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Abstract: Adolescent idiopathic scoliosis is one of the most common spinal deformities, yet its cause is unknown. Various theories
look to biomechanical, neuromuscular, genetic, and environmental origins, yet our understanding of scoliosis etiology is still limited.
Determining the cause of a disease is crucial to developing the most effective treatment. Associations made with scoliosis do not
necessarily point to causality, and it is difficult to determine whether said associations are primary (playing a role in development) or
secondary (develop as a result of scoliosis). Scoliosis is a complex condition with highly variable expression, even among family
members, and likely has many causes. These causes could be similar among homogenous groups of AIS patients, or they could be
individual. Here, we review the most prevalent theories of scoliosis etiology and recent trends in research.
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1. WHAT IS SCOLIOSIS?

Scoliosis is a 3-dimensional deformity of the spine and trunk, which affects millions of people worldwide. While
20% of scoliosis cases can be attributed to neuromuscular, syndromic, or congenital disorders, as much as 80% of all
scoliosis is termed “idiopathic” or of unknown etiology. Clinical and experimental documentation regarding the theories
of etiology support the trend of many possible causes of idiopathic scoliosis. In this review, we will examine current
and past theories of scoliosis etiology.

2. PREVALENCE OF AIS

According to current literature, the prevalence rate of AIS ranges from 0.47-5.2% [1], but it is commonly accepted
as 2-3% of the general population. The prevalence and severity of scoliosis is higher in girls than in boys, with the
female-to-male ratio rising from 1.4:1 in mild curves (10° to 20°) up to 7.2:1 in more severe curves (>40°) [1].

Several  hypotheses  have  tried  to  account  for  this  difference  in  sex  distribution.  One  of  the  most  plausible  put
forward by Schultz [2] describes a mechanical model in which it is suggested that if the progression of a lateral curve is
thought of as the buckling of a spinal column then the likelihood for progression to occur is proportional to the height of
the column and inversely proportional to its thickness. Put simply, tall slim spines are more likely to buckle than shorter
thicker  ones.  Schultz  confirmed  this  theory  experimentally  and  demonstrated  that  girls’  spines  were  indeed  more
slender with narrower vertebral bodies than boys. However, whether this is the actual cause of the increased incidence
of scoliosis in girls is a debatable issue. Studies have found that the prevalence of scoliosis is also higher in adolescents
who  participate  in  certain  sports  activities,  such  as  dance,  ballet,  swimming,  tennis,  table  tennis,  hurling,  javelin,
volleyball,  gymnastics,  and rhythmic gymnastics [3 -  18].  Despite these findings,  there is  no evidence to suggest  a
causal  relationship  between  scoliosis  and  any  sports  activity.  Research  in  this  area  is  limited  as  most  studies  are
retrospective case-controls, which have a bias in retrieved information [15].
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3. RISK FACTORS

Czaprowski et al. [19] found that joint hypermobility occurs more frequently in children with idiopathic scoliosis
than  in  healthy  sex  and  age-matched  controls.  Others  have  speculated  that  joint  hypermobility  is  a  risk  factor  for
idiopathic scoliosis as it may predispose to spinal instability [20]. In a similar vein, Tanchev et al. [10] found a 10-fold
higher prevalence of scoliosis in rhythmic gymnasts and suggested that there may be a “dangerous triad” of generalized
joint  laxity,  delayed  maturity,  and  asymmetric  spinal  loading  which  plays  an  important  etiologic  role  in  the
development of scoliosis and other spinal deformities.  One could hypothesize that because flexibility is  an asset  in
certain sports like gymnastics, children who are hypermobile could be drawn to the activity, as they would excel at it,
and these children may be more prone to developing scoliosis [5]. It is possible that the repetitive physical demands of
sports, particularly movements that place asymmetrical loads on the spine and place the thoracic spine in a lordotic
position, could accelerate an existing scoliosis or disrupt spinal mechanics in a child with a pre-existing disposition to
developing scoliosis.

In addition to joint laxity, growth-related factors have also been suggested to contribute to the development of AIS.
Willner [21, 22] put forward the theory in 1974 that girls with adolescent idiopathic scoliosis were taller than normal
controls  and  that  growth  in  the  scoliosis  group  occurred  faster  in  the  pre-teen  years  than  in  later  years.  Other
investigators, however, in subsequent studies did not find any abnormal growth pattern, velocity or development in
patients with idiopathic scoliosis [23, 24].

Archer and Dickson [25] later reported that female scoliosis patients (with a ≥15° curve) were taller than girls with
smaller curves. The authors suggested that these height differences could be genetic, but it could also be the flattening
of the thoracic kyphosis  that  contributes to the discrepancy [25].  In 2014,  Hershkovich et  al.  [26] found a positive
association between body height and the risk for spinal deformities by severity (spinal deformities included idiopathic
scoliosis  and kyphosis).  Though growth may or  may not  play a  role  in  the  etiology of  AIS,  it  certainly  affects  the
pathology. A 2005 study by Ylikoski [27] found that a growth velocity of more than 2 cm per year is associated with
curve progression.

In females, the timing of the peak growth rate is strongly correlated to menarche [28]. Studies have shown that
delayed puberty and late age at menarche are associated with higher prevalence of AIS [29 - 31]. Grivas et al. [32]
reviewed the epidemiological data available on AIS prevalence rates worldwide and the average age of menarche (in
normal subjects) in those locations. In that study, researchers found that menarche typically occurs later in girls that live
in northern latitudes, which corresponds to higher prevalence rates of AIS. Grivas et al. [32] hypothesize that geography
may  be  related  to  AIS  pathogenesis,  with  latitude  influencing  sunlight,  melatonin  secretion  (a  hormone  frequently
linked to AIS), and the age at which menses occurs.

