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Abstract. Brain white matter lesions found upon magnetic resonance imaging are often observed in psychiatric
or neurological patients. Individuals with these lesions present a more significant cognitive impairment when
compared with individuals without them. We propose a computerized method to distinguish tissue containing
white matter lesions of different etiologies (e.g., demyelinating or ischemic) using texture-based classifiers.
Texture attributes were extracted from manually selected regions of interest and used to train and test super-
vised classifiers. Experiments were conducted to evaluate texture attribute discrimination and classifiers’ per-
formances. The most discriminating texture attributes were obtained from the gray-level histogram and from the
co-occurrence matrix. The best classifier was the support vector machine, which achieved an accuracy of 87.9%
in distinguishing lesions with different etiologies and an accuracy of 99.29% in distinguishing normal white matter
from white matter lesions. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.1.014002]
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1 Introduction
Magnetic resonance imaging (MRI) quality has improved
significantly over the last two decades. Now, MRI allows the
observation of considerably more subtle and smaller scale
abnormalities.1 White matter hyperintensities (WMHs) are
among the most frequently observed incidental MRI findings,
and their prevalence increases with age.1–3 Other common
risk factors associated with increased prevalence of WMH
include: female gender, atherosclerosis, and elevated systolic
blood pressure.2

Although WMH is often considered to have uncertain clini-
cal significance, recent studies indicate that they are associated
with cognitive impairment, suggestive of a disruption in brain
connectivity.4 Though the etiology of WMH is difficult to deter-
mine because of the lack of pathological studies, it is frequently
proposed to be of an ischemic or demyelinating nature.5

WMH of an ischemic nature occurs when there is an obstruc-
tion of a vessel, usually of small caliber, that irrigates the brain.
This obstruction is named microangiopathy and it causes a
decrease or cessation of blood circulation and a fast degener-
ation of brain tissue.6 In contrast, WMH of a demyelinating
nature is associated with inflammation that causes destruction
of the myelin sheath and compromises neural transmission.7

This form of WMH is frequently observed in a variety of
immune-mediated diseases such as multiple sclerosis (MS).
The recognition of the lesion etiology is important for adequate
treatment. Depending on the evolution of lesions, demyelinating
lesions are frequently treated with immunosuppressants or
immunomodulation whereas ischemic lesions are treated with
anticoagulants.

The most suitable examination to detect WMH is MRI, as it
presents an excellent contrast in soft tissues and provides ana-
tomical images with high resolution.8 However, the analysis of
WMH on MRI is a nontrivial task owing to variations in size,
shape, and location of the WMH, as well as the complexity of
underlying factors such as different imaging devices. Thus, in
order to manually characterize WMH in the human brain, spe-
cialists usually need to consider additional clinical information
from individuals such as age, physical exams, medical history,
and differences in images from different modalities. FLAIR, T2-
weighted, and contrast-enhanced images can help to suggest a
demyelinating lesion, whereas diffusion images can support the
ischemic or inflammatory nature of the lesion.

Therefore, the development of computer-assisted diagnostic
tools has aided specialists in diagnostic and medical monitoring
by reducing the subjectivity of the procedure and by making it
more robust and agile. Further, it allows researchers and practi-
tioners to quantify the severity of WMH and to monitor the evo-
lution of individual WMH over time in longitudinal studies.

For example, Loizou et al.9 quantitatively analyzed WMH in
MS subjects based on texture and shape attributes. In their study,
MRI from 22 patients was manually segmented by a neurologist
and confirmed by a radiologist. Then the shape and texture
analyses were performed at two different time points: initial
diagnosis and 6 to 12 months after diagnosis. Texture features
were used both in differentiating between normal and abnormal
tissues and in assessing disease onset, while shape features were
used to evaluate the evolution of the lesions (longitudinal study).
Nine texture features were computed from the spatial gray-level
dependence matrix, also known as a gray-level co-occurrence
matrix (GLCM): contrast, sum of squares, inverse difference
moment, sum average, sum variance, sum entropy, entropy, dif-
ference variance, and difference entropy. Also, 12 shape features
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were computed: x-coordinate maximum length (maximum
length in the horizontal coordinate), y-coordinate maximum
length (maximum length in the vertical coordinate), area, perim-
eter, perimeter/area, eccentricity, equivalence diameter, major
axis length, minor axis length, centroid, convex area, and ori-
entation. After feature extraction for each subject, the mean fea-
ture value was computed for lesions at 0 months, lesions at 6 to
12 months, and normal white matter. The results showed that
there is no significant difference between most of the shape
and texture features extracted at diagnosis and the same features
determined 6 months after diagnosis. However, they noticed a
significant difference between most of the texture features
extracted from the normal white matter tissue and from the
lesions at 0 and 6 to 12 months.

A computer-assisted method for performing automatic seg-
mentation of WMH in cranial MRI that uses the k-nearest neigh-
bor (kNN) classifier based on voxel gray-level intensities and
spatial information was proposed by Anbeek et al.10 This
method generated probability maps representing the probability
that each voxel is a part of a WMH infarct, and experimental
analysis was performed in a set of 20 patients with stroke.

