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ABSTRACT 
Traditionally, the refreshment of data warehouses has been 
performed in an off-line fashion. Active Data Warehousing refers 
to a new trend where data warehouses are updated as frequently as 
possible, to accommodate the high demands of users for fresh 
data. In this paper, we propose a framework for the 
implementation of active data warehousing, with the following 
goals: (a) minimal changes in the software configuration of the 
source, (b) minimal overhead for the source due to the active 
nature of data propagation, (c) the possibility of smoothly 
regulating the overall configuration of the environment in a 
principled way. In our framework, we have implemented ETL 
activities over queue networks and employ queue theory for the 
prediction of the performance and the tuning of the operation of 
the overall refreshment process. Due to the performance 
overheads incurred, we explore different architectural choices for 
this task and discuss the issues that arise for each of them.  

1. INTRODUCTION 
The demand for fresh data in data warehouses has always been a 
strong desideratum from the part of the users. Traditionally, the 
refreshment of data warehouses has been performed in an off-line 
fashion. In such a data warehouse setting, data are extracted from 
the sources, transformed, cleaned and eventually loaded to the 
warehouse. This set of activities takes place during a loading 
window, usually during the night, to avoid overloading the source 
production systems with the extra workload of this workflow.  

Still, users are pushing for higher levels of freshness. Active Data 
Warehousing refers to a new trend where data warehouses are 
updated as frequently as possible, due to the high demands of 
users for fresh data. The term is also encountered as ‘real time 
warehousing’ for that reason [22]. To give an example, we 
mention [3], where a case study for mobile network traffic data is 
discussed, involving around 30 data flows, 10 sources, and around 
2TB of data, with 3 billion rows. The throughput of the 
(traditional) population system is 80M rows/hour, 100M 
rows/day, with a loading window of only 4 hours. The authors 
report that user requests indicated a need for data with freshness at 
most 2 hours. 

This kind of request is technically challenging for various reasons. 
First, the source systems cannot be overloaded with the extra task 
of propagating data towards the warehouse. Second, it is not 

obvious how the active propagation of data can be implemented, 
especially in the presence of legacy production systems. The 
problem becomes worse since it is rather improbable that the 
software configuration of the source systems can be significantly 
modified to cope with the new task (both due to (a) the down-time 
for deployment and testing and (b) the cost to administrate, 
maintain and monitor the execution of the new environment). 

So far, research has mostly dealt with the problem of maintaining 
the warehouse in its traditional setup [10, 15, 16, 18, 21]. Related 
literature presents tools and algorithms for the population of the 
warehouse in an off-line fashion. In a different line of research, 
data streams [1, 5, 17] could possibly appear as a potential 
solution. Nevertheless, at least until now, research in data streams 
has focused on topics concerning the front-end, such as on-the-fly 
computation of queries, without a systematic treatment of the 
issues raised at the back-end of a data warehouse. For example, to 
our knowledge, there is no work related to how streaming data are 
produced or extracted from data producers; not to mention the 
extra problems incurred when the data producers are operational 
systems. 

To this end, in this paper we attempt to approach the problem 
from a clean sheet of paper. We investigate the case where the 
source of the warehouse is a legacy system. The specific problem 
involves the identification of a software architecture along with 
appropriate design guidelines for the implementation of active 
warehousing. We are motivated by the following requirements in 
achieving this goal. 

1. Maximum freshness of data. We want to implement an active 
data warehousing environment to obtain as fresh data as 
possible in the warehouse. 

2. Smooth upgrade of the software at the source. We wish to 
implement a framework where the modification of the software 
configuration at the source side is minimal. 

3. Minimal overhead of the source system. It is imperative to 
impose the minimum additional workload to the source. 

4. Stable interface at the warehouse side. It would be convenient 
if the warehouse would export a stable interface for its 
refreshment to all its source sites.  

The grand view of our environmental setup is depicted in Figure 
1. A set of sources comprise source data and possibly source 
applications that manage them (for the case of legacy sources) or 
DBMS’s for the case of conventional environments. The changes 
that take place at the sources have to be propagated towards the 
warehouse. Due to reasons of semantic or structural 
incompatibilities, an intermediate processing stage has to take 
place, in order to transform and clean the data. We refer to this 
part of the system as the Active Data Staging Area (ADSA). Once 
ready for loading, the data from the intermediate layer are loaded 
at the warehouse, through a set of on-line loaders.  
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Mapping this grand view to concrete technical choices requires 
the tuning of several components of the architecture. Following, 
we quickly summarize our findings that affected our architectural 
choices.  

Starting with the sources, in this paper, we have focused on legacy 
systems. Apart from the requirement of minimal changes at the 
source side, legacy sources pose the interesting problem of having 
an application (instead of a DBMS) managing the data. We 
modify a library of routines for the management of data to allow 
the interception of the calls without affecting the applications. The 
modification involves (a) inserting no more than 100 lines of code 
to a library of routines for source management and (b) 
recompiling the application (which was not affected), over this 
library. Also, as far as the communication between stages is 
concerned, we transmit blocks of records for reasons of 
performance and minimal overhead of the source system.  

The internal architecture of the intermediate layer (ADSA) is not 
obvious, either. For each ETL activity, we employ a queue to 
store incoming records before they are processed. Each activity 
processes the incoming data on-line and then passes its output to 
the next queue for further processing. Again, for reasons of 
performance, the unit of exchange is blocks of records and not 
individual records. We do not assume a fixed set of ETL 
operators, but rather we provide a taxonomy of such operations, 
based on their operational semantics. New operators can be added 
to the taxonomy as they are defined. To predict the performance 
of the system, we employ queue theory for networks of queues (cf. 
section 2.1 for a reminder of queue theory). Our experimental 
results indicate that the assumption of an M/M/1 queue for each 
of the ETL activities provides a successful estimation. 
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Fig. 1. Architecture Overview 

To implement the requirement for stable interface at the side of 
the warehouse, the data are further propagated towards the 
warehouse through an interface involving web services [2]. The 
need for web services as the technical solution for populating the 
warehouse with fresh data is not self-evident and requires 
justification. In fact, web services are known to be rather heavy 
middleware in terms of resource consumption [9], which 
potentially jeopardizes the requirement of fresh data and minimal 
overhead. The main advantages of web services compared to other 
middleware solutions (RPC, ORB’s, message queues, etc) are: (a) 
interoperability, meaning that they can be deployed in all 
platforms and configurations and (b) possibility of exporting them 
outside the intranet of an organization. We emphasize the 
interoperability property: in a large organization, there is a wide 
variety of data sources, involving several platforms and 

configurations. Web services are syntactically reliable, as they can 
provide a common, stable interface for the warehouse to all these 
sources without requiring major design and integration effort. 
Also, this loose coupling of sources and the warehouse results in 
minimal impact in the case of changes, either at the source or at 
the warehouse. Obviously, performance has been a concern too. 
Still, as we discuss in Section 4, our experiments indicate that the 
overall delay, incurred by the adaptation of a solution based on 
web services is rather small, especially if one is willing to trade 
resources (mainly main memory) for freshness. 

