
EtinyNet: Extremely Tiny Network for TinyML
Kunran Xu1,2, Yishi Li1,2, Huawei Zhang1,2, Rui Lai1,2∗, Lin Gu3,4∗

1School of Microelectronics, Xidian University, Xi’an 710071, China
2Chongqing Innovation Research Institute of Integrated Cirtuits, Xidian University, Chongqing 400031, China.

3RIKEN AIP, Tokyo103-0027, Japan
4The University of Tokyo, Japan

aazzttcc@gmail.com, yshlee1994@outlook.com, myyzhww@gmail.com
rlai@mail.xidian.edu.cn, lin.gu@riken.jp

Abstract

There are many AI applications in high-income countries be-
cause their implementation depends on expensive GPU cards
(∼2000$) and reliable power supply (∼200W). To deploy AI
in resource-poor settings on cheaper (∼20$) and low-power
devices (<1W) , key modifications are required to adapt neu-
ral networks for Tiny machine learning (TinyML). In this pa-
per, for putting CNNs into storage limited devices, we devel-
oped efficient tiny models with only hundreds of KB param-
eters. Toward this end, we firstly design a parameter-efficient
tiny architecture by introducing dense linear depthwise block.
Then, a novel adaptive scale quantization (ASQ) method
is proposed for further quantizing tiny models in aggres-
sive low-bit while retaining the accuracy. With the optimized
architecture and 4-bit ASQ, we present a family of ultra-
lightweight networks, named EtinyNet, that achieves 57.0%
ImageNet top-1 accuracy with an extremely tiny model size
of 340KB. When deployed on an off-the-shelf commercial
microcontroller for object detection tasks, EtinyNet achieves
state-of-the-art 56.4% mAP on Pascal VOC. Furthermore, the
experimental results on Xilinx compact FPGA indicate that
EtinyNet achieves prominent low power of 620mW, about 5.6
× lower than existing FPGA designs. The code and demo are
in https://github.com/aztc/EtinyNet

Introduction
Tiny machine learning (TinyML), executing AI workloads
locally on low-cost and low-energy hardwares, has grown
rapidly in recent years. As shown in Fig 1, TinyML gener-
ally processes data near sensors with only hundreds of mil-
liwatts of power while running Convolutional Neural Net-
works (CNNs) on IoT devices, e.g., microcontroller unit
(MCU) and field programable gate array (FPGA). It’s a fresh
and attractive area different from well developed MobileML
and CloudML (Banbury et al. 2020). TinyML is believed to
make a broad of new applications possible, including smart
manufacturing, consumer electronics, precision agriculture,
wildlife conservation and many other domains.

However, TinyML presents severe challenges, as CNNs
usually require too many parameters to be deployed on IoT
devices with limited storage. For example, the state-of-the-
art STM32F746 (ARM Cortex-M7 CPU) MCU has only

∗Corresponding author.
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The model size and ImageNet top-1 accuracy of
variety CNN models for TinyML, MobileML and CloudML.
Different from MobileML and CloudML that there are abun-
dant hardware resources for running large models, TinyML
denotes the scenarios in which storage and power are strictly
limitd, generally of < 1MB and hundreds of milliwatts.

320KB on-chip SRAM and 1MB Flash, which shows a big
gap between the desired and available hardware capacity:
ResNet50 (He et al. 2016) exceeds the storage limit by 100
× while the 8-bit quantized MobileNetV2 (Sandler et al.
2018) still exceeds the storage by 2.5 ×. Moreover, trans-
mission massive model parameters between different hier-
archies of memory (e.g. from DRAM/Flash to SRAM or
from SRAM to register) also results in considerable energy
consumption. It is reported that FPGAs need 3.5W - 9W
of power to run CNNs, nearly 80% of which is caused by
transmission of model parameters (Yu et al. 2020; Guo et al.
2018; Xiao et al.; Lian et al. 2019), far exceeding the require-
ments of TinyML. The large model size of existing CNNs
brings much difficulties for TinyML.

Despite the recent efficient lightweight CNN architec-
tures (Sandler et al. 2018; Li et al. 2021; Han et al. 2020)
for MobileML as depicted in Fig 1, it is still hard for them
to address the challenges presented by TinyML. Most of

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4628

the above-mentioned methods are designed to accelerate the
inference on embedded GPUs or smartphones. Therefore,
they generally aim for reducing the Multiply-Adds (MAdds)
rather than parameters of models. For example, the state-
of-the-art MicroNet-M1 (Li et al. 2021) reaches ultra low
MAdds of 6M but has 1.8M parameters, which still strug-
gles to fit the requirement of most IoT edge devices. Re-
cently, a series of research succeed in deploying CNNs on
MCUs (Banbury et al. 2020; Lin et al. 2020; Sudharsan,
Breslin, and Ali 2021; Zim 2021; Chappa and El-Sharkawy
2020) by greatly shrinking the model size, however, at the
cost of accuracy.

In this paper, we will focus on building the CNN mod-
els with minimal parameters for high efficiency. Firstly, we
present novel dense linear depthwise block to improve the
existing CNN architectures, which reduces the information
loss by removing the non-linear function behind depthwise
convolution. It also increases the equivalent width of model
via dense connections. Building upon this block, we arrive
at the tiny model EtinyNet, achieving state-of-the-art 65.5%
ImageNet top-1 accuracy with only 0.98M parameters. To
further reduce the model size, we propose an innovative
adaptive scale quantization (ASQ) method for quantizing
tiny models in aggressive low-bit. Since there are much less
redundancy parameters in EtinyNet, directly applying exist-
ing weight quantization DoReFa (Zhou et al. 2016) scheme
would result in significant accuracy drop. By investigating
the accuracy degradation mechanism, we introduce an adap-
tive re-scaling strategy to balance the quantization error and
information entropy for retaining model accuracy. With 4-bit
ASQ, EtinyNet is further compressed to a half and reaches
an unprecedented tiny size of 340KB. More than that, this
extremely tiny model achieves up to 57.0% ImageNet top-1
accuracy, which exhibits its excellent parameter efficiency.