A method to detect and quantify WMH using supervised seg-
mentation in subjects with the risk of neurological disorders,
especially Alzheimers disease, was proposed by Ithapu et al.11

They applied two learning models [support vector machines
(SVMs) and random forests] to accomplish the proposed task
and used texture filters, called textons, and intensity variation
as features. Their experiments were performed in a dataset con-
taining T1-weighted and T2-weighted MR scans from a total
of 251 subjects: 169 healthy controls, 40 mild cognitively
impaired, and the remainder were demented. The authors
achieved significant improvement over the current state-of-the-
art unsupervised model.

Lao et al.12 presented a computer-assisted method to segment
WMH based on local features and SVM classifier. They used
multiple MRI sequences of 45 patients with cerebrovascular dis-
ease: T1-weighted, T2-weighted, proton density-weighted, and
FLAIR MR scans. They reported that the combination of these
four different MR acquisition protocols with SVM makes pos-
sible the development of a relatively robust and fully automated
segmentation method of white matter abnormalities.

Zimring et al.13 introduced an automatic algorithm for the
detecting and contouring of MS lesions in the brain MRI,
described in the paper as brighter regions within the image. The
method was based on the adaptive threshold algorithm and arti-
ficial neural networks’ classifier. It was applied in a set of 45
images acquired from 14 patients with MS.

Another related work based on artificial neural networks’
classifier aimed to segment WMH in MRI.14 The multispectral
segmentation technique proposed in this study was quantita-
tively compared with manually delineated regions. A total of
36 images from six brain volumes were analyzed twice, each
by two researchers, under the supervision of a neuroradiologist.
Results indicated that the segmentation technique proposed by
these researchers facilitates the analysis of MRI. In addition, the
method produced similar or lower intra- and inter-rate variabil-
ities when compared with a manual segmentation.

Klöppel et al.15 compared different methods that detect
WMH in the brain white matter in MRI using classifiers. For
comparison, experiments were conducted where these methods
were applied to a set of 20 patients with dementia and cognitive
deficits, and the comparison was based on intensity features

combined with both supervised and nonsupervised classifiers.
The intensity features were the gray-level value of the index
voxel and all voxels within a sphere of 8-mm radius. They also
applied Gabor filters (GFs) for feature extraction. They com-
puted features from 32 different GFs for each index voxel.
The authors emphasize that the classification methods present a
set of internal parameters that must be adhered to, limiting their
clinical applicability. Their main conclusion is that the SVM
classifier provides the best performance; however, the results
can be improved.

The aforementioned works aim to locate and/or segment
WMH with a specific etiology. However, none of these studies
compared the WMH of different etiologies. It is known that the
lesion characterization is usually determined by the patient path-
ology; however, it is possible to have patients with lesions of
different etiologies. A MS patient, for example, may have an
ischemic lesion. In cases like this, an image-based classifier may
be a fundamental tool in order to identify its etiology and, there-
fore, decide which treatment to use.

In this paper, we present a computer-assisted method based
on texture attributes and classifiers to distinguish WMH based
on their etiology. Texture attributes’ extraction is based on dif-
ferent approaches, such as the co-occurrence matrix, run-length
matrix, gradient, and histogram in order to analyze their texture
discrimination. We also compare and/or combine multiple clas-
sifiers such as SVM, kNN, linear discriminant analysis (LDA),
and optimum path forest (OPF).

2 Methodology
The proposed method was initiated upon MRI acquisition and
finalized with the classification. The method returns the corre-
sponding class of each region of interest (ROI): normal white
matter, WMH with ischemic etiology, or WMH with demyelin-
ating etiology, as the output. The method was subdivided into
four main steps. First, the image acquisition procedure was per-
formed using the MRI scanner, followed by the manual ROI
extraction and annotation performed by a specialist. Second,
texture analysis in which the texture attributes were extracted
from each ROI was performed and it was followed by the attrib-
ute selection procedure (third step). Finally, the classification
step was performed (Fig. 1).

The algorithms comprising this methodology were devel-
oped on Adessowiki,16 a web-based collaborative environment
for development and documentation of scientific computing
algorithms. All codes were written in the Python language
and are available on Adessowiki.

2.1 Image Acquisition and Manual Region of
Interest Extraction

Our image database was generated using the T2-weighted MRI
and it was obtained in the axial plane (6-mm thick, flip angle
170 deg, repetition time 4800 ms, echo time 128 ms,
matrix size ¼ 256 × 256, and FOV ¼ 21 × 23 cm) on a Elscint
1.5T Prestige scanner at the Faculty of Medical Science (FCM)
of University of Campinas (UNICAMP). All 54 patients and 19

Fig. 1 Overview of the proposed method: image acquisition and
manual region of interest (ROI) extraction, followed by the texture
analysis and attributes selection, and finalized by classification.
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healthy volunteers were informed in advance and signed a free
and informed consent form approved by the Research Ethics
Committees of FCM-UNICAMP. The selected group was
already diagnosed with MS or stroke, presented a wide range
of ages, and both men and women were included. ROIs were
manually extracted from two-dimenional slices of the T2-
weighted MR images and annotated based on the clinical
data of the patients. WMH areas were identified in the manual
process as bright areas within the white matter on T2 weighted
MR images.