In a nutshell, our contributions can be listed as follows: 

− We set up the architectural framework and the issues that arise 
for the case of active data warehousing.  

− We develop the theoretical framework for the problem, by 
employing queue theory for the prediction of the performance 
of the system. We provide a taxonomy for ETL tasks that 
allows treating them as black-box tasks, without the need of 
resorting to algebraic, white-box descriptions of their 
functionality. Then, standard queue theory techniques can be 
applied for the design of an ETL workflow. 

− We provide technical solutions for the implementation of our 
reference architecture, achieving (a) minimal source overhead, 
(b) smooth evolution of the software configuration at the 
source side and (c) fine-tuning guidelines for the technical 
issues that appear.  

− We validate our results through extensive experimentation. 
Our implementation suggests that our theoretical formulation 
successfully predicts the actual performance of the system. 

The rest of this paper is organized as follows. In Section 2, we set 
up the problem theoretically and in Section 3, we present the 
different architectural choices and the technical challenges that 
each of them incurs. In Section 4, we present the experimental 
evaluation of the proposed framework. Finally, in Section 5, we 
present related work and in Section 6, we conclude with our 
results and present topics for future research. 

2. QUEUE THEORY FOR ETL 
ACTIVITIES 

In our architecture, data flows from the sources towards the 
warehouse, through an intermediate data processing stage. In this 
stage, data sustain various types of filtering and transformations.  
We employ queue theory as the cost model that predicts the data 
delay and the system overhead at this intermediate stage. We 
model each ETL activity as a queue in a queuing network. We 
provide a simple taxonomy for ETL activities, showing how to 
derive a simple queue model for them, without delving into their 
internal semantics. In this section, we start with some 
fundamentals of queue theory, then we move on to discuss a 
taxonomy of ETL operations and, finally, we conclude with the 
presentation of queue networks. 

2.1. Preliminaries 
Fundamentally, in a queuing model, a sequence of customers 
arrives at a server. If a customer arriving at the server finds the 
server occupied, it waits in the queue until its turn to be served 
comes. After the customer is served, it leaves the system [11]. If λ 
customers arrive at the system per time unit, then the mean inter-



 

arrival time is equal to 1/λ. Similarly, if µ customers leave the 
system per time unit, then the mean service time is equal to 1/µ. 
Based on these parameters, we also define ρ=λ/µ as the traffic 
intensity which denotes the server utilization. We require that ρ<1 
or the queue length can become unbounded.  

The distribution of the arrival and the service rates can take 
different values (Poisson, constant, etc). Depending on these 
distributions, different equations hold for predicting the mean 
length of the queue and the mean service time for each customer. 
A full discussion of these properties falls outside the scope of this 
paper; therefore we refer the interested reader to [11, 23] for a 
detailed discussion.  

A fundamental relation between the mean number of customers in 
the system N, the customer mean arrival rate in the system λ, and 
the mean time T that a customer remains in the system is given by 
Little's law. This relation is formulated as N=λ*T and its 
importance resides in the fact that this equation holds for every 
type of queuing system irrespectively of the arrival and service 
rate distributions. By applying Markov Theory and Little’s law to 
a queue with Poisson arrivals and exponentially distributed 
processing times, (also known as M/M/1 queue), we can estimate 
the mean response time of the system W = 1/(µ—λ) and the mean 
queue length L=ρ/(1-ρ). 

2.2. A Taxonomy of ETL Activities 
Each ETL queue can direct customers to more than one 
subsequent queue, depending on the type of operation it performs.  
In queue theory, the composition of queues is treated by queue 
networks. The computation of the interesting properties of such 
networks depends on the nature of the involved individual queues. 
The question that arises is what kind of individual queues do the 
ETL activities produce. One possible way to answer this question 
is to define an extension of the relational algebra, specifically 
tailored for ETL purposes and study the properties of each 
operator from the viewpoint of queue theory. Since this would 
probably produce quite complex queues, we adopt a different, 
black-box approach and define a taxonomy of ETL 
transformations, based on the relationship of their input and 
output. This way, we practically categorize ETL tasks in families 
without delving in the particularities of their internal 
functionality. Specifically, the taxonomy of activities consists of 
the following categories: (a) Filters, (b) Transformers and (c) 
Binary Operations. 
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Fig. 2.  Queuing model for multi-output activities 

Filters examine each incoming tuple to determine whether it 
meets certain criteria. If these criteria are fulfilled, then a tuple is 
accepted and propagated towards an acceptance output. If not, it is 
rejected and possibly propagated towards a rejection output. We 
assume that tuple arrivals occur due to a Poisson process and 
service times follow an exponential distribution. We define the 
probability that some tuple i is accepted as Pa and the probability 

that some tuple i is rejected by the system as Pr. This is illustrated 
in Figure 2. It is obvious that Pa+Pr=1. 

The filtering operations do not impose a change to the overall 
number of tuples making the following equation valid: 

| tuples entering service | = | tuples accepted |+| tuples rejected | 

Also, these operations do not incur changes to the schema of the 
tuples entering the service facility compared to the schema of the 
exiting tuples. Typical operations of this category are not-null, 
domain and foreign key checks, selections, and in general, any 
type of operation, operating locally on a tuple and determining 
whether it will be further propagated or not. Due to their multiple 
outputs, filters can also act as routers for tuples whose destination 
depends on their value. 

Considering the case of Transformers, tuples entering a 
transformer undergo changes to their value and/or their schema. 
We can distinguish two subclasses of Transformers taking into 
account the relationship between the number of tuples entering 
and the number of tuples exiting the transformation. 

