
EPIDEMIOLOGICAL FACTORS – GENERAL CONSIDERATIONS

The overall incidence of Parkinson’s disease, based on multi-

ple studies world-wide, is approximately 10-20 per 100,000 per

annum. Estimates of PD prevalence vary considerably, but the

currently accepted figure is approximately 200-300 per 100,000

population.1 This is age-dependent, with prevalence rates per

100,000 ranging from approximately 5 for age under 40 to 300-

700 in the 7th decade and >700 for age over 70. 

Considerations of incidence, prevalence and possible

causative factors should take into account the fact that diagnos-

tic accuracy based on initial assessment is probably only about

65% and even when followed over an extended time, this

improves to 76%.2 Furthermore, many case-control studies of

environmental exposure have included data derived from inform-

ants other than the patient. Inclusion of such proxy-derived data

may substantially degrade the reliability of the information.3

GENETIC FACTORS

In general, twin studies have shown a very low rate of con-

cordance,4 and this has traditionally been accepted as evidence

against a major genetic basis. However, when co-twins were per-

sonally examined by the investigators, a higher than expected

(3/9 monozygotic; 3/12 dizygotic twins affected) level of con-

cordance was demonstrated.5 Twin studies are not conclusive,

even in these ideal circumstances, as subclinical abnormalities of

the nigrostriatal dopamine system may not be expressed for sev-

eral years. Thus, a PET study found abnormal 6-fluorodopa

uptake in 40% of asymptomatic monozygotic twins of PD

patients and in 28% of dizygotic twins. However, 3 of the 4

“asymptomatic” MZ twins had tremor at the time of the PET

scan (and 1 went on to develop PD within 2 years).6 The largest

twin study to date, based on 19,842 white male twins enrolled in

the National Academy of Sciences/National Research Council

World War II Veteran Twins Registry was recently reported.

Concordance rates were similar in monozygotic and dizygotic

twin pairs; however, the concordance risk was much higher when
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ABSTRACT: Controversy over the etiology and pathogenesis of Parkinson’s disease (PD) has contin-

ued for many years and while the details have changed, the uncertainty persists. Although heritability

was most emphatically refuted a decade ago by many investigators, recent progress firmly indicates that

genetic factors at least play a role, although probably to a variable degree from one individual to anoth-

er. Evidence for a variety of other etiological factors is amassed from epidemiological studies, animal

models, molecular and cellular biology. Genetic factors, infectious and immunological abnormalities, the

effects of ageing, toxins (endogenous as well as exogenous) and other environmental factors may all con-

tribute to the development of PD. Loss of nigral dopaminergic neurons may be mediated by varying

combinations of oxidative free radical toxicity, impaired mitochondrial function,  “weak excitotoxicity”

and abnormal handling of cytoskeletal proteins, all of which may shift the balance regulating apoptotic

cell death.

RÉSUMÉ: Étiologie de la maladie de Parkinson.  La controverse entourant l’étiologie et la pathogenèse de la mal-

adie de Parkinson (MP) dure depuis plusieurs années et, bien que les détails ont changé, l’incertitude persiste.  Bien

que l’héritabilité de la maladie ait été réfutée avec emphase par plusieurs investigateurs il y a une dizaine d’années,

des progrès récents indiquent clairement que des facteurs génétiques sont en cause, probablement à des degrés vari-

ables d’un individu à l’autre.  Des données sur une variété d’autres facteurs étiologiques, provenant d’études

épidémiologiques, de modèles animaux, de la biologie moléculaire et cellulaire, s’accumulent.  Les facteurs géné-

tiques, anomalies infectieuses et immunologiques, les effets du vieillissement, les toxines (endogènes et exogènes)

et les autres facteurs environnementaux peuvent contribuer au développement de la MP.  La perte de neurones

dopaminergiques dans la substance noire peut être médiée par différentes combinaisons d’effets toxiques oxydatifs

dus à des radicaux libres, une fonction mitochondriale altérée, une “faible excitotoxicité” et un métabolisme anormal

des protéines du cytosquelette, qui peuvent tous déséquilibrer la régulation de la mort cellulaire par apoptose.
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disease onset prior to the age of 50, suggesting that genetic fac-

tors may play a greater role in disease of earlier onset.6a

There is an increased incidence of family history of

Parkinson’s in affected individuals (16% vs. 4% in controls; 