We have also verified the effectiveness of the proposed
method in practical TinyML applications by deploying
EtinyNet on MCUs and FPGAs. Object classification results
show that EtinyNet achieves a record ImageNet top-1 accu-
racy of 65.8% on STM32F746 MCU. On object detection
tasks, EtinyNet obtains 56.4% mAP on Pascal VOC (Ever-
ingham et al. 2009) dataset, outperforming the state-of-the-
art MCUNet (Lin et al. 2020) by remarkable 5% . When
deploying EtinyNet on FPGA, less model parameters result
in significant reduction in transmission latency and energy
consumption. As a result, we succeed in reducing the power
of FPGA to 620mW, nearly 5.6 × lower than existing de-
signs, and realizing a high throughput of 103FPS.

In summary, we make the following contributions:

1) An extremely tiny CNN architecture named EtinyNet
which is specially designed for the high parameter effi-
ciency. Compared with existing lightweight CNN mod-
els, EtinyNet obtains higher performance with far less
parameters.

2) A novel adaptive scale quantization (ASQ) method for
quantizing tiny models. ASQ method significantly alle-
viates the side effect of existing DoReFa quantization
scheme and, as a result, greatly improves the accuracy
of tiny quantized models.

3) Based on the proposed EtinyNet and ASQ quantiza-
tion method, we promote CNNs to achieve state-of-the-
art processing efficiency on kinds of IoT edge devices,
greatly advancing the TinyML community.

4) Our proposed TinyML solution, deployed on cheaper
(∼20$) and lowpower devices (<1W), is essential step
to let AI contribute to human well-being in resource-poor
settings.

Related Works
Here we revisit the related works including efficient neu-
ral network design, low-bit quantization and CNNs for
TinyML.

Efficient Neural Network Design. Efficient neural net-
work design aims to construct the CNN architecture with
lower computation, latency and energy consumption. To-
ward this end, the residual connection (He et al. 2016),
depthwise-separable convolution (Howard et al. 2017),
densely-connected block (Huang, Liu, and Weinberger
2017), and many other efficient building blocks have been
introduced into CNNs design space, which greatly com-
pressed CNN models. To further reduce the model redun-
dancy, a series of pruning methods (Han, Mao, and Dally
2016; Li et al. 2017; Tang et al. 2020; Luo, Wu, and Lin
2017) have been successively proposed to remove the con-
nectivity that are insensitive to the model performance. Re-
cently, neural architecture search (NAS) (Zoph and Le 2017;
Zoph et al. 2018; Liu, Simonyan, and Yang 2019; Tan et al.
2019; Howard et al. 2019; Han et al. 2020) becomes an
much attractive topic, which ferrets out a mount of well-
known architectures, e.g. EfficientNet (Tan and Le 2019),
MobileNetV3 (Howard et al. 2019) and TinyNet (Han et al.
2020), etc. These methods succeed in reducing the computa-
tion complexity of CNNs to < 30M MAdds and enable the
CNNs inference on mobile phone less than 10ms. Although
achieving impressive results, the above-mentioned methods
are generally devoted to reduce MAdds instead of resolving
the storage challenge in IoT edge devices.

Low-bit Quantization. CNNs are generally trained us-
ing single-precision floating point values. Low-bit quantiza-
tion represents parameters or activations using low-bit val-
ues in the inference phase to reduce model size and com-
putation complexity. Among kinds of quantization methods,
most of them focus on minimizing the difference in val-
ues (Rastegari et al. 2016) or distributions (Choi et al. 2018;
Han, Mao, and Dally 2016) between quantized weights/ac-
tivations and full-precision ones. Others (Zhang et al. 2018;
Wang et al. 2019) seek for developing learning-based quan-
tizer that is trained from data, for mixed-precision quanti-
zation. For better estimation of the gradients of rounding
function, (Bai, Wang, and Liberty 2019) proposed a regu-
larizer based quantization method while (Gong et al. 2019)
suggested a differentiable soft quantization. These methods
reduce the gradient error caused by the straight through es-
timation (STE) (Bengio, Léonard, and Courville 2013) and
thus improving the training stability. Recently, (Jin, Yang,
and Liao 2019) improved quantization performance from
the perspective of efficient training and achieved superior

4629

results. Nevertheless, above-mentioned methods mainly aim
at the quantization on standard CNN architectures of normal
sizes but pay little attention to the quantization on tiny mod-
els, which is a more challenging task due to less redundancy
parameters involved in models.

CNN for TinyML. TinyML is a fast-growing area. Re-
cently, the continuously emerging studies on TinyML al-
low deploying CNNs on MCUs. Many works are devoted
to build memory-efficient inference engines for rapidly de-
ploying CNNs on various MCUs such as TensorFlow Lite
Micro (David et al. 2020), CMSIS-NN (Lai, Suda, and
Chandra 2018), CMix-NN (Capotondi et al. 2020), and Mi-
croTVM (Chen et al. 2018). These frameworks usually inter-
pret the network graph at runtime, which will consume a lot
of SRAM and Flash. To overcome this, MicroNets (Banbury
et al. 2020) employs differentiable NAS to search for models
with low memory usage and low op count as well as reduce
the model latency of running on MCUs. MCUNet (Lin et al.
2020) is further proposed to jointly design a more efficient
CNN architecture as well as its corresponding lightweight
accelerating engine, which realizes ImageNet-scale infer-
ence on STM32F746 MCU with 63.5% Top-1 accuracy. In
this paper, we not only seek for the better processing effi-
ciency on MCUs but also investigate the feasibility of run-
ning CNNs on FPGA at milliwatts of power.