In the first case the two quantities are equal which means: 

| tuples entering service | = | tuples accepted | 

We assume that tuple arrivals occur due to a Poisson process and 
service times follow an exponential distribution, in other words 
we have the same case with filters transformations. Again, we 
define the probability that some tuple i is accepted as Pa and the 
probability that some tuple i is rejected by the system as Pr. Since 
all tuples are accepted, we have: Pa=1 and Pr=0 (Figure 3). 
Examples of such transformations are the surrogate key 
transformation, the usage of functions for the derivation of new 
values and, in general, any transformation that derives an output 
tuple solely on the basis of the value of a single input tuple.  
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Fig. 3.  Queuing model for single-output activities 

In the second case, the number of tuples entering the system is 
different compared to the number of tuples exiting and in specific: 

| tuples entering service | > | tuples accepted | 

This occurs because some of the tuples entering service are 
aggregated or merged. We assume that tuple arrivals occur due to 
a Poisson process and service times follow an exponential 
distribution. The problem with this kind of transformations is that 
practically queue customers disappear and new customers are 
produced by each transformation. To model this property in terms 
of queue theory, we make the assumption that depending on the 
aggregation or merging factor, some of the incoming customers 
continue and some exit the system. In other words, we assume that 
some of the tuples, after being transformed, continue through the 
system as accepted. The number of these tuples equals the number 
of tuples produced as a result of the transformation. The rest of 
the tuples are assumed to be rejected by the system after their 
service and exit the system. The following equation holds: 

| tuples rejected | = | tuples entering service | - | tuples accepted | 



 

Again, we define as Pa the probability that some tuple i is 
accepted and Pr the probability that some tuple i is rejected by the 
system: Pa+Pr=1. Given the aggregation factor of an incoming set 
of data, we can easily compute the acceptance and rejection rate as 
well as the respective routing probabilities. The routing 
probabilities are: 

result _ tuples
Pa

input _ tuples
=  and 

input _ tuples result _ tuples
Pr input _ tuples

−

=  

The third class of ETL activities deals with Binary operators. This 
is the case where data from multiple sources are combined and a 
single outgoing stream is produced. Examples of such operations 
involve variants of the join operation, including the join of data 
from different tables, as well as difference and update detection 
operations among different snapshots of the same table. [14] 
describe a window-based hash join algorithm for continuous 
streams. In the context of ETL, we make the following 
assumptions and observations: 

• One of the two inputs is considered as the primary input 
flow. Tuples of this flow are checked over filters or 
transformed according to the values of some other relation 
and ultimately, either propagated towards the warehouse or 
rejected. 

• The second input of the operator is acting as a regulator of 
the primary flow. In other words, its values are only needed 
in order to determine the processing and routing of the tuples 
of the primary flow. For all practical purposes where active 
ETL functionality is needed (update detection, difference, 
facts joined with dimension values), a static snapshot of the 
regulator flow can even be assumed. 

• Adopting the model of [14], both inputs arrive at the same 
queue – they simply undergo processing with different 
distributions of processing times. 

In principle, a binary operator has to be dealt with as a multi-class 
queuing system, with one class for each flow (input or output) – 
see Figure 4. We refer the interested reader to [14] for such a 
treatment. Still, based on the aforementioned assumptions, we can 
avoid modeling the system as a multi-class queue, and deal only 
with the primary flow of the operator. In the rest of the paper, we 
will consider single-class queues, the tuples of which either (a) 
continue in the system or (b) are ultimately rejected. An 
interesting observation here is that no matter how many different 
categories of tuples enter the node for service, the output tuples 
can be assumed to belong in one of the two aforementioned 
categories.  

We consider Poisson arrivals and exponential service times. As 
stated earlier, the two routing classes are accepted with probability 
Pa and rejected with probability Pr and as before Pa+ Pr=1. This 
type of operations does not impose a change to the overall number 
of tuples existing making the following equation valid (Figure 4): 

| tuples entering service | = | tuples accepted |+| tuples rejected | 

However, differently from Filters, the schema of the tuples 
possibly changes.  

We can generalize the three aforementioned classes, through a 
Generic Model, where a node consisting of a single server serves 
possibly more than one classes of customers. All customers arrive 

according to a Poisson process and are serviced with exponential 
service times. The general case is depicted in Figure 4. 

In the general case we can assume that tuples belonging to one of 
the two different classes of customers, say ci, after their ETL 
transformation at the node, leave the system with probability Pri 

and continue in the queue network with probability Pai. 
Concerning the number of tuples in the system the following 
equation is still valid: 

| tuples entering service | = | tuples accepted |+| tuples rejected | 

Concerning the schema of the tuples before and after service, we 
observe that the schema changes in the general case, apart from 
the case of filters. 
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Fig. 4. Generic Model for ETL Queues 

In the rest of this paper, we will follow the assumption of a 
primary input flow.  This obviously results in forming an M/M/1 
queuing node as the constructing element of our ETL queue 
network. 

2.3. Queue Networks for ETL queues 
Many queuing systems consist of a network of queues. In a 
queuing network (QN), a customer finishing service in a service 
facility is either immediately proceeding to another service facility 
or leaves the system. For our purposes, we assume that each node 
of this network consists of a single server with exponential arrival 
and exponential service times. One basic classification of queuing 
networks is the distinction between open and closed queuing 
networks. In an open network, new customers may arrive from 
outside (coming from a conceptually infinite population) and later 
on leave the system. In a closed queuing network, the number of 
customers is fixed and no customer enters or leaves the system. In 
our case, we are exclusively interested in open networks.  

If an open queuing network is in steady state (i.e., the number of 
customers in the queue has converged over time), then for each 
node i, its arrival rate λi equals its departure rate µi. The arrival 
rate λi to node i is clearly the sum of all arrivals to i (including i 
itself). Assuming that i has N neighbors, the rate of external 
arrivals is λ0i, and the probability of an arrival from its j-th 

neighbor is pj,i, we have: ∑
=

+=

N

j
jijii p

1
,0 λλλ  

These equations are called traffic equations and they can be 
transformed into a set of N simultaneous linear equations with a 
unique solution for M/M/1 nodes. In order to calculate the 
performance measures in queuing networks the steady state 
probabilities π(k1,…, kN) have to be found. The term π(k1,…, kN) 
denotes the probability of k1 customers in queue 1, k2 customers 
in queue 2 and so on. To this end, we employ Jackson’s theorem 
that allows the calculation of the steady state probabilities of the 
whole network by separately calculating the probabilities of each 



 

node, under reasonable assumptions (that our ETL queues fulfill) 
[23].  