age-adjusted odds ratio 3.5),7 which may not entirely reflect

genetic factors. Families with a dominantly inherited condition

which is pathologically indistinguishable from PD and clinically

similar have been identified, but most investigators consider

these to be special cases. This includes the recently described

association of familial parkinsonism with a mutation (Ala53Thr)

of the gene encoding α-synuclein in the Contursi kindred, where

the age of onset is younger than average, tremor is less frequent

and progression is more rapid.8,9 Although this mutation was also

found in other families, they were all of Greek or Sicilian origin,

raising the possibility of a founder effect. A different (Ala30Pro)

mutation in this gene has been described in a German family with

parkinsonism.10 The α-synuclein mutation has now been exclud-

ed in numerous other families with dominantly inherited parkin-

sonism,11,12 as well as pathologically verified sporadic PD.13

Linkage in one family has recently been demonstrated to the

short arm of the 2nd chromosome.14 Despite the recent interest in

mitochondrial abnormalities (see below), there has been no con-

vincing evidence of maternal transmission or mitochondrial

DNA abnormalities in PD, although analysis of cytoplasmic

hybrids (cybrids) suggests that the abnormality of Complex I is

indeed derived from mitochondrial DNA.14a While juvenile

parkinsonism is linked to a region of the long arm of the 6th

chromosome, where mitochondrial (Mn) superoxide dismutase

(SOD2) is encoded, SOD2 expression was high in a single

patient with this disorder15 and the mutation has recently been

identified in a gene called parkin. The N-terminal sequence of

Parkin is similar to the ubiquitin family of proteins and it is there-

fore possible that juvenile parkinsonism results from impaired

proteolytic processing.16 The importance of this mechanism is

further supported by the recent identification of an Ile93Met

mutation of the ubiquitin carboxy-terminal hydrolase L1 (UCH-

L1) gene in a German pedigree with typical, adult-onset parkin-

sonism.16a Genetically inherited susceptibility to certain toxins

has been suggested by diminished debrisoquine hydroxylation,

sulfoxidation and S-methylation reactions. An increased inci-

dence of mutant alleles of the CYP2D6 gene has been reported

by multiple groups, but this does not seem to segregate with dis-

ease expression within families with multiple affected members.

Similarly, reports that PD may be associated with increased fre-

quency of an MAO-B allele17 have not been consistently repro-

duced. A number of other candidate genes (GPX1, TH, BDNF,

CAT, APP and SOD1, as well as CYP2D6) have been excluded

in at least some families.18,19

NATURE VS. NURTURE – POPULATION STUDIES

Although PD is in general widespread, some populations

seem to have a lower incidence. This would include South

African and Nigerian blacks, although blacks living in

Mississippi are affected to a comparable degree as the white pop-

ulation20 and a recent autopsy study suggests that black Africans

have an equivalent prevalence of incidental Lewy body disease.21

Lower incidences have likewise been reported in Oriental popu-

lations (but not in Oriental Americans and possibly not in

Taiwanese).22,23 While many investigators have reported an

increased risk of having a close relative with PD in patients com-

pared to controls, one interesting study of families in which

members of multiple generations were affected suggested that

disease onset clustered around the same calendar year rather

than a comparable chronological age,24 again suggesting shared

exposure (and susceptibility?) to some unidentified environmen-

tal factor. 