Methods
In this section, we firstly introduce the proposed parameter-
efficient CNN model named EtinyNet and then elaborate on
the adaptive scale quantization.

EtinyNet
Depthwise-Separable Convolution. To reduce the compu-
tations and parameters, MobileNet proposed the depthwise-
separable convolution made up of two operations: depthwise
convolution and pointwise convolution (1 × 1 convolution).
The depthwise convolution applies a single filter on each in-
put channel while the pointwise convolution is then used
to create a linear combination of the depthwise layer out-
puts. Let I ∈ RC×H×W and O ∈ RD×H×W respectively
represent the input feature maps and output feature maps,
depthwise-separable convolution can be computed as:

O = σ(φp(σ(φd(I)))), (1)

where φd, φp represent the depthwise convolution and point-
wise convolution while σ denotes the non-linearity activa-
tion function, e.g. ReLU. By decoupling spatial-correlation
and channel-correlation, depthwise-separable convolution
reduces the computations and parameters by about 9×. It
is now the key building block for lightweight CNN architec-
tures.

Linear Depthwise Block. It has been demonstrated
in (Sandler et al. 2018) that ReLU in bottleneck block would
prevent the flow of information and thus impair the ca-
pacity as well as expressiveness of model. We further ob-
served that the ReLU behind depthwise convolution also
harms the model accuracy. In view of this, we remove the

Figure 2: The proposed building blocks that make up the
EtinyNet. (a) is the linear depthwise block (LB) and (b) is
the dense linear depthwise block (DLB).

ReLU behind depthwise convolution and rewrite the linear
depthwise-separable convolution as:

O = σ(φp(φd(I))). (2)
Note that since φd and φp are both linear, these two functions
now can be merged into one larger linear transformation. In
other words, there exists a standard convolution φs that can
be rigorously decomposed to φd and φp, which is a specific
case of sparse coding (Lee et al. 2006). We will empirically
validate that the removal of ReLU behind depthwise convo-
lution helps to achieve higher parameter efficiency. In exist-
ing lightweight models, depthwise convolution layers gener-
ally possess about only 5% of the total parameters but con-
tribute greatly to model accuracy, which indicates depthwise
convolution is with high parameter efficiency. Taking advan-
tage of this, we introduce more depthwise convolutions into
the architecture by using:

O = σ(φd2(σ(φp(φd1(I))))). (3)
where φd2 is another depthwise-convolution. The result-
ing structure is denoted as the linear depthwise block (LB)
shown in Fig 2(a). The proposed LB of dconv-pconv-dconv
is different from the commonly used bottleneck block of
pconv-dconv-pconv in other lightweight models, for depth-
wise convolution accounting for larger proportion of model
parameters. For the width of C, the ratio of depthwsie pa-
rameter to pointwise parameters in LB is (C × 9× 2)/(C ×
C) = 18/C while that of bottleneck block is (C × 9)/(C ×
C×2) = 4.5/C. We argue that the higher ratio of depthwise
parameters is beneficial to the model parameter efficiency,
which is essential for tiny models.

Dense Connection. Restricted by the total number of pa-
rameters, the width of network can not be too large. How-

4630

layer size EtinyNet-1.0 EtinyNet-0.75
Conv 1122 3 × 3, 32, stride 2 3 × 3, 24, stride 2
Pool 562 2 × 2, max, stride 2

LB∗ 562 [32,32,32] × 4 [24,24,24] × 4

LB 282 [32,128,128] × 1 [24,96,96] × 1
[128,128,128] × 3 [96,96,96] × 3

DLB 142 [128,192,192] × 1 [96,168,168] × 1
[192,192,192] × 2 [168,168,168] × 2

DLB 72
[192,256,256] × 1 [168,192,192] × 1
[256,256,256] × 1 [192,192,192] × 1
[256,512,512] × 1 [192,384,384] × 1

12 7 × 7, globalavg, FC-1000
MAdds 117M 75M
Params. 976K 680K

Table 1: Configurations of the proposed EtinyNet-1.0 and
EtinyNet-0.75. ∗ denotes the stage of maximum memory
consumption for storing feature maps. The number in [] in-
dicates the channels of each convolution in LB or DLB.

ever, width of CNNs is important for achieving higher ac-
curacy (Zagoruyko and Komodakis 2016). As suggested
by (Wu, Shen, and Hengel 2019), the structure with shortcut
connection could be regarded as a wider network consisting
of sub-networks. Therefore, we introduce the dense connec-
tion into LB for increasing its equivalent width. We refer
the resulting block to dense linear depthwise block (DLB),
which is depicted in Fig 2(b). Note that we take the φd1 and
φp as a whole due to the removal of ReLU, and add the short-
cut connection at the ends of these two layers.

EtinyNet Architecture. By stacking the LB and DLB, we
build two architectures of EtinyNet-1.0 and EtinyNet-0.75 as
indicated in Table 1. Since dense connection requires storing
more feature maps (the first input feature maps must be pre-
served until addition) than plain layers during inference, we
only utilize DLB at the high level stages, in which the fea-
ture maps have much smaller size, for saving the runtime
memory consumption. ∗ in Table 1 indicates the stage of
maximum memory consumption for storing feature maps,
which are only 245KB and 220.5KB (quantized in 8-bit)
for EtinyNet-1.0 and EtinyNet-0.75. Consider that most IoT
devices only have < 512KB on-chip SRAM, the low run-
time memory consumption makes EtinyNet easier to be de-
ployed. It’s encouraging that EtinyNet-1.0 has only 987K
parameters while EtinyNet-0.75 acquires an ultra tiny size
of 680K parameters. In addition, we don’t use hard-swish
activation (Howard et al. 2019) and squeeze-and-excitation
block (Hu et al. 2020) since they are not efficiently supported
by storage restricted IoT devices.