Jackson’s Theorem [23]. If in an open network the condition λi < 
µi · mi holds for every i ∈{1, ..,N} (with mi standing for the 
number of servers at node i) then the steady state probability of 
the network can be expressed as the product of the state 
probabilities of the individual nodes: 

π (k1,…, kN) = π1(k1)π2(k2)... πΝ(kΝ) 

Therefore, we can solve this class of networks in four steps: 

1. Solve the traffic equations to find λi for each queuing node i. 

2. Determine separately for each queuing system i its steady-
state probabilities πi(ki). 

3. Determine the global steady-state probabilities π (k1,…, kN). 
Derive the desired global performance measures. 

4. From step 1, we can derive the mean delay and queue length 
for each node. 

Methodology. How can we exploit the aforementioned theoretical 
analysis for designing ETL workflows for active data 
warehousing? The design problem for active data warehousing 
involves predicting the mean delay and the queue length of ETL 
queues in the ADSA, given the source production rates and the 
processing power of the ADSA and the DW.  

The methodology for this task is straightforward. First, we classify 
each ETL task that we need to perform in one of the categories of 
our taxonomy. Then, we construct a queue network of such ETL 
queues. Finally, we solve the network equations as mentioned 
above. 

3. FRAMEWORK AND ISSUES RAISED 
Apart from the theoretical issues, there are several issues 
concerning the implementation of an active data warehouse. 
Therefore, in this section, we will start by presenting the general 
architecture of such a system. In subsection 3.1, we present the 
grand view for active warehousing and its specific instantiation 
that we have investigated. Then, in subsection 3.2, we proceed to 
a detailed presentation of the issues raised within this framework. 

3.1. System Architecture 
Our architecture consists of the following elements: a Data Source 
generating data, an intermediate data staging area that will be 
referred to as the Active Data Staging Area (ADSA) where the 
processing of data takes place and the Data Warehouse (DW). The 
architecture is illustrated in Figure 5. 

The source comprises a data store (legacy or conventional) and an 
operational data management system (e.g., a DBMS or an 
application, respectively). Changes that take place at the source 
side have to be propagated towards the warehouse, which 
typically resides in a different host computer. The communication 
between hosts employs a network protocol (e.g., TCP or UDP). 
To avoid the extra overhead of overloading the network with half-
full packets and, as our experiments indicate, to avoid overloading 
the source with the extra task of performing this task, we employ a 
Source Flow Regulator (SFlowR) module that compiles changes 
in blocks and propagates them towards the warehouse. 
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Fig. 5. Architecture Overview 

Once record blocks have left the source, an ETL workflow 
receives them at the intermediate staging area. The role of the 
ETL workflow is to cleanse and transform the data in the format 
of the data warehouse. The ETL workflow comprises a set of ETL 
activities, also called ETL queues, each pipelining blocks of tuples 
to its subsequent activities, once its filtering or transformation 
processing is completed. In order to perform this task, each ETL 
activity checks its queue (e.g., in a periodic fashion) to see 
whether data wait to be processed. Then, it picks a specified 
number of records, performs the processing and forwards them to 
the next stage. If less than the specified records exist in the queue, 
then they are all retrieved. If the queue is empty, then the 
invocation is postponed, until there exist data to be processed. 

The role of the active data staging area is versatile: (a) it performs 
all the necessary cleansings and transformations, (b) it relieves the 
source from having to perform these tasks, (c) it can act as a 
regulator for the data warehouse, too (in case the warehouse 
cannot handle the online traffic generated by the source) and (d) it 
can perform various tasks such as checkpointing, summary 
preparation, and quality of service management. 

Once all ETL processing is over, data are ready to be loaded at the 
warehouse. As already explained, we chose to perform this task 
through a heavy but reliable (syntactically and operationally) 
middleware, web services. For each target table or materialized 
view at the warehouse, we define a receiving web service. To be 
able to invoke the web service, a client needs to be constructed. 
To regulate the traffic between the staging area and the 
warehouse, the client compiles the data in blocks, too. The web 
service at the warehouse side then populates the target table it 
serves. Load-balancing mechanisms at the warehouse side and 
physical warehouse maintenance (e.g., index maintenance) can 
also be part of this architecture. Still, for the moment, we do not 
address these problems. 

In terms of the particular implementation that we examine in this 
paper, we have studied the problem as it appears over legacy 
sources. In our configuration, the source includes two software 
modules: (a) an ISAM file and (b) an application used to modify 
data in the legacy data source. In order to manipulate ISAM files, 
there is a library of ISAM routines that are invoked from the 
application at the source side. We have modified these library 
routines in order to replicate the data manipulation commands and 
send updates towards the staging area. Several ETL queues reside 
at the staging area performing cleanings, transformations and 
aggregations. Each ETL activity retrieves data from its queue with 
a constant rate, retrieving a given number of elements in constant 
intervals. ETL activities communicate both with each other and 
with the web service clients via Java thread-safe queues. The 
transfer from the staging area towards the Data Warehouse is done 
over HTTP (implying TCP as the underlying network protocol). 



 

For our experiments, we assume that the warehouse simply stores 
the data performing no other task. 

3.2. Issues Raised 
In order to fulfill all the goals mentioned in Section 1, using the 
architectural elements described above, there are some issues 
raised which mainly concern the tuning and configuration of the 
system. The key issues that affect system performance and need to 
be resolved are discussed in this section and classified with 
respect to their locality at the source or the staging area, as well as 
the overall setup of the environment. All the technical choices and 
their alternatives are summarized in Τable 1. 

3.2.1 Choices concerning the Topology 
Having described our architectural elements, the next step is to 
determine their topology. Our architecture offers the ability of 
selecting different number of tiers. Several choices exist: 

• Two-tier architecture, where the source and the warehouse 
are found on different machines. There are two alternatives 
concerning this choice: the first is to place the staging area 
together with the source, putting the data warehouse on a 
separate machine. The second alternative is to place the 
staging area at the host where the data warehouse resides 
(Figure 6). 

• Three-tier architecture, where we use a separate dedicated 
machine for the staging area, leading to a three-tier topology. 

 

Fig. 6 Two-tier topology: The Data Warehouse and the ADSA 
reside on the same host, while the Source resides on a separate 
machine. 

Coming to the two-tier architecture, the main issue that arises is 
related to the placement of the staging area. In the case of the 
staging area placed at the source, data warehousing operations do 
not burden the source, but still the resources used by the web 
services API to perform the invocation remain considerable. A 
way for dealing with this is to move the staging area to the 
warehouse host (Figure 6), which can be expected to be more 
powerful from the source host. This way, the source is completely 
detached from the active data warehousing process. Naturally, if 
the warehouse server is too loaded or its configuration too 
complex for the extra software setup of a web service server, the 
three-tier architecture can also be employed. Using the three tier 
architecture solves all the abovementioned problems, but 
increases the setup and maintenance cost, since an extra server, 
apart from the one used from the warehouse, has to be engaged 
and administered. 