Epidemiological studies have also led to more direct support

for an environmental hypothesis. Young-onset parkinsonism has

been associated in a number of studies with exposure to well

water.25 No specific toxin has been identified and the well water

link has not been found in all studies, although a more consistent

factor seems to be rural upbringing. One compelling rural factor

is pesticide/herbicide exposure, although this has also not been

reproduced in all studies.26-29 The association may be strength-

ened by a recent post-mortem report of increased detection of the

lipid-soluble pesticide (and mitochondrial toxin) dieldrin in the

brains of Parkinson patients compared to Alzheimer and normal

controls.30

While rural environments are associated with an increased

risk of PD in the industrialized world, the opposite seems to be

true in China, where exposure to industrial chemicals is less like-

ly to occur in the countryside. In China, consumption of well

water or high ethanol intake are associated with a reduced risk of

Parkinson’s, whereas the risk is increased in those who consume

river water or live in proximity to rubber plants.31 Data from the

Canadian study on ageing recently suggested a relationship to

plastic or epoxy resin exposure. 32

Numerous investigators have suggested an inverse relation-

ship between smoking and Parkinson’s disease, but this finding

has remained controversial and most of the reports were based on

case-control studies.3 3 - 3 6 Whereas a recent case-control study con-

firmed a lower prevalence of c u r r e n t smoking in Parkinsonians,

but no difference in prior exposure (suggesting that there is no

protective effect, but rather that PD itself leads to reduced smok-

i n g ) ,3 4 another p r o s p e c t i v e study of more than 8,000 men enrolled

in the Honolulu Heart Program did indeed support a reduced risk

of Parkinson’s in smokers or ex-smokers (relative risk = 0.39),

with an apparent dose-response effect.3 7 If the relationship is

indeed a real one, there still exists the question of whether it

reflects a “rigid” premorbid personality trait, as has been repeat-

edly described in PD, or a lower propensity to nicotine addiction,

rather than a “protective” effect of smoking, perhaps mediated by

stimulation of toxin-neutralizing enzymatic pathways. 

Some retrospective studies have found an increased risk of

PD following head injury,27-29 but this has been quite variable.38

INFECTIOUS AND IMMUNOLOGIC MECHANISMS

The pandemic of encephalitis lethargica in the early 20th cen-

tury led to parkinsonism which was clinically and pathologically

distinct from idiopathic disease, but there were nonetheless

expectations that an infectious etiology might be found for the

“idiopathic” disorder. Sporadic post-encephalitic parkinsonism

does still occur, albeit very rarely, but repeated efforts to identi-

fy an infectious agent which is consistently associated with the

development of PD have failed. Interest has been rekindled by

the appearance of clinically typical parkinsonism in patients with

encephalitis, with image evidence of damage confined to the 
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substantia nigra,39 as well as the demonstration of relatively

selective involvement of the substantia nigra by neurovirulent

influenza A.40 Parkinsonism is not transmissible to primates,

effectively ruling out a “slow viral” or prion-related etiology.

Activated microglia are seen in the substantia nigra of patients

dying with Parkinson’s disease.41 Whether or not these reflect a

response to ongoing cell death as opposed to the primary mech-

anism of neuronal degeneration is, however, unresolved.

Although there have been reports of disease-specific antineu-

ronal antibodies in the CSF and of complement-dependent

dopaminergic toxicity in PD serum,42 there has been no direct

evidence to suggest a primary immunological abnormality in PD.

IS PARKINSON’S A RESPONSE TO NORMAL AGEING?

Normal ageing is associated with clinical features which are

somewhat reminiscent of PD, including the assumption of a

stooped posture, slowing of body movements and a reduction of

associated movements. Ageing is associated with a linear decline

of pigmented neurons in the substantia nigra4 3 and with

decreased levels of striatal dopamine, tyrosine hydroxylase and

dopa decarboxylase. This has led to the suggestion that PD may

result from the effects of ageing superimposed upon an insult to

the nigrostriatal system earlier in life, which may go unrecog-

nized, as symptoms of parkinsonism do not become apparent

until dopamine depletion exceeds 50%. However, the pattern of

age-related striatal dopamine depletion is different from PD44

and the presence of activated microglia at all stages of PD41 sug-

gests that there is an ongoing active process. The original ageing

hypothesis has been revised, based on an analysis of rates of dis-

ease progression estimated from repeated clinical examination.45

It is now proposed that the rate of PD progression is compatible

with either an event which kills some nigral neurons and dam-

ages others, leading to reduced survival, or with an event which

initiates a process that subsequently unfolds at a constant

rate.46,47

TOXINS AND PARKINSON’S DISEASE

A variety of toxins have been associated with the develop-

ment of parkinsonism and neuronal death, including cyanide,

manganese, carbon disulfide, methanol and organic solvents. In

general, however, the pattern of neuronal death is different from

that seen in idiopathic PD and clinical features are variable. As

noted above, PD may be associated with exposure to well water,

pesticides, epoxy resins or other chemicals, but to date, no spe-

cific toxic constituent has been identified. Thus, the identifica-

tion in the early 1980s of a group of drug addicts who developed

typical clinical features following exposure to N-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the concurrent