While menarcheal status is an important consideration for clinicians treating scoliosis, the weight of this one factor
as a measurable risk factor for AIS and its potential role in etiology is convoluted by the fact that age at menarche can
vary significantly within a population, and is influenced by a multitude of genetic, socioeconomic, environmental and
lifestyle factors [33].

One such factor is body mass index (BMI). Several studies have linked relatively high BMI with earlier menarche,
and low BMI with delayed menarche [34 - 36]. Interestingly, low BMI has also been found to be associated with AIS
[15, 26, 37], as well as abnormal levels of leptin - a hormone known to play a role in fat regulation and the onset of
puberty [37 - 39].

Perhaps a more apparent risk factor for scoliosis is family history. In 2012, Grauers et al. [40] estimated that the
heritability of scoliosis is about 38%, using data from the Swedish Twin Registry. Watanabe et al. [15] found that the
odds ratio for developing scoliosis was 1.5 times higher for participants whose mothers had scoliosis while Tang et al.
[41] found that the sibling recurrence risk of scoliosis in a Chinese cohort of female AIS patients was 18%. Grauers et
al. [42] later found that patients who had a family history of scoliosis were at a slightly higher risk of having curves
requiring treatment, compared to patients who did not have a family member with scoliosis.

4. ANATOMICAL CHANGES OCCURRING IN SCOLIOSIS

Many  etiological  theories  of  scoliosis  look  to  biomechanical  origins,  particularly  concerning  the  relationship
between  the  sagittal  and  coronal  planes  of  the  spine.  However,  before  delving  into  this  topic  it  is  important  to
understand the anatomical changes occurring in scoliosis. Scoliosis is a complex deformity in that it not only involves a
lateral curvature in the coronal plane, but occurring simultaneously is a rotational deformity of the vertebral column
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along the longitudinal axis as well as a lordotic deformity in the sagittal plane. The shape of the individual vertebra in
structural scoliosis also undergoes significant change. On the superior and inferior border of each vertebral body is the
vertebral ring epiphysis through which growth in height occurs. Asymmetric pressure on the immature vertebrae causes
the  vertebral  section  on  the  concave  side  of  the  curve  to  decrease  growth  [43]  whereas  the  other  convex  vertebral
section where less pressure is applied has normal or accelerated growth. This leads to wedging of the vertebra [44]. A
translatory motion then occurs in the direction of least resistance; that is towards the convexity of the curve with the
vertebral  body  under  the  most  compressive  force  moving  most  laterally  (apical  vertebra).  Associated  with  the
translatory motion in the coronal plane is a rotatory movement of the vertebra along the transverse axis. The vertebral
body rotates towards the convex side of the curve and the spinous processes rotate towards the concave side. As the
vertebrae rotate and bend laterally, the discs are compressed on the concave side and distracted on the convex side of
the  curve.  The  vertebral  body  becomes  distorted  in  shape  towards  the  convex  side  and  the  pedicles,  laminae  and
transverse processes become thicker on the convex side. Conversely, on the concave side in the thoracic region the
pedicles become wafer thin and are accompanied with a narrowing of the spinal canal on this side [45].

In scoliosis, anatomical changes occur in the soft tissue structures surrounding the vertebral bodies. Shortening of
these tissues occurs on the concave side of the curve. This is also accompanied by a shortening of the intervertebral
joint capsule, which may lead to facet joint compression and ultimately osteoarthritis. Additionally, the intervertebral
muscles, the erector spinae, the quadratus lumborum, the psoas major and minor and the oblique abdominals all shorten
on  the  concave  side.  The  anterior  and  posterior  longitudinal  ligaments,  the  ligamenta  flava  and  the  interspinous
ligaments also shorten to this side, and limit flexion towards the convex side [46].

As the vertebrae rotate,  the ribs,  which are  attached to  the vertebrae by the musculoskeletal  system, follow the
rotational torque applied by the spine. They are pushed downwards as well as forwards on the concave side. This causes
a crowding of ribs posteriorly on the concave side as well as a small hump on the anterior chest wall of the same side.
Conversely, the ribs on the convex side become widely separated and are pushed backwards, creating a rib hump on the
posterior chest wall. Associated with the posterior movement of the ribs is a narrowing of the rib cage on the convex
side. The ribs on the convex side then push against the scapula and make it more prominent [45].

Movement of the spine laterally generally tends to cause a spinal imbalance. This means that the head of the patient
does not remain centered over the pelvis, but causes the head and upper torso to fall to the left or right of the gluteal
cleft causing altered spinal mechanics and subsequent degenerative joint disease [47].

5. BIOMECHANICAL THEORIES

Somerville [48] first described thoracic idiopathic scoliosis as a combination of lordosis, axial rotation, and lateral
flexion and suggested that the lordosis arises from a failure of growth of posterior elements of a segment of the spine.
Roaf [49] further described this theory in 1966, and suggested that the fundamental problem in scoliosis is the relative
lengthening of the anterior components of the spine compared to the posterior structures. This situation in a stiff anterior
musculoskeletal wall should result in lateral deviation of the spine and the development of scoliosis.

