

ETL Queues for Active Data Warehousing
Alexandros Karakasidis

Univ. of Ioannina
Ioannina, Hellas

alex@cs.uoi.gr

Panos Vassiliadis
Univ. of Ioannina
Ioannina, Hellas

pvassil@cs.uoi.gr

Evaggelia Pitoura
 Univ. of Ioannina
Ioannina, Hellas

pitoura@cs.uoi.gr

ABSTRACT
Traditionally, the refreshment of data warehouses has been
performed in an off-line fashion. Active Data Warehousing refers
to a new trend where data warehouses are updated as frequently as
possible, to accommodate the high demands of users for fresh
data. In this paper, we propose a framework for the
implementation of active data warehousing, with the following
goals: (a) minimal changes in the software configuration of the
source, (b) minimal overhead for the source due to the active
nature of data propagation, (c) the possibility of smoothly
regulating the overall configuration of the environment in a
principled way. In our framework, we have implemented ETL
activities over queue networks and employ queue theory for the
prediction of the performance and the tuning of the operation of
the overall refreshment process. Due to the performance
overheads incurred, we explore different architectural choices for
this task and discuss the issues that arise for each of them.

1. INTRODUCTION
The demand for fresh data in data warehouses has always been a
strong desideratum from the part of the users. Traditionally, the
refreshment of data warehouses has been performed in an off-line
fashion. In such a data warehouse setting, data are extracted from
the sources, transformed, cleaned and eventually loaded to the
warehouse. This set of activities takes place during a loading
window, usually during the night, to avoid overloading the source
production systems with the extra workload of this workflow.

Still, users are pushing for higher levels of freshness. Active Data
Warehousing refers to a new trend where data warehouses are
updated as frequently as possible, due to the high demands of
users for fresh data. The term is also encountered as ‘real time
warehousing’ for that reason [22]. To give an example, we
mention [3], where a case study for mobile network traffic data is
discussed, involving around 30 data flows, 10 sources, and around
2TB of data, with 3 billion rows. The throughput of the
(traditional) population system is 80M rows/hour, 100M
rows/day, with a loading window of only 4 hours. The authors
report that user requests indicated a need for data with freshness at
most 2 hours.

This kind of request is technically challenging for various reasons.
First, the source systems cannot be overloaded with the extra task
of propagating data towards the warehouse. Second, it is not

obvious how the active propagation of data can be implemented,
especially in the presence of legacy production systems. The
problem becomes worse since it is rather improbable that the
software configuration of the source systems can be significantly
modified to cope with the new task (both due to (a) the down-time
for deployment and testing and (b) the cost to administrate,
maintain and monitor the execution of the new environment).

So far, research has mostly dealt with the problem of maintaining
the warehouse in its traditional setup [10, 15, 16, 18, 21]. Related
literature presents tools and algorithms for the population of the
warehouse in an off-line fashion. In a different line of research,
data streams [1, 5, 17] could possibly appear as a potential
solution. Nevertheless, at least until now, research in data streams
has focused on topics concerning the front-end, such as on-the-fly
computation of queries, without a systematic treatment of the
issues raised at the back-end of a data warehouse. For example, to
our knowledge, there is no work related to how streaming data are
produced or extracted from data producers; not to mention the
extra problems incurred when the data producers are operational
systems.

To this end, in this paper we attempt to approach the problem
from a clean sheet of paper. We investigate the case where the
source of the warehouse is a legacy system. The specific problem
involves the identification of a software architecture along with
appropriate design guidelines for the implementation of active
warehousing. We are motivated by the following requirements in
achieving this goal.

1. Maximum freshness of data. We want to implement an active
data warehousing environment to obtain as fresh data as
possible in the warehouse.

2. Smooth upgrade of the software at the source. We wish to
implement a framework where the modification of the software
configuration at the source side is minimal.

3. Minimal overhead of the source system. It is imperative to
impose the minimum additional workload to the source.

4. Stable interface at the warehouse side. It would be convenient
if the warehouse would export a stable interface for its
refreshment to all its source sites.

The grand view of our environmental setup is depicted in Figure
1. A set of sources comprise source data and possibly source
applications that manage them (for the case of legacy sources) or
DBMS’s for the case of conventional environments. The changes
that take place at the sources have to be propagated towards the
warehouse. Due to reasons of semantic or structural
incompatibilities, an intermediate processing stage has to take
place, in order to transform and clean the data. We refer to this
part of the system as the Active Data Staging Area (ADSA). Once
ready for loading, the data from the intermediate layer are loaded
at the warehouse, through a set of on-line loaders.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IQIS’05, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0…$5.00.