Adaptive Scale Quantization
The most common weight quantization method is the
DoReFa scheme, which involves two steps of clamping and
quantization. Clamping transforms the weights to values be-
tween -1 and 1, meanwhile, quantization rounds the weights
to integers. For a weight matrix W, the clamping step can

Figure 3: The frequency histogram of model parameters in
EtinyNet-1.0. (a) denotes the distribution of pointwise con-
volution weights in layer1.4, whose shape is 32×32×1×1.
(b) denotes the distribution of pointwise convolution weights
with shape of 512×256×1×1 in higher level layer. Ori. indi-
cates the original distribution while Quan. is the distribution
after quantization. It is clear that DoReFa scheme introduces
significant quantization error.

be represented as:

Ŵ =
1

2
(

tanh(W)

max(|tanh(W)|)
+ 1), (4)

where Ŵ denotes the clamped weight. This transforma-
tion generally contracts the scale of large weights, and en-
larges the difference of small scale elements. With weights
clamped to [-1, 1], the linear quantization is further imposed
on Ŵ with the following function:

Q =
2

a
baŴe − 1. (5)

where Q denotes the quantized weights, b·e indicates round-
ing to the nearest integer and a equals 2b−1, where b stands
for the number of quantization bits.

DoReFa scheme works well when quantization bits is rel-
atively higher (8-bit or 16-bit), but it would lead to signif-
icant quantization error when extremely low bit-width is
applied, such as 4-bit. To show the quantization error in-
tuitively, we plot the frequency histogram of weights W
as well as the corresponding 4-bit quantized weights Q.
Fig 4(a) illustrates the distribution of pointwise convolution
weights in layer1.4 of EtinyNet-1.0, which contains 1024
(32× 32× 1× 1) elements. It is clear that there is a big gap
between original distribution and quantized distribution. A
large proportion of values distributed around mean are col-
lapsed to zero after quantization, resulting in significant in-
formation loss. As suggested by previous works (Jin, Yang,
and Liao 2019, 2020), this would lead to considerable accu-
racy degeneration of models. When it comes to higher level
layer (pointwise convolution in layer3.2), the parameters
have a more centralized distribution, mainly concentrating
in [-0.25, 0.25] with the standard deviation of 0.054, which
is harder to quantize. Nearly 60% of the parameters become
zero due to the limited quantization precision of only 1

15 ,
causing really low information entropy and parameter effi-
ciency. More than that, DoReFa cannot take full advantage

4631

Figure 4: The distribution of re-scaled weights of pointwise
convolution in layer3.2 (a) as well as the quantization error
and information entropy using ASQ. As λ increases from 1
to 5, weights becomes more centralized, quantization error
and information entropy decrease simultaneously.

of the dynamic range of 4-bit representation. There are only
five valid quantized values out of the total quantization levels
of 16 as shown in Fig 3, which further reduces the parameter
efficiency. We empirically find that the quantization error of
4-bit DoReFa results in severe accuracy degeneration, espe-
cially for tiny models. Since there are much less redundant
parameters of the tiny model, DoReFa scheme would sig-
nificantly cut down valid parameters, and greatly reduce the
model capacity.

To alleviate this side effect of DoReFa, we propose the
novel Adaptive Scale Quantization (ASQ) by replacing the
clamping step and quantization step with following:

W̃ =
W

λ
√
VAR(W) + ε

,

Ŵ =
tanh(W̃)

max(|tanh(W̃)|)
,

Q =
1

â
bâŴe.

(6)

where VAR(·) denotes the variance function, ε = 1e − 5
prevents dividing by zero and the parameter λ ∈ R+ re-scale
the weights to W̃. The symmetrical quantization is utilized
so that â = 2b−1 − 1.

In this scheme, λ is a variable to control the distribution
smoothness of W̃ between -1 and 1. We depict a series of
Ŵ as well as the corresponding quantization error J and
information entropy E of quantized weights Q as λ changes
among {1,2,3,4,5}. Suggested by (Qin et al. 2020), J and E
are defined as:

J = ||W −Q||2,

E = −
∑
x∈Ω

q(x)log(q(x))
(7)

where q(x) is the probability mass function of quantized
weights Q and Ω denotes its value range. As shown in
Fig 4(a), the re-scaling operation makes Ŵ distributed more
uniform, which is beneficial for quantization. As λ in-
creases, Ŵ becomes more centralized, and the quantization

error as well as information entropy decreases simultane-
ously. However, as indicated by (Qin et al. 2020), it is es-
sential to minimize the quantization error as well as maxi-
mize the information entropy for a better quantization per-
formance. This suggests that we must make a good trade-
off between these two terms by adjusting λ. Since it is dif-
ficult to adjust λ manually, we make it trainable, learning
along with other model parameters to seek the optimal solu-
tion. Compared with DoReFa scheme, the introduction of λ
makes ASQ be able to adaptively control the distribution of
Q for keeping a balance between quantization error and in-
formation entropy for each layer. With 4-bit ASQ, EtinyNet
can be further compressed by half with less accuracy drop.

Experiments
In this section, we firstly compare EtinyNet with other state-
of-the-art lightweight CNN models on ImageNet dataset to
demonstrate its extremely high parameter efficiency. Then,
the superior results of deploying EtinyNet on IoT devices are
discussed for verifying its effectiveness in practical TinyML.