demonstration that MPTP is a selective nigral toxin in primates

was a significant breakthrough. In non-human primates, MPTP

leads to selective depletion of dopamine and preferential destruc-

tion of the A9 dopamine neurons, but lesser involvement of the

A10 neurons and locus coeruleus are also seen. Furthermore,

aged animals exposed to MPTP may develop structures resem-

bling Lewy bodies. Some strains of mice develop dopamine

depletion, but nigral cell death is not universally observed,48,49

with strain-related differences. Rats are resistant to peripherally

administered MPTP, in part related to catabolism in capillary

w a l l s ,50 but also reflecting reduced sensitivity to MPP+,5 1

although aged rats are partially susceptible and MPP+ is partial-

ly effective following direct intracerebral administration.52,53 

MPTP undergoes MAO-B-dependent conversion to MPP+ in

glial cells. MPP+ is then in turn released into the extracellular

space and selectively taken up by DA neuronal terminals

(dependent upon the membrane DA transporter), where it then

inhibits mitochondrial Complex I activity.54 A variety of natural-

ly occurring isoquinolines which are structurally analogous to

MPTP, inhibit mitochrondrial Complex I55 and can enhance

apoptotic death in dopaminergic neurons56 have been implicated

as endogenous neurotoxins in PD. 

There is a considerable amount of controversial literature on

the relationship between MPTP toxicity and excitatory amino

acid transmission. Excitatory amino acid inhibitors might be

expected to reduce the symptoms and signs of PD by blocking

excessive output from the subthalamic nucleus, but the potential

role of excitatory amino acids as endogenous toxins in PD is less

clear. Some investigators have reported that MPTP or MPP+ tox-

icity can be prevented by the non-competitive NMDA antagonist

MK-80157 and MPP+ enhances glutamate toxicity to dopaminer-

gic neurons in culture.58 It has been suggested that the acute

phase of MPTP/MPP+ toxicity may be associated with excessive

depolarization-induced stimulation of glutamate receptors and

that neurons are more susceptible to the resultant influx of calci-

um ions because of impaired mitochondrial function (the “weak

excitotoxic” hypothesis).59 There is indeed an excitatory amino

acid input to the substantia nigra from the pedunculopontine and

subthalamic nuclei, but many labs have failed to reproduce the

protective effects of MK-801 in this model and the proposed

mechanism remains speculative. However, protection against 6-

hydroxydopamine-induced nigral degeneration following sub-

thalamic nucleus lesions in the rat has also been described.60

Given that amantadine has properties as an excitatory amino acid

antagonist, a novel rationale for this medication in Parkinson’s

disease is suggested and indeed its use has been associated with

prolonged survival.61

ENDOGENOUS TOXINS – THE FREE RADICAL HYPOTHESIS

A converging amount of evidence suggests that Parkinson

patients may suffer the combined effects of multiple factors cul-

minating in free radical-induced damage. MAO-catalyzed oxida-

tive deamination of dopamine results in the formation of hydro-

gen peroxide. Dopamine additionally undergoes autoxidation

reactions which result in the formation of reactive quinones and

semiquinones (also the mechanism of 6-hydroxydopamine toxi-

city) as well as the superoxide anion radical, the latter subse-

quently cleared by superoxide dismutase to form more hydrogen

peroxide. Under usual conditions, hydrogen peroxide is cleared

by reduced glutathione (via glutathione peroxidase) or catalase,

but in Parkinson patients, there is a deficiency of reduced glu-

tathione (GSH) which appears to be relatively disease specific

and restricted to the substantia nigra.62 A partial deficiency is

also seen in the brains of people with incidental Lewy body dis-

ease.63 This deficiency may in part be a consequence of increased

oxidative stress (via conversion to oxidized glutathione), but may

also reflect degradation secondary to increased activity of γ-glu-

t a m y l t r a n s p e p t i d a s e .6 4 This depletion of GSH may lead to

impaired clearance of hydrogen peroxide, which is now available
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to undergo non-enzymatic (Fenton) reactions with ferrous ions,

resulting in the formation of the highly toxic hydroxyl radical.

The resultant ferric ions can also react with the superoxide anion

radical to form hydroxyl radicals (Haber-Weiss reaction).65,66

Hydroxyl radicals are highly reactive and will in particular result

in the formation of lipid peroxides which damage cell mem-

branes. 