Having discussed the architectural alternatives for our topology, 
we can now proceed to discuss the technical issues raised for each 
of the main components and their overall setup. 

3.2.2 Choices concerning the Source 
Concerning the source side, the first consideration that arises has 
to do with the interconnection type between the source and the 
staging area. Since our goals are to impose as little impact as 
possible to the source and to make only minor changes, we have 
chosen the solution of sockets both due to its anticipated (but not 
thoroughly tested) lighter footprint characteristics and the easiness 
of programming such a solution.  

The next choice is between TCP and UDP protocols for the 
transmission of data between the source and the staging area. On 
one hand, TCP offers reliability. On the other hand, UDP offers 
speed through non-blocking calls, followed by a concern on the 
server side for the socket buffer size, in case of extended datagram 
bursts and no reliability.  

A third architectural choice concerns the way that changes to the 
source file are written to the socket, i.e., whether data are 
organized in blocks before being further propagated to the staging 
area. There are two ways to deal with this issue: either to write 
each modification to the socket, or to write bulks of modification 
commands. In the first case, whenever a data manipulation 
command is issued, it is immediately written to the socket along 
with the respective data. In the second case, nothing is written, 
until a number of records is completed. Then, all records together 
are sent to the staging area.  

3.2.3 Choices concerning the Staging Area 
The internal structure of the data staging area and the tuning of its 
operation are the major issues concerning the performance of our 
architecture. The staging area is a multithreaded environment with 
shared components, thus having to be set up properly to avoid 
race conditions and consistency. 

The problem of locking raises the issue of queue emptying rate. 
Assuming that the input to the staging area is determined by the 
workload of the source (i.e., it cannot be constrained by the 
warehouse administrator), a proper emptying rate for the ETL 
queues has to be determined. A high arrival rate compared to the 
configured service rate will result in instability and queue length 
explosion. On the contrary, a very high service rate potentially 
results in too many locks of the queue (resulting again in delay, 
contrary to what would normally be expected). It is obvious that 
the service rate should be close to the arrival rate in order to have 
both efficient service times, and as less locks as possible.  

Another dilemma is related to the interconnection type between 
the staging area and the data warehouse. As already mentioned, 
the staging area invokes a web service residing at the warehouse 
side. Although the SOAP protocol is one-way and asynchronous, 
implementations abide by the traditional middleware conventions 
of remote invocation, namely (a) blocking and (b) non-blocking. 
Blocking invocation involves an acknowledgment message to be 
sent from the web service, before its client can continue. In our 
case, this means that a response from the warehouse is required, 
delaying however the queue emptying rate. Non-blocking 
invocation does not delay the queue-emptying process of the web 
service client, since no response is returned from the invocation.  

ISAM 

Application ETL 
Workflow 

Host 1 Host 2 

DW DW 

WS 



 

Finally, the issue of sending data as tuple-at-a-time or blocks is 
raised again for the communication between the staging area and 
the warehouse. In this case, apart from the network overhead, the 
cost of parsing the incoming web service messages at the 
warehouse plays a role for this choice. 

3.2.4 Choices concerning the Warehouse 
The data warehouse side is characterized by a web wervice per 
target table, receiving the cleansed data from the data staging area. 
The web services API offers three ways of handling the remote 
invocations of the client that resides in the data staging area. The 
first way is to create a single web service instance that handles all 
incoming requests. The second way is to create an instance for 
every session, and the third is to create an instance for each 
invocation request. In our configurations, we use the first of these 
alternatives. The reason is that in our experiments, we have 
employed one client for the service, which stops its operation after 
inserting a specific amount of records into the ISAM file. This 
makes the case of using an instance per session the same as using 
a single instance. Using an object per request is prohibitive, since 
we assume high frequency invocations.  

Table 1. Architectural choices 

Issue Alternatives 
General Architecture 

Topology 
- 2-tier, ADSA at the source side 
- 2-tier, ADSA at the DW side 
- 3 tier 

Source 

Connection Type 
- UDP 
- TCP 

Propagation Type 
- One at a time 
- Block-based 

Active Data Staging Area 

Interface between the two APIs 
- None 
- Synchronized Queue 

Web Service invocation type 
- Blocking 
- Non Blocking 

Propagation Type 
- One at a time 
- Block-based 

Data Warehouse 

Session management 
- Single WS 
- Instance per session 
- Instance per request 

4. EXPERIMENTS 
In this section, we present the experiments we conducted. We 
present two sets of experiments. The first set presented in section 
4.1 deals with the general behavior of the system. The purpose of 
this set of experiments is to figure out the behavior of each system 
component separately, and to establish guidelines for building the 
system. In this case, data are just transferred to the warehouse and 
no ETL operations are involved. In the second set of experiments, 
presented in section 4.2, we evaluate the behavior of our system in 
a realistic setup, based on the conclusions derived from the first 
set. Naturally, in this case, we also transform data using ETL 
operations. 

Our experimental setup, which stands for both cases, is as follows: 
The ISAM library that we altered is the PBL/ISAM suite [20] 

available under GPL license. We have used a sample program 
distributed within the suite as the legacy application. We use two 
different data sets for our purposes. The first consists of 100,000 
records and the second of 1,000,000 records. The ETL queues of 
the ADSA have been implemented using the Sun JDK 1.4, whose 
runtime engine has also been used. As a Web Services platform 
we have used Apache Axis 1.1 [4] with Xerces XML parser 
running over Apache Tomcat 1.3.29. Our data warehouse is 
implemented as a MySQL 4.1 database. 

The host we used for the source was a PIII 700MHz with 256MB 
of physical memory running SuSE Linux 8.1. The host used as the 
data warehouse was a Pentium 4 2.8GHz with 1GB of physical 
memory running Mandrake Linux. This server also hosted the 
staging area. The hosts are interconnected via the switched Fast 
Ethernet LAN of our department. 

Our data were created from the TPC-H data generation tool. For 
the first case, each row of data has fixed size equal to 20 bytes. In 
the second case, where we evaluate the system behavior under 
operational conditions, we used data of variable size. In this case 
each row has an average size of 140 bytes. 

In our experiments we evaluate the cost in marginal conditions. 
Thus in order to evaluate the worst case, the source stores data at 
its peak capability. Moreover, since our warehouse host is a much 
faster computer than the source host, we would not be able to 
make safe conclusions if we let it operate at full capability (see 
also subsection 4.1.4). Thus we simulate slower server 
performance by employing timeouts between operations. This will 
be explained in more detail later. 