Classification Results on ImageNet
Training details. ImageNet-1000 (Deng et al. 2009) is the
most convincing benchmark which consists of 1,281,167
images belonging 1000 categories. We conduct extensive ex-
periments on ImageNet using the MXNet (Chen et al. 2015)
toolbox. During training, we use the standard SGD opti-
mizer to train our models with both decay and momentum of
0.9 and the weight decay is 1e−4. We use the cosine learning
schedule with an initial learning rate of 0.1 and the weight
initialization introduced by (He et al. 2015). The batch size
is set to 1024 and 8 GPUs are used for training. We train
all the models for 300 epochs. The input image is randomly
cropped to 224 × 224 and randomly flipped horizontally,
and is kept as 8 bit signed integer with no standardization ap-
plied. The standard data augmentations provided by MXNet
are used and there is no other regularization, e.g. mixup, la-
bel smoothing, in the training.

When training quantized models using 4-bit ASQ, we
adopt the full-precision models with clamped weights as ini-
tial points. All convolution layers and fully-connected layers
are quantized. The initial learning rate and training epochs
are adjusted to 0.01 and 40. We initialize λ as 2. Other set-
tings are the same as that of training full-precision models.

Accuracy. Table 2 lists the results of the most well-known
lightweight CNN architectures, including MobileNet series,
ShuffleNet series, and EfficientNet, etc, which have weights
between 1M and 2M, or an equivalent full-precision model
size of 4MB to 8MB. Among all these results, our EtinyNet-
1.0 achieves the highest accuracy, reaching 65.5% top-1 ac-
curacy and 86.2% top-5 accuracy. It outperforms the cur-
rent best result achieved by MobileNeXt-0.35 with signifi-
cant 0.8%, and is 1.1% higher than the second highest re-
sult obtained by MnasNet-A1-0.35. EtinyNet-0.75, a more
compact version, obtains a relatively lower top-1 accuracy
of 62.2%. However, it is still superior to most of the other
models only except for MobileNeXt-0.35 and MnasNet-A1-
0.35. Furthermore, it’s worth noting that even though the ca-
pacity of EtinyNet is especially small, the 4-bit quantized

4632

Model Params. (MB) MAdds (M) Top-1 Acc. (%) Top-5 Acc. (%)

MobileNeXt-0.35 (Daquan et al. 2020) 7.2 80 64.7 -
MnasNet-A1-0.35 (Tan et al. 2019) 6.8 63 64.4 85.1
MobileNetV2-0.35 (Sandler et al. 2018) 6.8 59 60.3 82.9
MicroNet-M3 (Li et al. 2021) 6.4 20 61.3 82.9
MobileNetV3-Small-0.35 (Howard et al. 2019) 6.4 23 58.0 -
ShuffleNetV2-0.5 (Ma et al. 2018) 5.6 41 61.1 82.6
MicroNet-M2 (Li et al. 2021) 5.6 11 58.2 80.1
MobileNetV2-0.15 (Sandler et al. 2018) 5.6 39 55.1 -
MobileNetV1-0.5 (Howard et al. 2017) 5.2 110 61.7 83.6
EfficientNet-B (Tan and Le 2019) 5.2 24 56.7 79.8
EtinyNet-1.0 3.92 117 65.5 86.2
EtinyNet-0.75 2.72 75 62.2 84.0
EtinyNet-1.0 (4-bit) 0.49 117 60.7 82.8
EtinyNet-0.75 (4-bit) 0.34 75 57.0 80.2

Table 2: Comparison of state-of-the-art small networks over classification accuracy, the model size and MAdds on ImageNet-
1000 dataset. “-” mean no reported results available.

version can further shrink model size while maintain com-
parable accuracy, resulting 60.7% for EtinyNet-1.0 and 57.0
for EtinyNet-0.75.

Parameter Efficiency. Obviously, the proposed EtinyNet
series have the smallest model size of all the architectures
listed in Table 2. Even the largest model EtinyNet-1.0 is
just 3.92MB (0.98M parameters), about 54% the size of
MobileNeXt-0.35. With the higher accuracy, EtinyNet-0.75
only has half the parameters of MobileNetV1-0.5, which
further demonstrates the excellent parameter efficiency of
EtinyNet. Moreover, by applying 4-bit ASQ, the size of the
EtinyNet-0.75 can be further reduced to just 340KB, about
one-fifteenth the size of EfficientNet-B. To the best of our
knowledge, this is the minimal CNN model that achieves >
55% ImageNet top-1 accuracy, bringing the ImageNet-scale
CNN models to an unprecedented tiny size. The high pa-
rameter efficiency of our EtinyNet introduces two obvious
benefits: 1) enabling better accuracy of running CNNs on
IoT devices; 2) reducing the power consumption caused by
the transmission of mode parameters. In the following sec-
tion, we will experimentally verify these two benefits on IoT
devices.

Effectiveness of the proposed building blocks. To ver-
ify the effectiveness of the proposed LB and DLB, we sub-
stitute all the blocks in EtinyNet with the widely applied
inverted bottleneck block that is used in MobileNetV2 and
EfficientNet, etc, while keeping a similar number of param-
eters. Experimental results show that it would bring about
up to 2.4% accuracy drop, which indicates that the proposed
LB and DLB does have an edge over existing efficient block
structurally. In addition, we find that adding non-linear acti-
vations (ReLU) between depthwise and pointwise convolu-
tional layer decreases the performance by nearly 0.8% com-
pared to the setting of removing ReLU. This indicates that
linear depthwise is also essential for lightweight networks
with high parameter efficiency.

Effectiveness of ASQ. We further demonstrate that the
proposed ASQ is more effective than DoReFa scheme for

Methods EtinyNet-1.0 EtinyNet-0.75
ASQ 60.7% 57.0%
DoReFa 55.1% 45.3%

Table 3: Accuracy of 4-bit quantized EtinyNet on ImageNet-
1000 using ASQ and DoReFa.