The analysis derived 76 ROIs of normal white matter from 19
healthy volunteers, 64 ROIs of WMH with ischemic etiology
from 4 patients with stroke, and 143 ROIs representing
WMH with demyelinating etiology from 50 patients with
MS. Multiple ROIs were extracted from each patient, usually
with irregular sizes and shapes (Fig. 2). There were no visible
differences between demyelinating and ischemic WMHs on MR
images.

The extracted WMH ROIs did not preserve the lesion boun-
daries and shapes. This happens because the criterion for bound-
ing these ROIs was to segment only lesion, thus the region
localized exactly in the frontier between the lesion and normal
tissue (borders) was not used. Normal white matter ROIs were
delineated following similar shape, localization, and size of
WMH ROIs.

2.2 Attributes Extraction

Color and shape attributes were not applied, as MRI is gray-
scale and our ROIs did not preserve the WMH boundaries
and shapes. In addition, since size and shape of the lesions
are not regular among classes, it is not possible to use shape
attributes to distinguish normal white matter, WMH with demy-
elinating nature, and WMH with ischemic nature.

Thus, we only used texture attributes. The extracted attrib-
utes were determined based on the following texture analysis
approaches.

2.2.1 Statistical approach based on the gray-level
histogram

The histogram analyzes the gray-level distribution in an ROI.17

We extracted nine statistical measures from the histogram:
mean, variance, skewness, kurtosis, 1% percentile, 10% percen-
tile, 50% percentile, 90% percentile, and 99% percentile.

2.2.2 Gray-level co-occurrence matrices approach

The co-occurrence matrix18 analyzes the occurrence of pairs of
pixels with gray levels i and j in an image given a specific offset
and orientation between them. We computed the co-occurrence

matrix for different distances (1, 2, 3, 4, and 5) and in different
orientations (0 deg, 45 deg, 90 deg, and 135 deg). From each co-
occurrence matrix, 11 texture attributes were extracted: angular
second moment, contrast, correlation, sum of squares, inverse
difference moment, sum average, sum variance, sum entropy,
entropy, difference variance, and difference entropy. In order
to achieve rotation invariant attributes, the mean of attributes
extracted in different orientations within a specific distance
were computed. Thus, 55 texture attributes were computed
from GLCM, since it used five distances.

2.2.3 Run-length matrix approach

The run-length matrix19 analyzes the frequency in which a spe-
cific number of pixels with the same gray-level occurs consecu-
tively in a determined direction. We computed this matrix in four
different orientations (0 deg, 45 deg, 90 deg, and 135 deg) and
extracted five texture attributes from each run-length matrix: run
length nonuniformity, grey-level nonuniformity, long run
emphasis, short run emphasis, and run percentage. In order
to achieve rotation invariant attributes, the means of attributes
extracted in different orientations were computed.

2.2.4 Statistical approach based on the gradient

The gradient presents directional changes on the image gray
level. We extracted five statistical measures based on the
gray-level distribution of each ROI’s gradient:17 mean, variance,
skewness, kurtosis, and percentage of pixels with nonzero
gradient.

A total of 74 texture attributes were computed for each ROI
through these approaches, and were then normalized between 0
and 1. This feature normalization was performed population wise.

2.3 Attributes Selection

We applied two different methods of attribute selection: princi-
pal component analysis (PCA) and the decision tree algorithm.
For both methods, we used a python library called scikits-
learn.20 PCA is a mathematical procedure proposed in 1901
by Karl Pearson to reduce a dataset by discarding redundant
information. The result is a lower number of noncorrelated
attributes called principal components. This compact represen-
tation makes the following classification step faster.21

In our experiments, we used PCA as an attribute transforma-
tion in which the principal components’ vectors were used as
new attributes. In order to compute the number of principal com-
ponents to retain, we used an automatic method to choose the
PCAs’ dimensionality proposed by Minka.22 In this method,
PCA is interpreted as a density estimation, and a Bayesian
model selection is used to determine the dimensionality of the
data.

The decision tree algorithm23 was originally intended for
classification, but recently, it has been largely used as an attrib-
ute selection method. The main goal of this technique is to gen-
erate a tree structure that summarizes the relevant information of
the input data, enabling its visualization and interpretation. Each
internal node in the tree structure represents an attribute test in
which possible results are indicated in the edges. Finally, the
external nodes present the final prediction. After decision tree
construction, it is possible to choose the most discriminant
attributes.

Fig. 2 Samples of extracted ROIs of different size, shape, and locali-
zation: (a) normal white matter ROI, (b) white matter hyperintensity
(WMH) with demyelinating etiology ROI, and (c) WMH with ischemic
etiology ROI.
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In order to choose the most discriminant attributes, we first
compute the discrimination degree of each attribute by using a
method called the mean decrease impurity, also known as the
Gini importance.24 For each internal node that splits on a spe-
cific feature, the error reduction of that node weighted by the
probability of reaching that node is computed. This probability
is represented by the number of samples that was routed to the
node over all trees of the ensemble. Thereafter, all features
whose discrimination degree is lower than the mean discrimina-
tion degree are discarded. It is important to notice that these dis-
crimination degree values are relative to a specific dataset. Thus,
it is not possible to compare discrimination degrees between dif-
ferent datasets.