4.1. Experiments on Architecture without 
ETL Processing 

This section includes the first set of experiments we conducted. 
The aim of these experiments is to decide on basic architectural 
choices of our system. Throughout the experiments, the software 
operating at the staging area is a simple queue, called Data 
Warehouse Flow Regulator (DWFlowR), receiving source blocks 
of records and passing them to the warehouse. 

4.1.1 Smooth Upgrade 
One of the goals of our architecture is to pose minimal 
modifications to the source’s code. In our approach, we do not 
alter the legacy application itself, but the library that manipulates 
the ISAM files by adding few lines of code to the routines that are 
of interest to the purpose of active warehousing. These routines 
are: the file opening routine, the record insertion routine and the 
file closing routine. The alterations are located only in the 
following four points of the library’s source code: 

1. The first modification is to include our library which 
contains the socket’s client and the SFlowR. 

2. The second modification is to add a call to the routine of our 
library that opens a socket to the staging area at the ISAM 
file opening routine. This call is performed only if the 
opening of the ISAM file is successful.  

3. The third modification is to extend the insertion routine of 
the ISAM file library that writes the record to the file with a 
call to our library’s function that propagates the change to 
the socket. This routine stores the specific record to the 



 

SFlowR’s buffer and when the defined number of records is 
completed, it delivers them to the staging area. Again, this 
routine is called only after a successful insertion.  

4. The fourth modification is to add a call to the routine of our 
library that closes the opened socket to the staging area, at 
the ISAM file closing routine. This call is performed only if 
the closing of the ISAM file is successful.  

Figure 7 shows the alterations that we have performed to the 
library in pseudo-code. The overall length of code that had to be 
written for this part of the implementation, including the additions 
at the ISAM library, is approximately 100 lines. 

The routine that opens the socket to the DWFlowR reads 
configuration information from a plain text file, before the 
opening of the socket. This file contains the following three pieces 
of information: 

1. The number of records the SFlowR will gather 
2. The address of the DWFlowR 
3. The port of the DWFlowR 

Original Routine Altered Routine 

Open_isam_File() 
{   
  … 
opening_isam_file_co
mmands 
  … 
} 

Open_isam_File() 
{   
  … 
opening_isam_file_comm
ands 
  … 
if(open==success) 
DWFlowR_socket_open() 
} 

Write_record_to_File
() 
{   
  … 
insert_record_comman
ds  
  … 
} 

Write_record_to_File() 
{   
  … 
insert_record_commands 
  … 
if(write==success) 
write_to_SFlowR() 
} 

Close_isam_File() 
{   
  … 
closing_isam_file_co
mmands 
  … 
} 

Close_isam_File() 
{   
  … 
closing_isam_file_comm
ands 
  … 
if(close==success) 
DWFlowR_socket_close() 
} 

Fig. 7. Code alterations at the routine opening the ISAM file. 

As an overall assessment of the impact of our changes, we can say 
that (a) minimal code had to be written to achieve the replication 
of incoming updates to the warehouse in an active fashion, (b) 
simple configuration parameters are required, (c) no changes were 
required to the code, rather than a simple recompilation under the 
new library. 

4.1.2 UDP vs. TCP 
The first parameter that needed to be tested involved the network 
protocol between the source and the staging area. The goal of our 
first experiment is to determine the system’s behavior using UDP 
and specifically if there are any datagram losses.  The results show 
a 35% packet loss of data, most probably due to the overflowing 
of data. Such losses are prohibitive for normal operation of an on-
line environment. Therefore, for the rest of the paper, we have 

fixed TCP as the interconnection protocol between the source and 
the staging area. 

4.1.3 Overhead at the Source 
The main requirement for the architecture at the source side 
involves minimal overhead during regular operation. Therefore, 
the goal of the next experiment is to measure the overhead that 
our configuration incurs at the source side. We measure the time 
to complete the insertion of (a) 100 000 and (b) 1 000 000 to the 
ISAM file.  

First, we measure the effect of using the SFlowR at the source. 
We try three values: 1, 100, and 1000 records for each packet that 
the SFlowR sends to the staging area. When using one record at a 
package, we have in fact the case of not using a SFlowR. In Fig. 8 
and 9, we refer to the regular operation of the source (without 
sending records towards the ADSA) as “plain”. 
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Fig. 8. Time to insert 100 000 records using two-tier topology 
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Fig. 9. Time to insert 1 000 000 records using two-tier topology 

Another issue worth investigating is the isolation of the Source, 
ADSA and Data Warehouse layers. Therefore, we employ two 
modes for the operation of the staging area, to assess its impact. 
Each test case is examined with blocking and non-blocking 
invocation for the communication between the staging area and 
the Web Service at the data warehouse side. The staging area uses 
a synchronized queue. The input rate at the queue is equal to the 
output rate of the Legacy Application. The queue’s output rate is 
fixed to one thousand records per second. 

Figure 8 depicts the results of the experiment for 100 000 records, 
while Figure 9 the results for 1 000 000 records. The x-axis for 
Figures 8 and 9 shows the number of rows in a packet. The y-axis 
of the diagrams measures the throughput of inserting the records 
to the ISAM file. 



 

Based on our experimental results, the following observations are 
made:  

1. The SFlowR plays a very important role, since without it 
the throughput deteriorates by 34%, while using a SFlowR 
incurs an impact of approximately 1.7%.  

2. The way that the DWFlowR is tuned does not affect the 
source. Regardless of using blocking or non blocking Web 
Service invocation at the DWFlowR, the source’s 
throughput is the same in both cases.  

3. Sending smaller packets of records performs slightly better, 
since in the case of 1000 records, network propagation time 
decreases throughput. Moreover, choosing a packet size of 
100 instead of 1000 records saves buffer size at the 
SFlowR. 

4. The cost delay ratio in terms of the size of data sent to the 
warehouse remains stable both in the case of 100 000 and 1 
000 000 records. 

5. The behavior of our system remains stable regardless of the 
size of data it has to handle. 

 

4.1.4 Data Freshness 
A major requirement in our setting is to achieve the maximum 
data freshness possible, through our framework. With a 1.7% 
delay at the source, the focus of interest is isolated in the side of 
the staging area. The goal of the next set of experiments is to 
measure the data freshness time provided by our application with 
respect to the queue emptying rate and the block retrieved from 
the queue. We consider as data freshness time the time required 
for a record that was inserted in the ISAM file to be transferred to 
the warehouse.  

Specifically, we measure the overall throughput, i.e., the time 
needed to empty the DWFlowR’s queue after the first record is 
sent to the warehouse. The freshness is then measured as the time 
needed to empty the queue, which practically stands for the 
response time for the last record. To perform these measurements, 
we assume that the legacy application sends 100 000 records to 
the staging area in blocks of 100 records over TCP. Also, we 
measure the queue length as an indicator of resource consumption 
at the staging area. 