Methods STM32F412 STM32F746
(256KB 1MB) (320KB 1MB)

Rusci et al. 60.2% -
MCUNet 62.2% 63.5%
EtinyNet-1.0 64.7% 65.8%

Table 4: Comparison to MCU designs on ImageNet-1000 for
object classification. EtinyNet obtains the record accuracy of
64.7% and 65.8% on STM32F412 and STM32F746.

quantization on tiny models by comparing the top-1 ac-
curacy of 4-bit quantized EtinyNet on ImageNet-1000. As
shown in Table 3, the accuracy gap between two methods on
EtinyNet-1.0 is 5.6%. When applied on the smaller model
EtinyNet-0.75, the accuracy gap is even widened to 11.7%,
which suggests that DoReFa degrades seriously as model
size decreases while the proposed ASQ is more suitable for
tiny models.

Results on IoT devices
Comparisons to MCU-based designs. The current main-
stream solution for TinyML is to run CNNs on MCUs,
as suggested by (Lin et al. 2020; Sudharsan, Breslin, and
Ali 2021; Banbury et al. 2020). Following these works,
we deploy EtinyNet-1.0 for ImageNet classification on
STM32F412 (ARM Cortex-M4 CPU with 256KB SRAM
and 1MB Flash) and STM32F746 MCUs. We quantize
EtinyNet-1.0 using 8-bit for both weights and activations,
and the size of input image is set as 224 and 256 on

4633

Methods MAdds Params. Peak mAPSRAM
CMSIS 34M 0.87MB 519KB 31.6%
MCUNet 168M 1.2MB 466KB 51.4%
EtinyNet-SSD 164M 0.59MB 395KB 56.4%

Table 5: Comparisons to MCU designs on Pascal VOC for
object detection. EtinyNet-SSD improves the detection mAP
by 5% on STM32H743. We are able to fit a model with much
less MAdds, parameters and peak SRAM consumption.

STM32F412 and STM32F746. The results are shown in Ta-
ble 4. EtinyNet outperforms the state-of-the-art MCUNet
and Rusci et al. (Rusci, Capotondi, and Benini 2020) with a
big margin on both MCUs, reaching the record accuracy of
64.7% and 65.8%, respectively. The superior performances
on MCUs suggest the availability of the proposed EtinyNet
architecture in practical TinyML.

To show the generality of EtinyNet architecture across
different tasks, we also apply the EtinyNet to the task of ob-
ject detection. We take the EtinyNet-1.0 as backbone to ex-
tract features and build the detection layers as well as prior
boxes presented by SSD (Liu et al. 2016) on the head of
EtinyNet-1.0. The resulting network is denoted as EtinyNet-
SSD. We adopt 256 × 256 input images as input for bet-
ter detection of small objects, and use 8-bit linear quantiza-
tion for weights and activations. The object detection perfor-
mance of our EtinyNet-SSD and other state-of-the-art meth-
ods are benchmarked on Pascal VOC (Everingham et al.
2009) dataset using STM32H743 (ARM Cortex-M7 CPU
with 512KB SRAM and 2MB Flash) MCU. As shown in Ta-
ble 5, EtinyNet-SSD achieves highest mAP of 56.4% with
less MAdds and peak SRAM consumption, and only half
the parameters of MCUNet, showing its prominent parame-
ter efficiency. Less storage consumption and higher perfor-
mance of EtinyNet-SSD makes AIoT applications more ac-
cessible.

Comparisons to FPGA-based designs. FPGAs are fre-
quently utilized for accelerating CNNs inference thanks to
its parallel computing capability. However, existing FPGA
designs (Lian et al. 2019; Xiao et al.; Guo et al. 2018; Yu
et al. 2020) generally consume several watts of power due to
the large size of CNN models, making it difficult to be ap-
plied to the TinyML scenarios that require very low energy
consumption. We performe experiments on the Xilinx com-
pact FPGA Artix7 XC7A100T to demonstrate the feasibil-
ity of achieving milliwatts of power for running tiny model.
Since there is only 607.5KB on-chip storage in XC7A100T,
we deploy the smallest model EtinyNet-0.75 (4-bit) with
8-bit quantization for activations. Table 6 exhibits our re-
sults as well as the comparisons to AngelEye (Guo et al.
2018) and SSA (Shaydyuk and John 2020). Ii is clear that
our design achieves the lowest power of only 0.62W, about
5.6 × lower than AngelEye. Different from other designs
using off-chip DRAM to cache feature maps and model
parameters, we are able to complete all computation with
only on-chip SRAM, profited from the compactness of our

Component AngelEye SSA Ours

Device ZYNQ ZYNQ Artix7
XCZ7020 XCZU7EV XC7A100T

On-chip RAM 385 1483 576used (KB)
DRAM used yes yes none
ImageNet 67.72 - 56.0accuracy (%)
Model 138 3.5 0.34params. (MB)
Processing 354 10.1 9.7time (ms)
Power (W) 3.5 6.2 0.62
Efficiency 0.0023 1.6 17.1(Frames/s/mJ)

Table 6: Comparisons to other state-of-the-art FPGA de-
signs. By deploying the smallest EtinyNet-0.75 (4bit), our
FPGA design achieves competitive throughput and reduc-
tion of power by 5.6 ×.

tiny model. As a result, we save much energy consump-
tion caused by off-chip memory access. As far as we know,
we are the first to achieve milliwatts of power with > 55%
ImageNet top-1 accuracy on FPGAs. More than that, less
parameters reduce the latency of data movement and thus
achieving higher throughput of 103FPS. In summary, de-
ploying the proposed EtinyNet on FPGA achieves roughly
10 × processing efficiency gains (17.1 Frames/s/mJ v.s.
1.6 Frames/s/mJ), which provides a powerful solution for
TinyML.