Lawton and Dickson [50] state that their experiments with rabbits support Roaf’s Hypothesis. The investigators
developed a pure frontal plane deformity in one group of rabbits, a pure sagittal plane deformity in a second group of
rabbits  and  a  combined  sagittal  and  frontal  plane  deformity  in  the  third  group.  Their  results  demonstrated  that
progressive experimental scoliosis developed only in those animals that had both sagittal (lordosis) and coronal plane
deformities. None of the rabbits that had a pure single plane deformity developed progressive scoliosis. They also noted
that when the deformity was released before maturity in the group of rabbits who had the two-plane deformity, the
deformity resolved spontaneously.  The investigators support  the view that  the anterior structures of the spine grow
faster  than  the  posterior  ones,  causing  a  loss  of  normal  kyphosis  and  a  buckling  of  the  vertebral  bodies  (anterior
elements)  outwards  laterally.  The  authors  also  state  that  correction  of  the  deformity  in  the  coronal  plane  alone,  as
carried out in many surgical procedures, does not correct the loss of normal kyphosis. Ohlen’s [51] work on human
subjects supports Lawton and Dickson’s work when it was demonstrated that scoliotics have less thoracic kyphosis than
normal.

By using the forward bend test and observing subjects from a lateral point of view, Weiss and Lauf [52] studied the
prevalence of impaired forward flexion (IFF) in children ages 2, 4, and 5 years old. They describe IFF as an area in the
lower  thoracic  region  where  the  arch  of  the  thoracic  spine  is  interrupted  by  a  short  vertebral  segment  that  appears
straight and cannot actively or passively be flexed forward Fig. (1). Weiss and Lauf found that IFF is less common in 2
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year-olds (7.9%) than in 4 and 5-year-olds (78.9% and 70.8%, respectively) and hypothesize that the reason for this is
the transition from crawling to upright posture.

Fig. (1). Impaired Forward Flexion (adapted from [52]).

Previously, Tomaschewski [53] studied IFF (in at least one motion segment) in 686 healthy 9-10-year-olds - citing a
rate of 16.5%. Of that 16.5%, 27% went on to develop idiopathic scoliosis within a year of follow-up. It is possible that
impaired forward flexion may resolve for most children as they adapt to walking upright. However, for those of whom
IFF does not resolve, or for those who develop multiple segments of IFF, it could be a factor creating instability in the
spine - leading to rotational and lateral deviation during periods of growth.

Anatomical and MRI studies in humans have now established that in patients with structural scoliosis, the anterior
elements  of  the  spine  are  indeed  longer  than  the  posterior  elements  [54  -  60].  This  condition  is  commonly  called
‘relative anterior spinal overgrowth’ (RASO). That said, the role of RASO and sagittal plane deformity (i.e. thoracic
lordosis) as the primary initiating factor for AIS, rather than a secondary factor involved in progression, has been called
into question and is controversial [61 - 67]. Moreover, this concept does not seem to apply to other curve types such as
single lumbar curves.

Notably, Brink et al. [67] measured the difference in length between the anterior and posterior side of each vertebral
body  and  intervertebral  disc,  and  between  the  anterior  side  of  the  spine  and  the  spinal  canal  for  AIS  patients,
neuromuscular (NM) scoliosis patients and normal controls. When comparing both groups of scoliosis patients with
normal  controls,  Brink  and  his  colleagues  [67]  found  that  the  anterior  elements  of  the  spine  were  longer  than  the
posterior elements, however, this spinal overgrowth was found in both the AIS and NM patients with no measurable
difference between the two groups. Therefore, they concluded that RASO is more of a generalized scoliotic mechanism
rather than a causative factor in AIS. Interestingly, the anterior-to-posterior length correlated linearly with Cobb angle
in both NM and AIS groups, which suggests that RASO could possibly be associated with curve progression [67].

Other experimental work has concentrated on the “Hueter-Volkmann” principle. The theory suggests that increased
pressure on a vertebral epiphyseal growth plate retards its rate of growth, whereas decreased pressure across the plate
accelerates  growth  [43].  The  theory  suggests  that  on  the  concave  side  of  the  curve,  the  epiphyseal  plates  have
abnormally high pressures that result in decreased growth, whereas on the convex side of the curve the pressure is less,
resulting in accelerated growth. Stillwell’s work [68] involved the fixation of the spine in a curved position and spinous
process fixation. The fixation of the spine resulted in occasional scoliosis, whereas fixation of the spinous processes
resulted in severe scoliosis with lordosis and rotation.

In  keeping  with  the  Hueter-Volkmann  principle,  Stokes  et  al.  [69]  hypothesized  that  asymmetric  loading  in  a
“vicious  cycle”  causes  vertebral  wedging  during  growth  in  progressive  scoliosis  curves.  Stoke’s  vicious  cycle
hypothesis [66] Fig. (2) implies that whatever the cause of scoliosis, mechanical factors become predominant during
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periods of rapid adolescent growth, when the risk of curve progression is greatest.

In  2006,  Stokes  et  al.  [66]  created simulations  to  test  the  vicious  cycle  theory and concluded that  a  substantial
component of scoliosis progression during growth comes from biomechanical influence. In their simulations, spinal
loading asymmetry was dependent on neuromuscular activation strategy. Symmetrical spinal loading was possible, but
at a higher “physiological energy cost” [66]. The authors suggest that their findings could mean that different patients
with AIS may adopt different neuromuscular activation strategies, which affects their spinal loading, and can explain
why some curves progress more than others [66]. Similarly, Modi et al. [70] proposed a tuning/balancing mechanism of
the spinal column and suggested that in the growing spine, there is a period of time during which the spinal column
makes an effort to balance the spine. When this effort fails, the curve will progress, or if the spine rebalances, the curve
will either stabilize or regress [70]. Stokes et al. [66, 71] suggest the possibility that muscle rehabilitation programs
could affect spinal loading by providing alternate neuromuscular activation strategies for scoliosis curves that are likely
to progress. This is, in fact, the objective of scoliosis-specific exercise and rehabilitation programs such as the Schroth
method [72].