Interest in oxyradical mechanisms of neurodegenerative dis-

ease increased with the identification of SOD1 mutations in some

cases of familial ALS.67 However, motor neuron degeneration is

associated with a gain of mutant SOD1 function68 and degenera-

tion may in part be mediated by peroxynitrite formation;69 SOD

mutations have not been associated with idiopathic PD. In juve-

nile autosomal recessive parkinsonism secondary to mutations of

the parkin gene on chromosome 6q, there may be a gain of SOD2

function.15

What evidence, direct or indirect, suggests that this cascade of

events might occur in PD? Nigral iron content is increased in PD

substantia nigra and it may furthermore be insufficiently

“trapped” by ferritin, which is (variably) deficient.6 9 a , b

Neuromelanin can bind iron and facilitate Fenton and Haber-

Weiss reactions. However, 6-hydroxydopamine-induced degener-

ation of the substantia nigra also results in elevated iron levels, as

do multiple other degenerative conditions, so this finding may be

secondary. Deficiency of reduced glutathione has been demon-

strated, as have changes in SOD, which are less consistent, but

would nonetheless be compatible with oxidant stress. Depletion

of GSH alone fails to result in nigral cell loss,7 0 but potentiates

MPTP or MPP+ toxicity.7 1 In cortical neurons, GSH deficiency

results in cell death mediated by 1 2 - l i p o x y g e n a s e.72 A number of

studies have suggested abnormal lipid peroxidation in PD7 3 a n d

further evidence of free radical toxicity is derived from the

demonstration of increased 8-hydroxy-2'-deoxyguanosine, a

marker of oxyradical-mediated DNA damage, in PD brain.7 4 T h i s

increase was seen in all brain regions studied (except the cerebel-

lum), however, and may be secondary to L-DOPA therapy, so the

pathogenetic significance of this finding is as yet unresolved. 

MITOCHONDRIAL DYSFUNCTION

A number of studies now suggest that there is an abnormality

of nigral mitochondrial Complex I in PD. This appears to be rel-

atively region specific within brain, but abnormalities in other

tissues (platelets and muscle) and of other components of the

electron transport chain have been less consistent.75,76 Some

degree of disease specificity has also been demonstrated, sug-

gesting that this does not simply reflect cell loss. It is of interest

that MPP+ also exerts its toxicity by inhibition of Complex I,

suggesting a close link to idiopathic PD. Complex I abnormali-

ties may lead to increased formation of oxyradicals which are

normally tightly bound to the electron transport chain. Indeed,

transgenic mice with high Cu/Zn (cytosolic)-SOD activity are

resistant to the toxic effects of MPTP and MPP+.7 7

Mitochondrial abnormalities may also result in impaired forma-

tion of reduced glutathione. Conversely, oxyradicals are toxic to

mitochondria and the Complex I abnormalities may be second-

ary. The brains of people with incidental Lewy body disease

demonstrate a deficieny of reduced glutathione which is inter-

mediate between normal controls and Parkinson subjects, but the

reduction of Complex I activity was not statistically significant.63

Furthermore, systemic administration of the specific complex I

inhibitor rotenone induced striatal and pallidal, but not nigral cell

loss.78 Although 7 of the approximately 40 subunits of Complex

I are encoded by mitochondrial DNA, there has been no con-

vincing evidence of altered mitochondrial DNA in PD. 

The indirect evidence to support the free radical/mitochondr-

ial hypothesis is compelling, but caution is warranted before it is

accepted as the primary abnormality as opposed to either a series

of secondary abnormalities or a contributor to ongoing cell death

in the presence of another as yet unidentified process. These

issues have been reviewed in detail in a number of excellent

reviews and critiques.79-81

IMPLICATIONS OF THE FREE RADICAL HYPOTHESIS

If the events outlined above are indeed important for the

pathogenesis of PD, then it is potentially possible to intervene in

the disease process. MAO-B inhibitors might theoretically help

by preventing enzymatic oxidation of dopamine, while other

antioxidants (Vitamins C and E) may quench free radicals. To

date, there is no convincing evidence that any of these com-

pounds affect disease progression,82 although Vitamin E defi-

ciency may lead to (asymptomatic) impairment of nigrostriatal

function.83 Although abnormalities of iron are likely to be large-

ly secondary, chelation might be of theoretical interest to slow

down further disease progression. While protective effects have

been demonstrated in animal models, this approach has not been

tested in humans. 