Conclusion
In this paper, we aim at developing the efficient tiny model
with only hundreds of KB parameters to meet very limited
storage and power requirements of TinyML scenarios. To-
ward this end, we firstly design a parameter-efficient tiny
architecture by introducing dense linear depthwise block.
Then, a novel adaptive scale quantization (ASQ) method is
proposed for further quantizing tiny models in aggressive
low-bit while retaining the accuracy. With the optimized ar-
chitecture and 4-bit ASQ, we achieve a family of networks,
named EtinyNet, that yields 57.0% ImageNet top-1 accu-
racy with an unprecedented model size of only 340KB. We
empirically demonstrate that the it can achieve much higher
processing efficiency on kinds of IoT devices with the pro-
posed EtinyNet due to its real compactness. The proposed
extremely tiny models make it possible to run CNNs in a
single chip, showing the potential for designing small foot-
print ASIC CNNs accelerator of more higher efficiency.

Acknowledgements
This work was supported by National Key R&D Pro-
gram of China(No.2018YF70202800), the Natural Sci-
ence Foundation of China (No.61674120), JST, ACT-
X (No.JPMJAX190D), Japan and JST Moonshot R&D

4634

(No.JPMJMS2011), Fundamental Research Funds for Cen-
tral Universities and Innovation Fund of Xidian University.

References
Bai, Y.; Wang, Y.-X.; and Liberty, E. 2019. ProxQuant:
Quantized Neural Networks via Proximal Operators. ArXiv,
abs/1810.00861.
Banbury, C. R.; Zhou, C.; Fedorov, I.; Navarro, R. M.;
Thakker, U.; Gope, D.; Reddi, V. J.; Mattina, M.; and What-
mough, P. N. 2020. MicroNets: Neural Network Architec-
tures for Deploying TinyML Applications on Commodity
Microcontrollers. CoRR, abs/2010.11267.
Bengio, Y.; Léonard, N.; and Courville, A. C. 2013. Estimat-
ing or Propagating Gradients Through Stochastic Neurons
for Conditional Computation. ArXiv, abs/1308.3432.
Capotondi, A.; Rusci, M.; Fariselli, M.; and Benini, L.
2020. CMix-NN: Mixed Low-Precision CNN Library for
Memory-Constrained Edge Devices. IEEE Trans. Circuits
Syst. II Express Briefs, 67-II(5): 871–875.
Chappa, R. T. N.; and El-Sharkawy, M. 2020. Deployment
of SE-SqueezeNext on NXP BlueBox 2.0 and NXP i.MX
RT1060 MCU. In 2020 IEEE Midwest Industry Conference
(MIC), volume 1, 1–4.
Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao,
T.; Xu, B.; Zhang, C.; and Zhang, Z. 2015. MXNet: A Flex-
ible and Efficient Machine Learning Library for Heteroge-
neous Distributed Systems. CoRR, abs/1512.01274.
Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E. Q.; Shen,
H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; Guestrin, C.; and
Krishnamurthy, A. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In OSDI.
Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P. I.; Srini-
vasan, V.; and Gopalakrishnan, K. 2018. PACT: Parame-
terized Clipping Activation for Quantized Neural Networks.
CoRR, abs/1805.06085.
Daquan, Z.; Hou, Q.; Chen, Y.; Feng, J.; and Yan, S. 2020.
Rethinking Bottleneck Structure for Efficient Mobile Net-
work Design. ArXiv, abs/2007.02269.
David, R.; Duke, J.; Jain, A.; Reddi, V. J.; Jeffries, N.; Li,
J.; Kreeger, N.; Nappier, I.; Natraj, M.; Regev, S.; Rhodes,
R.; Wang, T.; and Warden, P. 2020. TensorFlow Lite Micro:
Embedded Machine Learning on TinyML Systems. CoRR,
abs/2010.08678.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A large-scale hierarchical image
database. In CVPR.
Everingham, M.; Gool, L.; Williams, C. K. I.; Winn, J.;
and Zisserman, A. 2009. The Pascal Visual Object Classes
(VOC) Challenge. International Journal of Computer Vi-
sion, 88: 303–338.
Gong, R.; Liu, X.; Jiang, S.; Li, T.; Hu, P.; Lin, J.; Yu, F.;
and Yan, J. 2019. Differentiable Soft Quantization: Bridg-
ing Full-Precision and Low-Bit Neural Networks. 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), 4851–4860.

Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.;
Wang, Y.; and Yang, H. 2018. Angel-Eye: A Complete De-
sign Flow for Mapping CNN Onto Embedded FPGA. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 37(1): 35–
47.
Han, K.; Wang, Y.; Zhang, Q.; Zhang, W.; Xu, C.; and
Zhang, T. 2020. Model Rubik’s Cube: Twisting Resolution,
Depth and Width for TinyNets. ArXiv, abs/2010.14819.
Han, S.; Mao, H.; and Dally, W. 2016. Deep Compression:
Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. arXiv: Computer Vision
and Pattern Recognition.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving
Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. 2015 IEEE International Con-
ference on Computer Vision (ICCV), 1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 770–
778.
Howard, A. G.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen,
B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.;
Le, Q. V.; and Adam, H. 2019. Searching for MobileNetV3.
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 1314–1324.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bileNets: Efficient Convolutional Neural Networks for Mo-
bile Vision Applications. ArXiv, abs/1704.04861.
Hu, J.; Shen, L.; Albanie, S.; Sun, G.; and Wu, E. 2020.
Squeeze-and-Excitation Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42: 2011–2023.
Huang, G.; Liu, Z.; and Weinberger, K. Q. 2017. Densely
Connected Convolutional Networks. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2261–2269.
Jin, Q.; Yang, L.; and Liao, Z. A. 2019. Towards Effi-
cient Training for Neural Network Quantization. ArXiv,
abs/1912.10207.
Jin, Q.; Yang, L.; and Liao, Z. A. 2020. AdaBits: Neu-
ral Network Quantization With Adaptive Bit-Widths. 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2143–2153.
Lai, L.; Suda, N.; and Chandra, V. 2018. CMSIS-NN: Ef-
ficient Neural Network Kernels for Arm Cortex-M CPUs.
CoRR, abs/1801.06601.
Lee, H.; Battle, A.; Raina, R.; and Ng, A. 2006. Efficient
sparse coding algorithms. In NIPS.
Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf,
H. 2017. Pruning Filters for Efficient ConvNets. ArXiv,
abs/1608.08710.
Li, Y.; Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Yuan, L.; Liu,
Z.; Zhang, L.; and Vasconcelos, N. 2021. MicroNet: Improv-
ing Image Recognition with Extremely Low FLOPs. ArXiv,
abs/2108.05894.