2.4 Classification

The final step of the proposed methodology aimed to distinguish
the previous extracted WMH ROIs according to their etiology
by using two different approaches: to distinguish normal white
matter from WMH as a first step and then to distinguish ische-
mic WMH from demyelinating WMH; or to distinguish normal
white matter, ischemic WMH, and demyelinating WMH at
once. The classifiers SVM, OPF, LDA, and kNN were designed
based on texture features extracted from ROIs of normal white
matter, ischemic WMH, and demyelinating WMH.

SVM is a supervised learning method that can be applied to
classification or regression. It performs classification by con-
structing a set of hyperplanes in a high-dimensional space
that optimally separates the data into two categories.25 The
OPF26 classifier models the data classification task as a partition
problem in a graph and can be used as a supervised or unsuper-
vised classification method. LDA is a parametric and statistical
method that can be used not only in the attributes’ selection step,
but also in the classification step. The kNN decision rule assigns
the points to an unclassified sample with the most frequent label
of its k-nearest previously classified points.27 The 1NN classi-
fier, kNN classifier using k ¼ 1, presents many conceptual simi-
larities to the OPF classifier, and it is possible to obtain the 1NN
classifier by considering all training samples of the OPF as
prototypes.28

We executed the proposed tasks using SVM, OPF, LDA, and
kNN classifiers in order to compare their accuracy rates by using
the scikits-learn library. The method used to assess the classifier
accuracy through randomly sampled partitions of data was the
10-fold cross-validation, in which 10% of the ROIs goes into the
test set, while 90% of the ROIs goes into the training set in
each fold.

2.4.1 Fusion of classifiers

The fusion of classifiers aimed to achieve better accuracy rates
through the combination of the results of each classifier using
two distinct approaches: bagging method (equally weighted vot-
ing) and fusion by SVM.

In fusion by SVM, the individual classifiers’ results were
used to train and test an SVM classifier which represented
the final result of the fusion procedure.29 In order to perform
this fusion, the dataset was initially split into three different
sets: training, testing, and validation. The training set was
used to train the individual classifiers, and the testing set was
used to test them. Then an SVM classifier was trained with
the individual classifiers’ results in the testing set. Finally,

the SVM classifier was tested with the result of the individual
classifiers on the validation set, generating the fusion result.

In order to optimize the fusion of the classifiers’ procedure,
only the classifiers with high diversity measures should be com-
bined.29 Each diversity measure computes the agreements or dis-
agreements between pairs of classifiers when dealing with the
same dataset. Thus, the diversity measures assess the correlation
of classifiers and this information can be used to determine the
most appropriate ones to be combined.

Diversity measures are based on a matrix that comprises the
relationship between pairs of classifiers, denoted byM, with the
percentage of hits or misses of the classifiers ci and cj (Table 1).
The value a reflects the percentage of times that both classifiers
present correct results. The values b and c, on the other hand,
present the percentage in which ci misses the classification
while cj produces a hit classification or vice-versa. Finally,
the value d represents the percentage in which both classifiers
present incorrect results.

We considered as diversity measures double fault (DFM), Q
statistic (QSTAT), and iterative agreement (IA),30 defined as
follows:

DFMi;j ¼ d; (1)

QSTATi;j ¼
ad − bc
adþ bc

; (2)

IAi;j ¼
2ðac − bdÞ

ðaþ bÞðcþ dÞ þ ðaþ cÞðbþ dÞ : (3)

3 Experimental Results and Discussion
Experiments were conducted using texture attributes and clas-
sifiers to distinguish WMH based on their etiology using differ-
ent approaches: to distinguish normal white matter from WMH
(L/NL task) and then to distinguish WMH with ischemic etiol-
ogy from WMH with demyelinating etiology (D/I task), or to
design a classifier to distinguish three classes at once: normal
white matter, WMH with ischemic etiology, and WMH with
demyelinating etiology (NL/D/I task). Experiments measured
the texture discrimination of the attributes, the effectiveness
of the attribute selection methods, and the classifiers’ accuracy
during the performance of these different tasks.

Classification tasks were accomplished by SVM, kNN,
LDA, and OPF using different parameter configurations. For
SVM, we tested both linear and RBF kernels, and the parameters
were selected through a grid-search technique. We also simu-
lated different configurations of OPF by changing the distance
metric (Euclidean or Manhattan) and kNN by varying k values
(k ¼ 1, k ¼ 3, and k ¼ 5). Finally, we performed experiments
with different attribute selection techniques, such as PCA and

Table 1 Matrix M representing the percentage of agreement
between two classifiers: ci and cj .

Positive ci Negative ci

Positive cj a b

Negative cj c d
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decision tree, in order to find the best set of attributes to distin-
guish the different classes.