It is important to determine the behavior of the ADSA using data 
service rates close to the service rate of the source. Since our data 
warehouse server is faster than our source, we wanted to simulate 
slower performance to determine the behavior of the system in 
marginal conditions. Thus, we empty the queue retrieving the 
records from the queue using timeouts of 0.1 seconds and 
retrieving 100, 150 and 200 records each time and then invoking 
the web service, having as a source data rate approximately 1300 
records per second. These are the maximum emptying rates, 
meaning that if the queue contains fewer records, then all the 
records from the queue are retrieved. We also present the results 
of the server operating at its top performance.  

The results of emptying the queue using various rates are depicted 
in Figure 10. In these graphs, two other parameters play a major 
role. The first parameter, as indicated on the x-axis, is the time 
required to empty the queue. The second parameter, as shown on 
the y-axis, is the number of elements in the DWFlowR’s queue. 
Figure 11 depicts the data freshness provided by our architecture. 

We measure the time required to transfer all data from the staging 
area to the data warehouse. 

Queue size over time. Emptying the queue as 
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Queue size over time. Emptying rate 100 records 
per 0.1 sec

0

5000

10000

15000

20000

25000

30000

35000

0

7.
2

14
.2

21
.2

28
.2

35
.1 42

48
.9

55
.9

62
.7

69
.6

76
.5

83
.4

90
.2 97 10
4

11
1

Time (secs)

S
iz

e 
o

f 
q

u
eu

e 
(#

el
em

en
ts

)

 

Queue size over time. Emptying rate 150 records 
per 0.1 sec
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Queue size over time. Emptying rate 250 records 
per 0.1 sec
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Fig 10 Queue size at the staging area emptying the queue as 
soon as possible 

In Figure 10, the top left graph shows what happens when we let 
the ADSA operate fully. We can easily see that practically no 
queue is ever formed. The mean queue size is 100 records which 
is the rate of the SFlowR. In other words, the ADSA is one step 
later than the source, in terms of performance.  
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Fig. 11 Queue emptying time at the staging area. 

The other three graphs show the queue sizes using service rates of 
1000, 1500 and 2000 rows per second. In the first case, where the 
service rate is lower than the arrival rate, the queue explodes, as 
expected. In the second case, where we are close to the arrival 
rate, the queue displays a quite transient yet stable behavior. The 
last graph practically presents the same behavior as in the first 
graph even though the service rate is slightly increased compared 
to the case of 1500 rows per second. We have also experimented 
with even higher service rates i.e., up to 3000 rows per second, 
which still present the same behavior. We omit these results due 
to lack of space. 

Observing the results of this set of experiments, we are led to the 
following conclusions:  

1. We can achieve data freshness time equal to data insertion 
time when we continuously empty a small size queue. 

2. In this case, the size of the queue is equal to the arrival rate 
from the source, i.e., there is practically no delay at the 
queue. 



 

4.2. Operational Evaluation 
In this subsection, we will use the architectural guidelines derived 
from the first set of experiments presented in subsection 4.1 to 
build an active data warehouse where we will also deploy our 
online ETL operations. The aim of this section is to evaluate the 
behavior of this fully deployed system.  

4.2.1 Impact at the Source 
In this paragraph, we will try to refine the results learned in 4.1. 
For this reason, we examine again the impact on the source system 
of the packet size of the SflowR. This time we will use small 
package sizes, as derived from the previous set of experiments. 

Figure 12 shows the impact at the source using packets at the 
SflowR of various sizes. In general, packet sizes of over 25 
records offer the least burden to the source. The smallest delay 
was achieved with a packet size equal to 50, where the source 
delay was measured to be at 5.8%.  
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Fig. 12 Packet size of the SFlowR and impact at source 

4.2.2 Data Freshness of Online ETL 
In this paragraph, we deploy certain ETL scenarios and evaluate 
their performance compared to the theoretical analysis and in 
terms of data freshness. For this reason, we consider the following 
scenarios and their individual steps: 

• Scenario (a): We simply transfer data inserted into the legacy 
application to the warehouse using various service rates. 

• Scenario (b): (1) We filter 10% of incoming data through a 
selection predicate. (2) Then, we employ a surrogate key 
transformation to the first column of the filtered data. (3) 
Next, we perform a cumulative aggregation (group by with 
sum). (4) Finally, data are fed to the warehouse. 

• Scenario (c): (1) We filter 10% of incoming data. (2) Then, 
we additionally filter another 2% of the remaining data. (3) 
Next, a surrogate key operation is applied to the first column 
of the data. Then, the stream is replicated along two 
branches.  

� For the first branch populating a materialized view, 
(4.1.1) a cumulative aggregation is performed and 
(4.1.2) data are fed to the warehouse.  

� For the second branch, populating the detailed fact 
table (4.2), data are fed to the warehouse. 

• Scenario (d): (1) We filter 10% of incoming data. (2) We 
replace the values of the first field, to simulate value 
computations through functions. (3) A surrogate key 

transformation is applied. Then, the stream is replicated 
along two branches:  

� For the first branch, (4.1.1) a cumulative 
aggregation is performed first and (4.1.2) a filter 
(HAVING clause) rejecting 6% of the groups is 
applied. Then, (4.1.3) data are fed to the warehouse.  

� For the second branch, (4.2.1) a second value 
derivation is performed, (4.2.2) a filter rejecting 2% 
of detailed input data is applied and, finally, (4.2.3) 
data are fed to the warehouse. 

In Figures 13, 14, 15 and 16 we depict the evolution of the 
experiments as time passes. The x-axis depicts the time points 
when we measured the queue length. The final time point gives 
the time (in seconds) required to complete the transfer from the 
ADSA to the Warehouse. The y-axis depicts the number of rows 
existing in the queue. The graphs only show the time points when 
our measurement showed that the queue is not empty.  Each of the 
queues in the graph is identified by its operation name (e.g., in 
Figure 13, “FILTER”), possibly its selectivity (e.g., “10” for 10%) 
and its occurrence in the scenario (e.g., “01” for the first 
occurrence). 
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Scenario (b) 
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Scenario (c) 
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Scenario (d) 

Fig. 13-16 Queues for scenarios (a), (b), (c), (d) 
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Fig. 17 Data freshness for each scenario 

In all the scenarios the block size of the SFlowR was fixed at 50 
rows per block. Scenario (a) was configured to use the following 
service rates: 20, 22.5, 30 and 40 packets per second, which 
represent rates of 1000, 1250, 1500 and 2000 rows per second 
respectively. In scenarios (b), (c) and (d) the service rates were 
simulated to 30 packets per second both for the ETL rates and the 
Web Service clients. 