Another  theory,  which  has  been  written  on  extensively  by  Sevastik,  is  the  thoracospinal  concept  [65,  73  -  76].
Sevastik [73] first did experimental studies in rabbits in 1984, suggesting that asymmetric growth of the ribs may be the
primary cause of deformity in some cases of right thoracic idiopathic scoliosis.  However, like RASO, the idea that
asymmetric rib growth is the primary initiating factor for idiopathic scoliosis is also controversial, and the theory does
not fit for all AIS curve patterns [65, 77].

Fig. (2). Stoke’s Vicious Cycle of Pathogenesis: A lateral spinal curvature produces asymmetrical loading of the skeletally immature
spine, which in turn, causes asymmetrical growth and a progressive wedging deformity. Adapted from, “Scoliosis and the Human
Spine” by Martha C. Hawes (2002).

Leg-length  discrepancy  as  a  possible  etiological  factor  in  idiopathic  scoliosis  has  also  been  studied  by  several
authors [78, 79]. Leg length difference was found to cause a compensatory non-progressive lumbar scoliosis, but the
scoliosis was only significant in leg length discrepancies of over 3 cms. Raczkowski et al. [80], however, determined
that even smaller leg-length discrepancies (≤2 cms) could cause a functional or non-fixed scoliosis.
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Functional scoliosis is often regarded as inconsequential [81], but should not be ignored by health practitioners.
Postural imbalance caused by pain, injury, muscle spasms, or other factors [82] can result in a nonstructural scoliosis
that can eventually progress into a fixed scoliosis if the causative factors are not found and corrected while the patient is
still growing [83]. Though growth spurts are often viewed as a risk factor for curve progression, early treatment can
take advantage of growth as a corrective factor, due to remaining spinal flexibility [84]. In flexible, skeletally immature
spines, it does not take much to alter spinal alignment, as even carrying heavy school bags has been shown to cause a
load-induced functional scoliosis in school-age children [85].

Furthermore, it is worth noting that the “normal” spine is not perfectly symmetrical in the transverse plane. The
non-scoliotic spine has been shown to demonstrate a pre-existent pattern of vertebral rotation that corresponds to the
most  common  curve  types  in  thoracic  idiopathic  scoliosis  [86,  87].  Castelein  et  al.  [88]  have  hypothesized  that
posteriorly directed shear forces acting on the spine may contribute to existing asymmetries in the transverse plane, and
increase rotational instability by way of asymmetric loading in the transverse plane of vertebrae, intervertebral discs,
and attached ligaments in accordance with the Hueter-Volkmann principle.

6. NEUROLOGICAL THEORIES

A large proportion of studies have centered on the possibility of a neuromuscular theory for idiopathic scoliosis.
When  Lerique  and  Lecoeur  [89]  demonstrated  in  1951  that  the  two  sides  of  a  scoliotic  spine  demonstrated  action
potential differences, Riddle and Roaf [90] put forward the hypothesis that muscular imbalance was a possible cause of
idiopathic scoliosis. Early electromyographic work showing evidence of increased activity on the convex side of the
curve  was  later  put  forward  by  Weiss  et  al.,  Le  Febre  et  al.  and  Hennssge  [91  -  93].  Alexander  and  Season  [94],
however,  invalidated these  results  in  1978 when they demonstrated that  these  results  were  due to  improper  patient
positioning and that it was possible to induce asymmetric motor activity in normal children by positioning their spines
into an asymmetric posture [95]. Other authors’ findings demonstrating fibrillation potentials in 50% of scoliotic spines
[96, 97] were also invalidated by Alexander and Season who clearly showed their results were caused by noise in the
system, and suggested that action potential differences were not the cause but the result of asymmetric positioning of
the spine. Butterworth and James [98] supported Alexander and Season’s study [94] when they reported that the spine
becomes silent when surgically fused or braced.

Early  histological  work  put  forward  by  James  et  al.  [99]  did  not  reveal  any  objective  results  in  support  of  the
neuromuscular theory. Hirano [100], however, demonstrated that there were clear signs of dystrophy and atrophy in the
back muscles and disproportions of slow twitch versus fast twitch fibres with greater numbers of the former on the apex
of the convex side [101]. Other investigators confirmed the presence of muscular abnormalities but could reveal no
particular side or location [102, 103]. Differences in proportions of Type 1 and Type 2 fibres have also been located in
contralateral deep muscles [102, 104, 105].

The large majority of animal work has focused on factors affecting either the growth or the stability of the spine.
The excision or release of deep and superficial muscles resulted in a paralytic type of scoliosis convex to the operative
site [106]. Other experimenters investigated the effect of muscle denervation. Both Liska [107] and Macewan [108] in
two  independent  studies  demonstrated  that  the  division  of  the  anterior  and  posterior  nerve  roots  created  a  spinal
curvature. They suggested that the interruption of the normal reflex arc was an important factor. Alexander and Season
[94], however, queried the studies of Liska and Macewan when they replicated their studies. They reported that whereas
all animals who had anterior and posterior nerve roots excised developed a scoliosis, only 60% of animals who had only
the posterior nerve root cut developed a curve. They concluded that the final common pathway remained the efferent
supply to the muscles and produced a paralytic type of scoliosis [94].

A few experimenters have also resorted to the investigation of an equilibrial cause for a neuromuscular dysfunction.
The hypothesis being that idiopathic scoliosis results secondary to a disturbance at the brainstem level where impulses
from the labyrinth, proprioceptive and visual systems are integrated. Yamada and co-workers [109] in 1969 noted that
equilibrial abnormalities were more prevalent in idiopathic scoliosis. The equilibrial dysfunction disappeared when the
subjects matured and was directly related to the severity of the curve.