Among all these possible combinations of techniques and
parameter configurations, the best results achieved for each
one of the tasks are shown in Table 2. The classifier with the
best accuracy rate for the L/NL task was SVM with an RBF
kernel (C ¼ 1000 and γ ¼ 0.01), without any attribute selection
method. LDA presented an accuracy rate of 98.94%, whereas
kNN (k ¼ 1) and OPF (distance ¼ Manhattan) achieved identi-
cal results with an accuracy rate of 98.23%. In both cases, the
classifier was combined with the decision tree for attribute
selection.

The best classifier for the D/I task was SVM using an RBF
kernel (C ¼ 10 and γ ¼ 0.1) with an accuracy rate of 86.5%.
kNN combined with the decision tree presented an accuracy
rate of 83.57% using k ¼ 3. The LDA classifier with PCA
achieved an accuracy rate of 83.52%. The worst result was
observed for an OPF classifier with the Manhattan distance
combined with the decision tree.

Finally, the SVM classifier with an RBF kernel (C ¼ 10 and
γ ¼ 0.1) without any attributes selection technique achieved an
accuracy rate of 90.09% when performing the NL/D/I task.
Similar accuracy rates were achieved for kNN (k ¼ 5) combined
with the decision tree and LDA (approximately 87.6%), whereas
OPF with the Manhattan distance achieved an accuracy rate of
84.82% combined with PCA.

In addition to the comparison between the achieved accuracy
rates, we also analyzed the confusion matrix for each task. When
performing the L/NL task, the confusion matrix for SVM
showed that two ROIs were incorrectly classified (Table 3),
whereas the OPF confusion matrix indicated that only five sam-
ples were incorrectly classified; two WMH ROIs were classified
as normal white matter, whereas three ROIs were classified as
WMH; however, they were actually normal white matter
(Table 4). Thus, the difference between the classifiers that
achieved the highest and the lowest accuracy rates in this
task was not representative.

The confusion matrix of the classifiers with higher and lower
accuracy rates when performing the D/I task was compared
(Tables 5 and 6). The confusion matrix for SVM presented a
different error distribution as there was a higher number of
ROIs with ischemic WMH classified as demyelinating WMH
than vice versa. On the other hand, OPF errors occurred with
similar probabilities between classes since the number of demy-
elinating WMH classified as ischemic was similar to the number
of ischemic WMH classified as demyelinating.

Finally, we analyzed the confusion matrix for SVM when
performing the NL/D/I task with no attributes’ selection method
(Table 7). The results suggested that the D/I task was more com-
plex than the L/NL task, since the major number of misclassified
samples occurs between demyelinating and ischemic classes.

Table 2 Best accuracy rates achieved for the proposed tasks by varying the parameter setting and combining available techniques. Indication of
the applied attribute selection: (*) decision tree; (**) PCA; () none.

Task SVM kNN OPF LDA Bagging

L/NL 99.29� 0.01 98.23� 0.02* 98.23� 0.01* 98.94� 0.02 98.59� 0.02

D/I 86.5� 0.09 83.57� 0.07* 81.23� 0.06* 83.52� 0.06** 87.9� 0.05

NL/D/I 90.09� 0.05 87.63� 0.07* 84.82� 0.06** 87.61� 0.06 86.93� 0.06

Note: SVM, support vector machine; kNN, k-nearest neighbor; OPF, optimum path forest; LDA, linear discriminant analysis, bold value represents
the highest accuracy rates.

Table 3 Normalized confusion matrix of L/NL task using the SVM
classifier which achieved the highest accuracy rate.

Predicted classes

Lesion (L) Nonlesion (NL)

Actual
classes

Lesion (L) 0.7279 (206∕283) 0.0035 (1∕283)

Nonlesion (NL) 0.0035 (1∕283) 0.2651 (75∕283)

Table 4 Normalized confusion matrix of L/NL task using the OPF
classifier which achieved the lowest accuracy rate.

Predicted classes

Lesion (L) Nonlesion (NL)

Actual
classes

Lesion (L) 0.7244 (205∕283) 0.0070 (2∕283)

Nonlesion (NL) 0.0106 (3∕283) 0.258 (73∕283)

Table 5 Normalized confusion matrix of D/I task using the SVM clas-
sifier which achieved the highest accuracy rate.

Predicted classes

Demyelinating (D) Ischemic (I)

Actual
classes

Demyelinating (D) 0.6425 (133∕207) 0.0483 (10∕207)

Ischemic (I) 0.0869 (18∕207) 0.2223 (46∕207)

Table 6 Normalized confusion matrix of D/I task using the OPF clas-
sifier which achieved the lowest accuracy rate.

Predicted classes

Demyelinating (D) Ischemic (I)

Actual
classes

Demyelinating (D) 0.5894 (122∕207) 0.1014 (21∕207)

Ischemic (I) 0.0869 (18∕207) 0.2223 (46∕207)
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Only 1 of the 28 errors occurs between normal white matter and
WMH. In addition, it is possible to check the similarities
between performing WMH etiology-based classification in
one step (NL/D/I task) or two steps (L/NL and D/I tasks).
For example, the number of demyelinating WMH classified
as ischemic WMH is 10 on both D/I (Table 5) and NL/D/I
(Table 7) tasks when using the SVM classifier.