4635

Lian, X.; Liu, Z.; Song, Z.; Dai, J.; Zhou, W.; and Ji, X.
2019. High-Performance FPGA-Based CNN Accelerator
With Block-Floating-Point Arithmetic. IEEE Trans. Very
Large Scale Integr. Syst., 27(8): 1874–1885.
Lin, J.; Chen, W.; Lin, Y.; Cohn, J.; Gan, C.; and Han, S.
2020. MCUNet: Tiny Deep Learning on IoT Devices. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; and
Lin, H., eds., Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.
Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differ-
entiable Architecture Search. ArXiv, abs/1806.09055.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S. E.;
Fu, C.-Y.; and Berg, A. 2016. SSD: Single Shot MultiBox
Detector. In ECCV.
Luo, J.-H.; Wu, J.; and Lin, W. 2017. ThiNet: A Filter
Level Pruning Method for Deep Neural Network Compres-
sion. 2017 IEEE International Conference on Computer Vi-
sion (ICCV), 5068–5076.
Ma, N.; Zhang, X.; Zheng, H.; and Sun, J. 2018. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture De-
sign. ArXiv, abs/1807.11164.
Qin, H.; Gong, R.; Liu, X.; Shen, M.; Wei, Z.; Yu, F.; and
Song, J. 2020. Forward and Backward Information Reten-
tion for Accurate Binary Neural Networks. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2247–2256.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks. In ECCV.
Rusci, M.; Capotondi, A.; and Benini, L. 2020. Memory-
Driven Mixed Low Precision Quantization For Enabling
Deep Network Inference On Microcontrollers. ArXiv,
abs/1905.13082.
Sandler, M.; Howard, A. G.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 4510–4520.
Shaydyuk, N. K.; and John, E. 2020. FPGA Implementation
of MobileNetV2 CNN Model Using Semi-Streaming Archi-
tecture for Low Power Inference Applications. 2020 IEEE
Intl Conf on Parallel & Distributed Processing with Appli-
cations, Big Data & Cloud Computing, Sustainable Com-
puting & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), 160–167.
Sudharsan, B.; Breslin, J. G.; and Ali, M. I. 2021. ML-MCU:
A Framework to Train ML Classifiers on MCU-based IoT
Edge Devices. IEEE Internet of Things Journal, 1–1.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; and Le,
Q. V. 2019. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2815–2823.
Tan, M.; and Le, Q. V. 2019. EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks. ArXiv,
abs/1905.11946.

Tang, Y.; You, S.; Xu, C.; Han, J.; Qian, C.; Shi, B.; Xu, C.;
and Zhang, C. 2020. Reborn Filters: Pruning Convolutional
Neural Networks with Limited Data. In AAAI.
Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. 2019. HAQ:
Hardware-Aware Automated Quantization With Mixed Pre-
cision. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 8604–8612.
Wu, Z.; Shen, C.; and Hengel, A. V. 2019. Wider or Deeper:
Revisiting the ResNet Model for Visual Recognition. Pat-
tern Recognit., 90: 119–133.
Xiao, Q.; Liang, Y.; Lu, L.; Yan, S.; and Tai, Y. ???? Explor-
ing Heterogeneous Algorithms for Accelerating Deep Con-
volutional Neural Networks on FPGAs. In Proceedings of
the 54th Annual Design Automation Conference, Austin, TX,
USA, June 18-22, 2017, 62:1–62:6. ACM.
Yu, Y.; Wu, C.; Zhao, T.; Wang, K.; and He, L. 2020. OPU:
An FPGA-Based Overlay Processor for Convolutional Neu-
ral Networks. IEEE Trans. Very Large Scale Integr. Syst.,
28(1): 35–47.
Zagoruyko, S.; and Komodakis, N. 2016. Wide Residual
Networks. ArXiv, abs/1605.07146.
Zhang, D.; Yang, J.; Ye, D.; and Hua, G. 2018. LQ-Nets:
Learned Quantization for Highly Accurate and Compact
Deep Neural Networks. ArXiv, abs/1807.10029.
Zhou, S.; Ni, Z.; Zhou, X.; Wen, H.; Wu, Y.; and Zou, Y.
2016. DoReFa-Net: Training Low Bitwidth Convolutional
Neural Networks with Low Bitwidth Gradients. CoRR,
abs/1606.06160.
Zim, M. Z. H. 2021. TinyML: Analysis of Xtensa LX6
microprocessor for Neural Network Applications by ESP32
SoC. CoRR, abs/2106.10652.
Zoph, B.; and Le, Q. V. 2017. Neural Architecture Search
with Reinforcement Learning. ArXiv, abs/1611.01578.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018.
Learning Transferable Architectures for Scalable Image
Recognition. 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 8697–8710.

4636