Sahlstrand and associates [110] (1979) reported an increased occurrence of spontaneous and positional nystagmus in
patients with adolescent idiopathic scoliosis but observed no correlation with curve size or erect and supine postures.
The  authors  suggested  that  a  possible  feedback  was  occurring  as  a  result  of  a  deformed  spine  [110].  Results  from
histological studies are specific to severe scoliosis and must be interpreted with caution as most specimens are taken
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during  surgical  correction  of  severe  curves,  many  of  which  had  undergone  traction  before  treatment.  It  is  well
established  that  treatment  that  disrupts  muscles  or  ligaments  by  tension  can  disrupt  central  and  peripheral  nervous
systems [108]. In 2005, Mirovsky et al. [111] prospectively studied thirty-one patients with severe AIS and found that
only a few had vestibular and postural dysfunction, suggesting that the dysfunction occurred as a result of the patient’s
misbalance.  A  2015  review  concluded  that  while  there  is  significant  evidence  to  suggest  an  association  between
vestibular dysfunction and AIS, animal studies have been more promising than human studies and additional research is
needed in this area [112].

The thrust of most experimental work has been the recreation of a degree of imbalance in the neurological, osseous
or ligamentous structures of the spine, the hypothesis being that any imbalance resulting in a scoliotic pattern may be
indicative of a possible etiological factor. White [113] suggests that the presumption in these experimental works is that
scoliosis is caused either by a weakness or absence of a structure on the convex side of the curve or an overactivity of
the antagonist structure on the concave side.

Other researchers have postulated that in idiopathic scoliosis, there is disproportional growth occurring between the
skeletal and neural systems, due to the spinal cord being short or because of a rapid growth spurt of the spine. This
concept was first put forward by Roth [114, 115], and then Porter [116, 117], and has been called by several names,
including uncoupled neuro-osseous growth, and now referred to as asynchronous neuro-osseous growth [118 - 122].
Chu et al. [123, 124] examined the Roth-Porter concept with MRI imaging and found that in severe AIS, the vertebral
column is significantly longer compared to normal controls, but there is no detectable change in spinal cord length. Chu
et al. suggested that anterior spinal overgrowth stretches the spinal cord and cauda equina, leading to hypokyphosis and
deformity of the growing thoracic spine - causing scoliosis [123, 124].

This stretching of the spinal cord is commonly referred to as “ tethering” or “tethered cord syndrome” (TCS). It is
possible that there are scoliosis patients who are considered to be idiopathic cases, but could have spinal cord tethering
as an underlying pathology. The majority of idiopathic scoliosis patients do not undergo MRI, unless they have early-
onset  scoliosis,  present  with  a  severe  curve  of  sudden  onset,  present  with  neurological  findings,  an  atypical  curve
pattern (i.e.  left  thoracic curve),  have pain, or are being screened prior to surgery [125].  Furthermore, according to
Barutçuoğlu et al. [126], the absence of MRI findings does not definitively exclude TCS. The authors point out that
somatosensorial evoked potentials or SSEP is an important additional guidance in making a diagnosis of tethered cord
syndrome [126].

The identification of certain neurological conditions associated with scoliosis, such as syringomyelia, tethered cord
syndrome, and Chiari malformation [127, 128] is important with respect to developing the scoliosis treatment plan.
Most surgeons advocate decompression of the Chiari I malformation and syringomyelia to promote curve resolution and
reduce the risk of neurologic complication, while others disagree [129]. Neurosurgical release of the filum terminale has
been found to reduce curvature in scoliosis patients with TCS, syringomyelia, and Chiari malformation [130], though
retethering  post-surgery  has  also  been  documented  [131].  Systematic  extracorporeal  therapy  and  external  spinal
manipulation have also been suggested as potential treatments for patients who have functional tethering of the spinal
cord, however, additional research is needed in this area [132, 133].

7. EVOLUTIONARY THEORY OF SCOLIOSIS

It has been suggested that scoliosis has an evolutionary basis and may be the result of a selection for bipedalism in
humans  [134,  135].  A survey  of  a  large  sample  of  ape  skeletons  by  Latimer  did  not  find  any  cases  of  scoliosis  in
chimpanzees or gorillas and Lowe et al. [136] concluded, “naturally occurring scoliosis in vertebrates is seen almost
exclusively  in  humans.”  Lovejoy  [137]  proposes  that  this  may  be  attributed  to  the  difference  in  anatomy  between
humans  and  other  apes.  More  specifically,  humans  have  a  longer,  more  mobile  lumbar  spine  that  may  be  more
susceptible to deviation. Lovejoy [137] acknowledges that while this does not account for thoracic curvatures, a subtle
imbalance in the lumbar spine could play an initiating role until more cranial effects became prominent due to other
biomechanical forces.

8. ANIMAL STUDIES

Gorman  and  Breden  [138]  challenge  this  notion,  suggesting  that  this  theory  of  bipedalism has  been  reinforced
because of  the animal  models  used to study scoliosis.  Pinealectomy (which creates  melatonin deficiency) has been
shown to cause idiopathic-type scoliosis curvatures in chickens [139], but not quadrupedal animals [140], except in the
case of rats and mice that have been forced to be bipedal by amputation of their front legs and tails [135, 141].
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Interestingly,  in  a  study  by  Machida  et  al  [135],  researchers  found  that  bipedal  rats  developed  cervicothoracic
lordosis,  whether  or  not  they  underwent  pinealectomy.  The  bipedal  rats  that  did  undergo  pinealectomy,  however,
developed  a  lordoscoliosis  similar  to  human  idiopathic  scoliosis.  The  researchers  suggest  that  there  may  be  a
“disturbance of equilibrium and other postural mechanisms secondary to a deficiency of melatonin after pinealectomy
which may promote the development of lordoscoliosis with vertebral rotation, especially in the bipedal posture” [135].