All these results were achieved using 10-fold ROI-wise
cross-validation, but we also performed experiments that
include a patient-wide folding. In this experiment, 75% of
the brains were used in the training and the remained 25% of
the brains generated the testing set. This fourfold patient-
wide was chosen in order to guarantee a reasonable number
of patients in each fold. The results using ROI-wise and
patient-wise folding were similar. This suggests that the
usage of different regions of the same subject into testing
and training sets is valid and does not represent an over fitting.

The combination of image processing and pattern recogni-
tion techniques presented a high accuracy rate in the solution
of an L/NL task, providing a good start point to the following
classification of WMH ROIs according to their etiology. This
indicates that the texture attributes extracted from ROIs were
representative and made classification easier to accomplish.
The classifier with the worst result presented an accuracy rate
of 98.23%, approximately 1% lower than the accuracy rate
obtained by the best classifier. Indeed, in a practical application
based on texture attributes that aims to distinguish normal white
matter from WMH as a first step, any proposed classifier (SVM,
LDA, kNN, or OPF) would be suitable, since they all presented
high accuracy rates. In this case, the choice of the method to be
used is based on other criteria such as algorithm implementation
complexity and processing time, among others.

The difference between the best and the worst classifiers in
the D/I task was approximately 5%, indicating that the most suit-
able classifier for this task is SVM without any attribute selec-
tion method (86.5%). The LDA classifier achieved the second
highest accuracy rate (approximately 3% lower than the SVM
accuracy rate), which is similar to SVM and has been widely
implemented and documented in the literature. Thus, our results
indicated that SVM is the optimal method to accomplish the
D/I task.

The results also confirmed that OPF and 1NN classifiers
present similar accuracy rates.28 For the NL/D/I task, we
obtained an accuracy of 83.75% for the OPF classifier using
the Euclidean distance and 84.11% for the 1NN classifier.
These rates confirmed the similarity between classifiers, with
the 1NN accuracy rate slightly higher.

Experiments on the NL/D/I task, in which the L/NL and the
D/I tasks were performed simultaneously, presented a similar
number of errors as they did when tasks were performed

independently. On both approaches, it was possible to verify
the same error distribution by analyzing the corresponding con-
fusion matrices. Thus, this combination represents a comprehen-
sive, efficient approach that is suitable for practical applications
assessing WMH etiology.

In addition to the analysis of the most effective results
achieved across these separate tasks, we also studied the influ-
ence of preprocessing, attributes’ quantization, attribute selec-
tion, and the fusion of classifiers on the results. These results
are presented in the next subsections.

3.1 Influence of Region of Interest Preprocessing

The brightness variation issues in MR images are often due to a
variation in the acquisition parameters and in the MRI field
strength. Since our dataset was acquired with the same MRI
equipment using the same acquisition parameters, the prepro-
cessing step was not considered a fundamental part of the
developed method. Nevertheless, we experimented with a pre-
processing technique since it is a step typically applied before
texture analysis.

Before the second step of the proposed method (Fig. 1), we
applied a preprocessing method through the normalization of the
ROI into the range of values ½μ� 3σ�, where μ represents the
mean of gray levels, and σ represents the standard deviation
of the analyzed ROI. This normalization modifies the gray-
level distribution inside the ROI, but does not preserve the rel-
ative variation between two gray levels, thus causing significant
variations in the texture attributes.

We achieved the best results using no preprocessing step
(Table 8). This indicates that the variation in gray levels of
the pixels causes a modification in the texture attributes, making
them less effective in differentiating normal white matter and
WMH and in the distinguishing different types of WMH,
since this normalization reduces the sensitivity which degrades
the texture information.31 We conclude that this normalization
makes more difficult to accomplish the classification step,

Table 7 Normalized confusion matrix of the NL/D/I task using SVM classifier which achieved the highest accuracy rate.

Predicted classes

Nonlesion (NL) Demyelinating (D) Ischemic (I)

Actual classes Nonlesion (NL) 0.2685 (76∕283) 0 (0∕283) 0 (0∕283)

Demyelinating (D) 0.0035 (1∕283) 0.4665 (132∕283) 0.0353 (10∕283)

Ischemic (I) 0 (0∕283) 0.0601 (17∕283) 0.1661(47∕283)

Table 8 Accuracy rate achieved by the proposed tasks with or with-
out the preprocessing step (normalization of regions of interest).

Task Classifier No preprocessing Normalization

L/NL SVM 99.29� 0.01 96.1� 0.02

D/I SVM 86.5� 0.09 82.57� 0.08

NL/D/I SVM 90.09� 0.05 83.78� 0.05

Note: Bold values represent the highest accuracy rates.
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because classifier efficiency is based on the representative
degree of texture information.