 

Finally, Figure17 summarizes the total times needed for the 
ADSA to transfer all data to the warehouse, for each scenario of 
ETL queues. 

Observing the figures, we derive the following conclusions: 

1. The source capability is approximately 1100 rows/sec. In 
scenario (a) we are led to queue explosion, when we employ 
service rate smaller than the source’s arrival rate. Using a 
service rate of 1250 rows / sec, which is a setting close to the 
arrival rate, we can see that transient effects tend to appear, 
but the queue converges to steady state. By using higher 
service rates, 1500 and 2000 rows / sec respectively, the 
queue maintains its steady state. 

2. In scenarios (b), (c) and (d) we observe that the entire 
system, as well as the queue of each operation, maintains a 
steady state. The number of packets in the queue is less or 
equal to the maximum number of packets polled 
simultaneously from the queue. This practically means that 
after each poll the queue empties and that the ADSA is only 
one step behind the source. 

3. In Figure 17, the total time needed for the entire dataset to be 
transferred from the ADSA to the Warehouse is dependent 
on the number of the intermediate ETL operations. As the 
number of intermediate ETL operations that a packet has to 
visit increases, the total delay increases as well. Nevertheless, 
in our exemplary scenarios, the increase is rather small, due 
to the pipelining of data. The average delay per row is around 
0.9 msec for all scenarios. 

In Table 2 we present the comparison of our theoretical evaluation 
of queue length against the observed values. For lack of space, we 
show only the results of scenario (c) with service rate of 2000 
rows/sec; all the other scenarios present identical behavior. As 
one can observe, in average, the theoretical prediction typically 
underestimates the average queue length by a very small amount 
(of the size of 5 records). In our detailed experiments, the system 
behaves in accordance with this pattern for all four scenarios, with 
an average error of half a packet (i.e., 25 records). 

Table 2. Theoretical prediction vs. actual measurements of 
average queue length for scenario (c) in packets 

 Measured  
Theoretical 
Prediction 

Difference 

FILTER_10_01 0.160 0.056 0.104 
FILTER_02_01 0.134 0.047 0.087 

SK_01 0.154 0.054 0.100 
GB_SUM_01 0.137 0.048 0.089 

WS_GB 0.091 0.031 0.059 
WS_GB_UPD 0.100 0.035 0.066 

5. RELATED WORK 
In this section, we present work related to our approach. Research 
in ETL has provided results in (a) tools [10, 21], (b) algorithms 
for specific tasks [7, 15, 16, 18]. Both tools and algorithms 
operate in a batch, off-line fashion. So far, minimum emphasis has 
been paid to the investigation of ETL tasks, apart from a general 
model for [7, 18], where ETL activities are studied under the 
prism of lineage or resumption of a failed process. As already 
mentioned, data streams [1, 5, 17] could possibly appear as the 
paradigm for active warehouse maintenance. So far, streams have 
been studied from the point of view of continuous querying, 

without any investigation of transformations or updates. Both our 
architecture and theoretical analysis could possibly be applied 
over streams for this purpose. To our knowledge, the only paper 
related to our approach is [14], where the authors apply a “white-
box” (as opposed to our black box) method to determine the 
properties of SPJ relational operators with respect to queue 
theory. 

Work in materialized views refreshment [12, 13, 24, 25] is 
orthogonal to our setting. In [13] the authors describe materialized 
views, their applications, and the problems and techniques for 
their maintenance. Novel techniques and an up-to-date survey of 
related work in the field are presented in [12].  Materialized views 
refreshment fits orthogonally with our on-line refreshment 
technique, since we can treat each ETL queue as a black-box 
process. In the context of this paper, a dedicated web service is 
assigned to each materialized view. Although the tuning of the 
system for large workloads of views is an interesting topic of 
research, we find this issue outside the scope of this paper. 

Another area related to our approach is the one of active 
databases. In particular, if conventional systems (rather than 
legacy ones) are employed, one might argue that the usage of 
triggers [7] could facilitate the on-line population of the 
warehouse. Still, related material suggests that triggers are not 
quite suitable for our purpose, since they can (a) slow down the 
source system and (b) require changes to the database 
configuration [6]. In [19] it is also stated that capture mechanisms 
at the data layer such as triggers have either a prohibitively large 
performance impact on the operational system. As compared to 
these problems, our architecture achieves low overhead with 
minimal impact in the configuration of the source. We conjecture 
that a replication mechanism similar with the proposed one, 
propagating log entries towards the warehouse is a possible 
solution towards this problem. 

6. CONCLUSIONS AND FUTURE WORK 
Active Data Warehousing refers to a new trend where data 
warehouses are updated as frequently as possible, due to the high 
demands of users for fresh data. In this paper, we have proposed a 
framework for the implementation of active data warehousing, 
keeping in mind the following goals: (a) minimal changes in the 
software configuration of the source, (b) minimal overhead for the 
source due to the "active" nature of data propagation, (c) the 
possibility of smoothly regulating the overall configuration of the 
environment in a principled way. In our framework, we have 
implemented ETL activities over queue networks and employed 
queue theory for the prediction of the performance and the tuning 
of the operation of the overall refreshment process. In terms of 
data freshness, source overhead and minimal impact of software 
configuration the results seem satisfactory. A summary of the 
lessons learned is as follows: 

• In terms of architecture, isolating the ETL tasks in a special-
purpose area, either in the warehouse, or in an intermediate 
tier, guarantees both minimum performance overhead at the 
source and the possibility of regulating the flow towards the 
warehouse target tables.  

• Queue theory can be successfully employed as the theoretical 
background for the estimation of the response of the active 
staging area. The system reaches a steady state quite close to 
the predicted behavior. Freshness is quite satisfactory too. 



 

• The overall overhead at the source side is around 1.7% and 
the amount of code modification is around 100 lines, without 
affecting applications. 

• Tuning the network-related parameters helps. TCP should be 
used instead of UDP, due to the packet loss of the latter. 
Organization of rows in blocks, both at the source and the 
ADSA side increases performance. 

Future work includes several directions. A first line of research 
would have to do with the failure management of the components 
of the environment, to determine safeguarding techniques and fast 
resumption algorithms for the event of a failure. Further tuning 
can be made, by testing multiple concurrent loading sources for 
the warehouse. Also, the case of materialized aggregate views and 
schema evolution poses interesting challenges in this context. 
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