Despite their findings, the role of melatonin in the pathogenesis of scoliosis remains unclear. Moreover, animal
models have many limitations when it comes to understanding the etiology of idiopathic scoliosis in humans, especially
in light of the fact that considerable intervention is required to induce their spinal deformities. Such methods include
tethering, intercostal nerve resection, electrostimulation, irradiation, pinealectomy, magnet implantation, direct injury to
the epiphyseal plate, oxygen deficiency, dietary deficiency, unilateral labyrinth stimulation, plaster cast immobilization,
and various local procedures which damage the spinal, neural, and/or surrounding tissues [142 - 145].

Janssen et al. [146] point out that the human spine is less rotationally stable than any other animal used in scoliosis
research and that much less is required “in terms of a disturbance of the locomotor, proprioceptive, neuromuscular, or
collagen metabolism systems to initiate a decompensation into a rotatory deformity in man.” They conclude that the
lack of an animal model that biomechanically resembles the human spinal load is a major obstacle in scoliosis etiology
research.

While  this  is  certainly  true,  recent  research  points  to  fish  as  being  a  potentially  beneficial  model  for  studying
idiopathic scoliosis. Gorman et al. [147] studied the curveback guppy as the first model for human IS demonstrating
spinal curvature in healthy fish without being induced or caused by congenital vertebral malformation. Though fish do
not have a bipedal gait, Gorman suggests that the biomechanical forces acting on the human and guppy spine could be
similar. In both humans and guppies, the biomechanical force on the spine is along the cranio-caudal axis, with gravity
acting vertically on the former, and the power of the tail-beat motion (which pushes the guppy through dense water)
acting on the latter [147]. Interestingly, Gorman et al. found many similarities between the curveback syndrome and
human AIS, including a bias for severe curvature in females (despite equal rate among the sexes), stabilization at sexual
maturity, incidence of self-resolving curves, changes in vertebral shape at the apex of severe curves and variation in:
curve magnitude, morphology, age of curve onset, and the rate of progression [147].

In  a  later  study,  Gorman  and  colleagues  [148]  identified  a  qualitative  trait  locus  (QTL)  controlling  curve
susceptibility in the guppy model. The locus contains over 100 genes, including MTNR1B (melatonin receptor), which
is a candidate gene for human idiopathic scoliosis [149].

In fact, humans and fish share many developmental pathways and genetic similarities, which could be advantageous
in  furthering  scoliosis  etiology  research.  Many  gene  sequences  isolated  in  fish  have  corresponding  sequences  in
humans, including those involved in osteoblast and chondrocyte differentiation, bone and muscle formation, and pineal
gland development [150].

In addition to guppies, zebrafish have also been studied extensively as a model for idiopathic scoliosis. AIS-like
scoliosis is shown in zebrafish with mutations of protein tyrosine kinase 7 (ptk7) [151] and kinesin family member 6
[152]. Overexpression of the LBX1 (ladybird homeobox 1) gene, which has been associated with AIS in human studies,
is shown to cause body axis deformation in zebrafish [153]. Analysis of ptk7 mutant zebrafish point to cilia motility and
cerebrospinal fluid flow defects as the underlying biological cause of spinal curvature [154], which could potentially
have implications for future human research.

9. GENETIC FACTORS: HUMAN RESEARCH

A genetic etiologic basis for idiopathic scoliosis has been favorably viewed since the 1920s when the deformity was
first described in twins and families [155, 156]. Later studies confirmed the familial nature of this condition [157 - 159].
Whilst an increased incidence of the deformity was found in relatives of patients, controversy remains as to whether the
condition is of dominant or multiple gene inheritance [160] or dominant and sex-linked with variable expressivity and
incomplete penetrance [158]. An interesting study by Kruse et al. [161] supports the presence of the Carter effect in
AIS. The Carter effect involves a polygenic threshold model with sex dimorphism of inheritance, with a greater genetic
load (i.e. susceptibility genes) required for males to be affected with AIS, which, in turn, makes them more likely to
transmit AIS to their children [161].

Part of the difficulty in determining the genetic background of AIS lies in phenotyping and study design. While
linkage studies may seem like a logical choice due to the familial nature of scoliosis, these studies are better for finding
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variants in rare diseases and subphenotypes, and thus may not necessarily be effective for detecting common variants in
the general population [162]. Genome-wide studies are expensive and yield large amounts of data while candidate-gene
studies, though simpler,  depend on the initial hypothesis and are not suitable for searching for new genes [162]. In
recent years, case-control association studies are being more widely used [163].

Thus far, genetic research on AIS has pointed to many potentially associated genes, including: MATN1 (matrillin
1),  TIMP2 (tissue inhibitor of  metalloproteinases 2),  MMP3 (matrix metalloproteinase-3),  ESR1 (estrogen receptor
alpha),  ESR2  (estrogen  receptor  beta),  IL6  (interleukin  6),  CALM1  (calmodulin  1),  VDR  (vitamin  D  receptor),
MTRN1B (melatonin receptor type 1b), CDH7 (cadherin 7), TPH1 (tryptophan hydroxylase 1), TNFRS11B (tumor
necrosis factor receptor superfamily member 11b), GPER (G protein-coupled estrogen receptor 1), IGF1 (insulin-like
growth factor 1), HSPG2 (heparan sulfate proteoglycan 2), FBN1 (fibrillin-1), FBN2 (fibrillin-2), COL11A2 (collagen
type  XI  alpha  2  chain),  LBX1  (ladybird  homeobox  1),  GPR126  (G-protein  coupled  receptor  126),  BCN2
(basonuclin-2),  PAX1 (paired  box  1),  TGFB1 (transforming  growth  factor  beta  1),  DOT1L (disruptor  of  telomeric
silencing  1-like),  IL-17RC  (interleukin  17  receptor  C),  C17orf67  (chromosome  17  open  reading  frame  67),  POC5
(POC5 centriolar protein), NUCKS1 (nuclear casein kinase and cyclin dependent kinase substrate 1), ZIC2 (zinc finger
protein ZIC 2), FAM101A (regulator of filamin protein A), COMP (cartilage oligomeric matrix protein), PITX1 (paired
like homeodomain 1), and homeobox genes HOXB7, HOXB8, HOXA13, and HOXA10 [149, 164 - 198].