3.2 Influence of Attributes Quantization

The dimension of the co-occurrence matrix and run-length
matrix is intrinsically related to the quantization of the analyzed
image. Quantized images at a rate of 8 bits∕pixel present 256
possible gray levels, thus their co-occurrence matrix dimension
is 256 × 256 pixels. Such matrices are usually largely made up
of values of zero, since the majority of combinations of gray
level do not occur, and the statistical attributes extracted from
those matrices lose their capability to represent texture patterns.

The co-occurrence matrix approximates the joint probabil-
ities of all pair-wise combinations of gray levels. Owing to
the extreme number of elements with a value of zero, it produces
a poor approximation.32 A similar analysis could be applied for
the run-length matrix.

As some statistical attributes extracted from those matrices
are not efficient for classification using a large number of
gray levels, we performed a study in order to analyze the
ideal rate of quantization for the proposed tasks. We performed
experiments varying the quantization rate from 2 to 6 bits∕pixel.
Results indicated that the quantization rate that generated the
best result was 4 bits∕pixel (Table 9) and that quantization
parameters equal to two, three, five, or six generated texture
attributes with a lower representation capability.

3.3 Influence of Attribute Selection

We performed experiments using two different attribute selec-
tion methods: decision tree and PCA. Results indicated that
the use of an attribute selection method did not increase the
accuracy of SVM, which is the best classifier for each proposed
task (Table 10). This could be explained by the fact that SVM
assigns weights to the most relevant attributes, thus no relevant
attributes have a lower influence on the trained classifier.

Based on the results achieved for all classifiers performing
the D/I task (Table 11), it is evident that the accuracy rate of
the classifiers LDA, OPF, and kNN improved when the attribute
selection method was used.

There was no overall best attribute selection method as the
results varied according to the classifier and the performed task.
While OPF and kNN classifiers achieved the best accuracy rates
with the decision tree, LDA classifier presented the best results
using PCA (Table 11).

We also analyzed the discrimination degree of each texture
attribute extracted from ROIs, while performing the tasks L/NL
(Fig. 3), D/I (Fig. 4), and NL/D/I (Fig. 5). It was possible to
verify through discrimination analysis that the texture attributes
extracted from the co-occurrence matrix and the histogram were

Table 9 Accuracy rates achieved for the proposed tasks by changing the quantization parameter using SVM classifier.

Task 2 bits∕pixel 3 bits∕pixel 4 bits∕pixel 5 bits∕pixel 6 bits∕pixel

L/NL 96.46� 0.02 99.28� 0.01 99.29� 0.01 98.94� 0.02 98.22� 0.02

D/I 75.88� 0.01 85.5� 0.05 86.5� 0.09 84.52� 0.09 82.12� 0.08

NL/D/I 82.35� 0.04 89.02� 0.04 90.09� 0.05 87.63� 0.06 86.89� 0.07

Note: Bold values represent the highest accuracy rates.

Table 10 Accuracy rates achieved for the best classifiers of each
proposed task by using a different attribute selection method or
even using no attribute selection method.

Task Classifier
No attribute
selection

Decision
tree PCA

L/NL SVM 99.29� 0.01 99.29� 0.01 99.29� 0.01

D/I SVM 86.5� 0.09 86.5� 0.09 86� 0.09

NL/D/I SVM 90.09� 0.05 87.58� 0.06 90.09� 0.06

Note: Bold values represent the highest accuracy rates.

Table 11 Accuracy rates achieved on the D/I task when varying the
attribute selection method.

Classifier No attribute selection Decision tree PCA

SVM 86.5� 0.09 86.5� 0.09 86� 0.09

kNN 81.19� 0.09 83.57� 0.07 81.19� 0.09

OPF 80.26� 0.09 81.23� 0.06 77.21� 0.09

LDA 79.11� 0.07 81.57� 0.08 83.52� 0.06

Note: Bold values represent the highest accuracy rates.

Fig. 3 Representation of the attributes discrimination computed by
the decision tree algorithm while performing the L/NL task (in decreas-
ing order). Only the 30 most discriminating attributes are shown for
visualization purposes.
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the most frequent attributes of groups in all the proposed tasks,
stressing their relevance in the classification of normal white
matter, ischemic WMH, and demyelinating WMH (Figs. 3, 4,
and 5, respectively).

The three most important texture attributes for each task were
extracted from the histogram and from the GLCM (Table 12). In
addition, it is important to note that the same histogram attrib-
utes (percentiles 99% and 50%) are the two most relevant tex-
ture attributes for both the L/NL and NL/D/I tasks.

3.4 Influence of Fusion of Classifiers

Experiments were performed using all classifiers and by select-
ing some classifiers through the diversity metrics and perform-
ing the fusion of classifiers using a bagging method or fusion by
SVM. We tested the fusion of classifiers only on the D/I task
because it was the most complex task that was implemented.
The diversity metrics DFM and QSTAT indicated LDA and
kNN as the most diverse pair of classifiers. Further, the IA met-
ric indicated the classifiers SVM and kNN as the most diverse
pair (Fig. 6).

