—С5—Н5А    | 119.7        | C11—C12—H12A  | 109.5        |
| C5—C6—C1     | 118.59 (12)  | C11—C12—H12B  | 109.5        |
| C5—C6—C7     | 121.07 (12)  | H12A—C12—H12B | 109.5        |
| C1—C6—C7     | 120.33 (12)  | C11—C12—H12C  | 109.5        |
| N1—C7—C6     | 118.33 (12)  | H12A—C12—H12C | 109.5        |
| N1—C7—C8     | 123.46 (11)  | H12B—C12—H12C | 109.5        |
|              |              |               |              |
| C7—N1—N2—C11 | -175.43 (12) | C1—C6—C7—N1   | 2.49 (19)    |
| C6—C1—C2—C3  | -0.5 (2)     | C5—C6—C7—C8   | -0.87 (19)   |
| C1—C2—C3—C4  | 0.4 (3)      | C1—C6—C7—C8   | -179.93 (12) |
| C2—C3—C4—C5  | 0.0 (3)      | C9—O2—C8—O1   | 1.9 (2)      |
| C3—C4—C5—C6  | -0.3 (3)     | C9—O2—C8—C7   | -178.08 (11) |
| C4—C5—C6—C1  | 0.2 (2)      | N1-C7-C8-O1   | 85.17 (18)   |
| C4—C5—C6—C7  | -178.90 (14) | C6—C7—C8—O1   | -92.28 (16)  |
| C2-C1-C6-C5  | 0.2 (2)      | N1—C7—C8—O2   | -94.86 (15)  |
| C2—C1—C6—C7  | 179.29 (13)  | C6—C7—C8—O2   | 87.69 (14)   |
| N2—N1—C7—C6  | -177.00 (11) | C8—O2—C9—C10  | -174.94 (15) |
| N2—N1—C7—C8  | 5.56 (19)    | N1—N2—C11—O3  | -176.56 (13) |
| C5—C6—C7—N1  | -178.46 (12) | N1—N2—C11—C12 | 3.6 (2)      |
|              |              |               |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                           | <i>D</i> —Н | H···A | D···· $A$   | D—H···A |
|-----------------------------------|-------------|-------|-------------|---------|
| N2—H2A···O3 <sup>i</sup>          | 0.86        | 2.03  | 2.8737 (16) | 165     |
| C9—H9 <i>B</i> ···O3 <sup>i</sup> | 0.97        | 2.55  | 3.2023 (19) | 124     |

Symmetry code: (i) -x+2, -y, -z+1.