Of these, gene variants rs11190870 downstream of the LBX1 gene, rs657507 on GPR126 intron, and rs12946942 on
chromosome 17q24.3 near the genes SOX9 and KCNJ2, have been replicated in additional studies [162]. Though there
has been a lot of development in AIS genetic research in recent years, genetic heterogeneity continues to be an obstacle.
Future studies with larger cohorts are needed to make any sort of clinical impact in identifying who is susceptible to
scoliosis  and  which  AIS  patients  are  at  greater  risk  for  progression.  Studying  familial  AIS  in  younger  unaffected
siblings of AIS girls in a longitudinal study may be another way to advance our knowledge [199]. Prognostic DNA
testing for  scoliosis  and blood testing for  scoliosis  susceptibility  have already been developed [200 -  202],  but  the
validity of these methods requires further evaluation [203 - 205].

Twin studies have established a higher concordance rate in monozygotic twins versus dizygotic twins [206 - 210].
That said, phenotypic variability (i.e. different expression of curve pattern, severity, etc.) exists among affected family
members, and even among monozygotic twins, suggesting that environmental factors are also at play [40, 211 - 214]. It
is  possible  that  phenotypic  differences  in  monozygotic  twins  could  be  the  result  of  epigenetic  differences  that
accumulate over time [215, 216]. Epigenetics is defined as heritable changes in gene expression without a change in
underlying DNA sequence [217]. Epigenetic changes can occur normally as a part of development, but can also be
influenced by external environmental factors including diet, exercise, certain chemicals and medications [218, 219].
DNA  methylation,  histone  modification  and  nucleosome  positioning,  and  noncoding  small  RNAs  are  molecular
mechanisms that have been found to have an effect on gene expression [217]. Burwell et al. [220] have suggested that
new research is required to look for chromatin modifications in AIS subjects and vertebral growth plates excised at
surgery.

10. ENVIRONMENTAL FACTORS

Goldberg  et  al.  [221,  222]  suggested  that  scoliosis  is  caused  by  environmental  stress  causing  developmental
instability. Environmental factors could be hormonal, nutritional, alcohol, smoking, viruses, drugs, medications, toxins,
and physical activity [220]. Additionally, Hawes and O’Brien [223] have noted that scoliosis has occurred in children in
response  to  psychological  distress,  trauma,  back  injury,  surgery,  cancer  treatment  (radiation  and  chemotherapy),
infections, tumors, and birth injuries.

In 1980, Pratt and Phippen [224] found increased levels of copper in hair samples of AIS patients and suggested that
copper may be a factor in the development of scoliosis since it is part of the lysyl oxidase enzymes required for cross-
linking  of  collagen  and  elastin.  Dastych  et  al.  [225]  also  found  increased  levels  of  copper  in  hair  samples  of  AIS
patients, along with increased levels of zinc and decreased levels of selenium. In a separate study, zinc concentration in
hair and serum in AIS subjects was similar to controls, but the back muscles of scoliosis subjects undergoing surgery
were found to contain decreased zinc [226]. The authors concluded that this is likely a secondary change, rather than
one of primary etiological importance [226].

Webb  et  al.  [227]  and  Green  et  al.  [228]  discovered  virus-like  particles  in  the  paraspinal  muscles  of  scoliosis
patients  in  1976  and  1979.  However,  the  significance  of  these  findings  is  unclear  and,  to  the  best  of  the  authors’
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knowledge, has not been investigated or confirmed in more recent studies.

Worthington and Shambaugh [229] suggested that nutritional deficiencies might play a role in the etiology of AIS.
Chlebna-Sokol et al. [230] found that in a study of 74 children with skeletal abnormalities (including scoliosis, bone
fractures, Scheuermann’s disease and thorax deformations), all subjects had significantly low vitamin D intake and the
majority also had calcium deficiency. In the same group, 14/74 subjects had either osteopenia or osteoporosis; however,
the authors did not find any significant correlations between the skeletal diseases and abnormalities in the diet [230].
Balioglu  et  al.  [231]  and  Batista  et  al.  [232]  also  found  that  AIS  patients  are  deficient  in  Vitamin  D,  and  other
researchers have linked inadequate calcium intake with osteopenia in AIS patients in an Asian population [233, 234].
While  a  low  calcium  intake  is  known  to  aggravate  vitamin  D  deficiency  [235],  additional  research  is  required  to
determine if dietary changes can have any effect on AIS, as environmental factors acting on scoliosis are currently
poorly understood.

11. HORMONAL FACTORS

In an attempt to develop a multifactorial theory of AIS etiology, Burwell et al.  [199] put forward the “Cascade
Concept” based on the earlier findings of Clark et al. [236] and other researchers who found an association between
AIS  and  low  leptin  levels  [37  -  39].  Clark  et  al.  [236]  carried  out  a  population-based  prospective  study  which
determined that low fat mass, low lean mass, low circulating leptin and high circulating adiponectin levels in 10-year
olds are associated with scoliosis found at 15 years old. Burwell et al. [199] speculate that leptin plays a role in central
nervous system (CNS) development and that lower levels of leptin are responsible for initiating asynchronous neuro-
osseous growth, causing tension in the neuraxis. The authors suggest that neuraxis tethering is not expressed caudally at
the conus level, which has been found to be normal in AIS patients [237, 238], but cranially in the upper cervical cord
and medulla oblongata (as disturbed white matter) and at the craniocervical junction (as low-lying cerebellar tonsils), in
accordance with findings by Kong et al. [239] and Chu et al. [240]. Once a spinal deformity has been initiated, other
biomechanical or hormonal disturbances, especially those that cause reduced vertebral bone mass, may lead to curve
progression [199].