One of the most disturbing issues is the question of whether

levodopa itself may contribute to ongoing nigral cell death in PD,

by increasing dopamine turnover and promoting oxyradical for-

mation. While high concentrations of levodopa and dopamine are

indeed toxic in cell culture systems (in the absence of glial cells;

levodopa actually has trophic effects in neuronal-astrocyte co-

cultures)84 and may also reduce nigral graft survival in animal

transplant models, there has been no convincing evidence that

levodopa hastens disease progression in PD.85 If anything, lev-

odopa use has been associated with enhanced survival of remain-

ing dopamine neurons in rats with partial 6-hydroxydopamine

lesions86 and with decreased mortality in PD,87 which of course

probably reflects symptomatic benefit. Nonetheless, the issue

remains controversial and the oxyradical hypothesis has led

some authors to suggest that symptomatic therapy should be ini-

tiated with dopamine agonists (which will actually reduce

dopamine turnover) rather than levodopa. Dopamine agonists

may lead to decreased free radical production, seem to retard the

normal age-related loss of nigral dopamine neurons in rodents

and their use may be associated with decreased mortality in PD.88

Whether or not their use as de novo therapy confers any advan-

tage over initiating treatment with levodopa is the subject of a

number of ongoing clinical trials. 

TROPHIC FACTORS

Target-derived trophic factors are substances which are pro-

duced and released in limited quantities in the projection areas of

neurons which respond to them. Within the nervous system, the

primary effect is on survival and differentiation of neurons dur-

ing embryonic development, as well the maintenance of neuron-

specific function during adult life. Recent advances in molecular
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biology have led to an explosion of interest in this area, with the

identification of novel factors and better understanding of recep-

tor structure and transduction mechanisms. These compounds

may prove to be beneficial in a variety of neurodegenerative dis-

orders, including Parkinson’s disease, and may also substantial-

ly promote the survival and function of neuronal grafts used for

the treatment of these conditions. 

The trophic factors attracting the greatest attention in PD are

brain derived neurotrophic factor (BDNF), a member of the neu-

rotrophin (nerve growth factor-related) family, which interacts

with the trkB receptor, and glial cell-derived neurotrophic factor

(GDNF), which belongs to the TGF (transforming growth fac-

tor)-β superfamily. BDNF promotes the survival of mesen-

cephalic dopaminergic neurons in culture and protects against

MPP+ toxicity.89 Although initially thought to be highly selec-

tive for dopaminergic neurons,90 GDNF is now recognized to

have trophic influences on other neuronal populations, particu-

larly motor neurons. GDNF selectively promotes dopamine

uptake, dopamine neuronal survival and morphological differen-

tiation in rostral mesencephalic tegmental cultures. GDNF is

expressed in dopamine target areas during development and is

transported retrogradely in the nigrostriatal pathway.91 Although

its message is not upregulated by 6-hydroxydopamine lesions,

GDNF markedly enhances survival of fetal dopaminergic grafts

and recent studies have shown beneficial effects in MPTP, 6-

hydroxydopamine and axotomy models of parkinsonism.92,93

Recent animal studies indicate that GDNF and other neurotroph-

ic factors can be expressed in microencapsulated cells94 or by

modified viral vectors,95 thus offering a novel approach to either

enhance the survival of mesencephalic grafts used for the treat-

ment of PD, or possibly even to delay disease progression.

Cyclosporin and the immunosuppressant FK506 both bind to

proteins which interact with calcineurin. The recently described

FK506 analogue GPI 1046 has been shown to have neuroprotec-

tive effects in 6-hydroxydopamine and MPTP-induced parkin-

sonism in rodents.9 6 This effect seems to be independent of action

on calcineurin and GPI 1046 has no immunosuppressant proper-

ties. Other proteins of interest, which seem to preferentially pro-

mote the survival and differentiation of dopaminergic nigral neu-

rons include sonic hedgehog,9 7 the GDNF analogue neurturin,9 8

and the orphan nuclear receptor family member Nurr-1.9 9

While all these factors may be of interest in treating PD, there

is no evidence to date to suggest that PD is associated with a spe-

cific deficiency of trophic factors, with the possible exception of

basic fibroblast growth factor (bFGF), whose expression is

reduced in nigral neurons of PD patients.100 Many of the neu-

rotrophic factors are known to be expressed by glial cells. Thus,

future studies on the mechanisms underlying neurodegeneration

may need to pay closer attention to the possibility of abnormal

glial function. This also highlights importance of providing an

adequate glial support base when studying the effects of various

manipulations on dopaminergic neurons in vitro (e.g., as noted

above, levodopa is toxic to dopamine cell cultures in isolation,

but has a trophic effect when studied in mixed neuronal-glial cul-

tures).84

APOPTOSIS

While a variety of insults may lead to cell necrosis, often

accompanied by an inflammatory response, normal cells may

undergo death followed by rapid phagocytosis, particularly if

deprived of trophic factors. This programmed cell death appears

to be important for the regulation of cell number, the prevention

of tumours and the appropriate mix of cell types (e.g. neurons

only survive in the presence of the appropriate target tissue).