In summary, LDA, kNN, and SVM were selected as the most
diverse classifiers for at least one metric, whereas OPF was not
selected. In addition, kNN presented the highest degree of diver-
sity because it was selected by all metrics. The combination of
these diverse classifiers (LDA, kNN, and SVM) using the bag-
ging method achieved an accuracy rate of 87.9%, the maximum

Fig. 4 Representation of the attributes discrimination computed by
the decision tree algorithm while performing the D/I task (in decreas-
ing order). Only the 30 most discriminating attributes are shown for
visualization purposes.

Fig. 5 Representation of the attributes discrimination computed by
the decision tree algorithm while performing the NL/D/I task (in
decreasing order). Only the 30 most discriminating attributes are
shown for visualization purposes.

Table 12 Identification of the three most discriminating texture attrib-
utes of each task, extracted from Figs. 3–5.

Relevance L/NL task D/I task NL/D/I task

First Percentile 99%
(histogram)

Entropy
(GLCM)

Percentile 50%
(histogram)

Second Percentile 50%
(histogram)

Percentile 1%
(histogram)

Percentile 99%
(histogram)

Third Homogeneity
(GLCM)

Mean
(histogram)

Sum of squares
(GLCM)

Fig. 6 Selection of the most diverse pair of classifiers by using the
metrics double fault (DFM), iterative agreement (IA), and Q statistic
(QSTAT). The lowest value of each metric indicates the pair of clas-
sifiers with highest degree of diversity.

Table 13 Accuracy rates obtained on D/I task when performing
fusion of classifiers using the best configuration of each individual
classifier.

Fusion method LDA OPF kNN SVM Accuracy

Bagging x x x x 85.52� 0.06

SVM x x x x 83.14� 0.08

Bagging x o x x 87.9� 0.05

SVM x o x x 83.09� 0.06

Bagging x x o x 85.54� 0.06

Bagging o x x x 84.09� 0.07

Note: Bold values represent the highest accuracy rates.
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accuracy rate reached when using the fusion of classifiers’meth-
ods. The best accuracy rates obtained for the fusion of all clas-
sifiers or by selecting some classifiers through the diversity
metrics are summarized in Table 13.

The fusion by SVM generated lower results when compared
with bagging results, possibly because it was used for a limited
number of classifiers. It is important to note that for some clas-
sifiers’ combinations, such as the combination of SVM, OPF,
and kNN, fusion produced a lower accuracy rate than the indi-
vidual classifiers.

Other combinations, such as the fusion of LDA, kNN, and
SVM, presented a higher accuracy rate than individual classi-
fiers, highlighting the efficacy of using fusion and diversity met-
rics. This combination also achieved a better performance than
the combination of all classifiers, indicating that the inclusion of
OPF diminished fusion performance. This is probably due to the
majority vote (bagging) in the inclusion of a fourth classifier
(even number of classifiers) producing an inconsistent decision.

4 Conclusion and Perspectives
The main goal of this study was to determine if it is possible to
distinguish WMH based on their etiology (i.e., demyelinating or
ischemic nature) using image processing and pattern recognition
techniques. The proposed method comprises the application of
texture analysis to the ROI, followed by a classification step to
distinguish the classes: normal white matter, WMH with demy-
elinating nature, or WMH with ischemic nature.

Our experiments have shown that the combination of texture
analysis and classifiers is suitable to perform the proposed task.
We carried out two different approaches to solve this problem: to
distinguish normal white matter, ischemic WMH, and demyelin-
ating WMH at once (NL/D/I task) or to perform it in separated
steps (L/NL and D/I tasks). The results suggest that the combi-
nation of the L/NL and D/I tasks in one single step is suitable for
practical applications of WMH analysis, as the NL/D/I task
presents a similar number of errors compared with performance
of the tasks independently, and thus, represents an efficient
approach.

Among the classifiers compared in the study, SVM presented
the best accuracy rates in the execution of all proposed tasks. In
addition, through discrimination degree analysis, we can con-
clude that the texture attributes extracted from the co-occurrence
matrix and from the histogram are the most relevant ones for
accomplishing the proposed tasks.

In addition, it can also be noted that an attribute selection step
is desirable, as all classifiers increased their accuracy rates when
combined with an attribute selection method except the SVM
classifier. This may be explained by the fact that the SVM per-
formed this procedure intrinsically during the construction of
the classifier model.

In future works, we intend to eliminate the manual ROI
extraction step by developing an automatic method for WMH
segmentation based on texture classification motivated by the
high accuracy rates achieved to distinguish normal white matter
from WMH (L/NL task). A WMH segmentation method based
on texture classification would require almost no parameters to
be tunned, and would neither require additional MRI modalities
nor atlases. We are also planning to expand the image database
by including images acquired with different MRI equipment in
order to validate the method and to verify its robustness. In this
case, it will be necessary to analyze and minimize the influence
of MRI acquisition conditions in the texture analysis by using

preprocessing techniques such as inhomogeneity correction,
image normalization, and quantization. The chosen technique
must preserve the discrimination degree of the attributes.
Finally, note that the classifiers used to perform the D/I task pre-
sented the worst accuracy rates, and in order to improve this
method and to better understand the problem, we are planning
further investigation on the extraction of other attributes such as
scale invariant feature transformation and local binary patterns.
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