As mentioned earlier, melatonin has been a hormone of interest in the study of AIS ever since it was discovered that
melatonin-deficient animals could develop scoliosis [241], however, human studies have shown mixed results. Machida
et al.  [242] found significantly decreased melatonin levels in adolescents with progressive scoliosis as compared to
patients with stable curves and normal controls. Sadat-Ali et al. [243] also found lower melatonin levels in AIS patients
versus controls. Hilibrand et al. [244], Fagan et al. [245] and Bagnall et al. [246] did not find a significant difference in
nighttime or daytime melatonin levels between AIS patients and normal controls. These conflicting results led to the
proposal that AIS is instead caused by a melatonin-signaling pathway dysfunction that only affects certain cell types,
namely osteoblasts [247, 248].

Melatonin  plays  a  complex  role  in  human  biology  [249].  As  it  relates  to  scoliosis,  melatonin  is  believed  to  be
involved in the onset of puberty [250], and thought to have a protective effect on bones, by preventing degradation and
promoting bone formation [251 - 253]. Additionally, melatonin serves as an antagonist for calmodulin - a calcium-
binding receptor protein that regulates smooth muscle contraction [255]. Studies on AIS patients have shown increased
levels of calmodulin in platelets (when compared to normal controls) [256] and asymmetrical distribution of calmodulin
in paraspinal muscles, with increased levels at the convexity of the curve [257]. In a study by Lowe et al. [256], platelet
calmodulin  levels  correlated  closely  with  curve  progression.  However,  it  has  been  suggested  that  the  increasing
calmodulin levels do not play an etiologic role in AIS and simply reflect changes in cellular calcium and sarcomere
metabolism related to changes in muscle contractility associated with curve progression [258]. In light of the fact that
osteopenia  has  been  reported  to  be  either  a  causative  or  co-existing  factor  in  AIS  [31,  233,  234,  259  -  267],  the
relationship between scoliosis, melatonin signaling, and bone integrity warrants further investigation.

Additionally, since scoliosis curve progression is linked to puberty, and females are more likely to progress than
their male counterparts, much research has focused on growth and sex hormones. Several researchers have found that
growth hormone levels in children with idiopathic scoliosis are higher than in controls [268 - 270], whereas Misol et al.
[271] did not find a difference.

Kulis et al. [272] found that levels of FSH (follicle-stimulating hormone), LH (luteinizing hormone) and oestradiol
were lower in premenarcheal AIS patients than in normal premenarcheal girls,  while higher levels of progesterone,
oestrone,  oestriol,  RANKL  (receptor  activator  of  nuclear  factor  kappa-B  ligand),  osteocalcin  and  AP  (alkaline
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phosphatase) were observed in the group of AIS patients. Skogland et al. [268] and Raczkowski [273] found elevated
levels of testosterone in AIS patients, both in prepubertal girls and in older teenage girls. Contrarily, Esposito et al.
[274] found lower levels of testosterone, progesterone, and 17-beta-estradiol (oestradiol) in AIS patients.

Testing serum levels in AIS patients may be an inadequate measure as Pollanen et al. [275] recently proved that 17-
beta-estradiol is synthesized by muscular cells and suggested that systemic levels of sex steroid hormones may not
follow the same trend as levels found in skeletal muscle. Rusin et al. [276] found asymmetric expression of estrogen
receptor 2 (ESR2) in deep paravertebral muscles more on the side of the convexity than the concavity. As with most
other  findings  associated with  AIS,  whether  or  not  these  differences  in  expression are  primary or  secondary to  the
condition remains to be solved.

CONCLUSION

White [113] sums up all the hypotheses relating to the etiology of scoliosis as follows:

“The  normal  spine  in  a  growing  person  has  a  precise,  precarious,  delicate  mechanical  balance.  Asymmetrical
changes  in  primary  structures,  support  structures,  growth  centres,  the  position  of  the  spine  and  related  neural  or
muscular components can result in the development of scoliosis.”

Currently, idiopathic scoliosis treatment is not rooted in causality but instead aims to prevent further progression by
biomechanical intervention (i.e. bracing, surgery). The principle behind exercise rehabilitation programs is postural re-
education to reduce asymmetric spinal loading during growth, though these programs are not yet widespread standard
treatment. Adjunct treatments for patients presenting with osteopenia and/or hypermobility may be helpful in curbing
progression, however, there is no standard testing done to identify these associated conditions in AIS patients. MRI
studies, while costly, could potentially identify subclinical neurological abnormalities in AIS patients and further our
understanding of etiology.

It is generally accepted that earlier intervention in AIS is preferable, but when mild AIS is first diagnosed, there is
little effort made to determine the underlying cause and treatment is usually not recommended until the scoliosis proves
to be progressive [223]. There is great interest in DNA-based tests to determine which patients are at risk of developing
scoliosis  and  which  patients  with  scoliosis  are  most  likely  to  progress,  however,  the  current  understanding  of  the
relationship between genetic factors and environmental factors in the development and pathogenesis of AIS remains
limited. Since scoliosis is a complex, multifactorial condition, the continued effort and collaboration of professionals
across multiple disciplines is needed to further knowledge in this field. The tendency to group all AIS patients into one
theory is perhaps a hindrance in moving forward.
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