Programmed cell death is an active, gene-regulated process

which is morphologically distinct from necrosis. In addition to

the absence of an inflammatory response, characteristic features

include cell shrinkage, clumping of nuclear chromatin and cyto-

plasmic and nuclear fragmentation (apoptosis). This phenome-

non has been most extensively studied in the worm

Caenorhabditis elegans, where the genes ced-3 and ced-4 pro-

mote cell death and their inactivation leads to prolonged survival.

The gene ced-9 opposes this function and a mammalian ana-

logue, bcl-2 has been identified, which can prevent apoptosis

when expressed in C. elegans. The fate of mammalian cells may

be determined by the balance between anti-apoptotic proteins

such as Bcl-2 or Bcl-x and opposing proteins such as Bax. The

mammalian analogue of CED-3 is interleukin-1β converting

enzyme (ICE), whose death-promoting properties can be pre-

vented by the product of the crmA (cowpox virus cytokine

response modifier) gene101 and by the baculovirus antiapoptotic

protein p35.102 ICE inhibitors arrest motoneuron death resulting

from deprivation of trophic factors in vitro .103 ICE itself is not

usually involved in apoptosis, but the related family of caspases

are, in a self-activating cascade that may be triggered by extra-

cellular (e.g., activation of the cell surface receptor Fas) or intra-

cellular (e.g., release of mitochondrial cytochrome c) factors.104

The role of apoptosis in Parkinson’s is as yet unresolved. One

report described apoptosis in the substantia nigra of 8 of 11

parkinsonian patients studied post-mortem using the TUNEL

(Terminal deoxynucleotidyl transferase dUTP-biotin Nick-End

Labelling) method; however, glial cells were equally affected.105

This has been confirmed by other investigators, based on in situ

labelling106 or electron microscopy.107 Other investigators have

suggested that TUNEL labelling is seen in glia, but not neurons,

within the SN.108 Expression of bcl-2 protein in the nigrostriatal

path of parkinsonians has been demonstrated.109 Downregulation

of SOD1,110 inhibition of mitochondrial Complex I111 or L-

DOPA can induce apoptosis in PC12 cells and physiological

concentrations of dopamine induce similar changes in cultured

chick sympathetic neurons.112 MPTP induces apoptotic nigral

cell death in the mouse in vivo 113 While high concentrations of

NMDA or superoxide/peroxynitrite induce necrosis, lower con-

centrations induce apoptosis,114,115 which can be differentially

affected by specific trophic factors. The recent demonstration of

increased nuclear translocation of NF-κB in nigral dopamine

neurons of Parkinsonian patients116 has been interpreted as evi-

dence of apoptosis triggered by oxidative stress; however, the

role of NF-κB itself (promotion of cell death vs. protection) is

unclear. 

OTHER FACTORS OF POTENTIAL RELEVANCE

The role of other factors which determine dopaminergic cell

fate during development in the pathogenesis of Parkinson’s dis-

ease is not understood. One such factor which has attracted con-

siderable interest is sonic hedgehog, a protein which is expressed

in notochord and floor plate cells and induces a ventral cell phe-

notype.97 The weaver mutation is a spontaneously arising defect
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in mice, characterized by degeneration of cerebellar granule and

midbrain dopaminergic neurons. It has been linked to a mutation

of G protein-gated inward rectifying potassium (GIRK) chan-

nels.117 Further details on the mechanisms of nigral cell death are

not yet understood, but it appears to be non-apoptotic. 

SUMMARY

This seemingly confusing array of etiological possibilities

does not represent a series of mutually exclusive events. It seems

clear that Parkinson’s is associated with excess generation of free

radicals and impaired function of mitochondrial Complex I,

although whether one of these may lead to the other and whether

either is of primary pathogenetic importance is still unresolved.

Genetic and environmental factors probably both influence these

processes, to varying degrees from one individual to another.

Whether a deficiency of trophic or other protective “anti-apop-

totic” factors contributes to the development of Parkinson’s is

also unclear. Recently discovered mutations of α-synuclein and

parkin suggest that increased attention should be paid to protein

handling. Improved understanding of these issues will allow the

development of more rational treatment strategies for

Parkinson’s as well as other neurodegenerative disorders. 
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