Mapping this grand view to concrete technical choices requires
the tuning of several components of the architecture. Following,
we quickly summarize our findings that affected our architectural
choices.

Starting with the sources, in this paper, we have focused on legacy
systems. Apart from the requirement of minimal changes at the
source side, legacy sources pose the interesting problem of having
an application (instead of a DBMS) managing the data. We
modify a library of routines for the management of data to allow
the interception of the calls without affecting the applications. The
modification involves (a) inserting no more than 100 lines of code
to a library of routines for source management and (b)
recompiling the application (which was not affected), over this
library. Also, as far as the communication between stages is
concerned, we transmit blocks of records for reasons of
performance and minimal overhead of the source system.

The internal architecture of the intermediate layer (ADSA) is not
obvious, either. For each ETL activity, we employ a queue to
store incoming records before they are processed. Each activity
processes the incoming data on-line and then passes its output to
the next queue for further processing. Again, for reasons of
performance, the unit of exchange is blocks of records and not
individual records. We do not assume a fixed set of ETL
operators, but rather we provide a taxonomy of such operations,
based on their operational semantics. New operators can be added
to the taxonomy as they are defined. To predict the performance
of the system, we employ queue theory for networks of queues (cf.
section 2.1 for a reminder of queue theory). Our experimental
results indicate that the assumption of an M/M/1 queue for each
of the ETL activities provides a successful estimation.

Source

DW

Source
Application

Source

Source
Application

Source

Source
Application

Plain Data

Clean, reconciled,
possibly aggregated
data to be loaded in
the DW

γ σ

GROUP

SK

σ γ

ADSA

Fig. 1. Architecture Overview

To implement the requirement for stable interface at the side of
the warehouse, the data are further propagated towards the
warehouse through an interface involving web services [2]. The
need for web services as the technical solution for populating the
warehouse with fresh data is not self-evident and requires
justification. In fact, web services are known to be rather heavy
middleware in terms of resource consumption [9], which
potentially jeopardizes the requirement of fresh data and minimal
overhead. The main advantages of web services compared to other
middleware solutions (RPC, ORB’s, message queues, etc) are: (a)
interoperability, meaning that they can be deployed in all
platforms and configurations and (b) possibility of exporting them
outside the intranet of an organization. We emphasize the
interoperability property: in a large organization, there is a wide
variety of data sources, involving several platforms and

configurations. Web services are syntactically reliable, as they can
provide a common, stable interface for the warehouse to all these
sources without requiring major design and integration effort.
Also, this loose coupling of sources and the warehouse results in
minimal impact in the case of changes, either at the source or at
the warehouse. Obviously, performance has been a concern too.
Still, as we discuss in Section 4, our experiments indicate that the
overall delay, incurred by the adaptation of a solution based on
web services is rather small, especially if one is willing to trade
resources (mainly main memory) for freshness.

In a nutshell, our contributions can be listed as follows:

− We set up the architectural framework and the issues that arise
for the case of active data warehousing.

− We develop the theoretical framework for the problem, by
employing queue theory for the prediction of the performance
of the system. We provide a taxonomy for ETL tasks that
allows treating them as black-box tasks, without the need of
resorting to algebraic, white-box descriptions of their
functionality. Then, standard queue theory techniques can be
applied for the design of an ETL workflow.

− We provide technical solutions for the implementation of our
reference architecture, achieving (a) minimal source overhead,
(b) smooth evolution of the software configuration at the
source side and (c) fine-tuning guidelines for the technical
issues that appear.

− We validate our results through extensive experimentation.
Our implementation suggests that our theoretical formulation
successfully predicts the actual performance of the system.

The rest of this paper is organized as follows. In Section 2, we set
up the problem theoretically and in Section 3, we present the
different architectural choices and the technical challenges that
each of them incurs. In Section 4, we present the experimental
evaluation of the proposed framework. Finally, in Section 5, we
present related work and in Section 6, we conclude with our
results and present topics for future research.

2. QUEUE THEORY FOR ETL
ACTIVITIES

In our architecture, data flows from the sources towards the
warehouse, through an intermediate data processing stage. In this
stage, data sustain various types of filtering and transformations.
We employ queue theory as the cost model that predicts the data
delay and the system overhead at this intermediate stage. We
model each ETL activity as a queue in a queuing network. We
provide a simple taxonomy for ETL activities, showing how to
derive a simple queue model for them, without delving into their
internal semantics. In this section, we start with some
fundamentals of queue theory, then we move on to discuss a
taxonomy of ETL operations and, finally, we conclude with the
presentation of queue networks.

2.1. Preliminaries
Fundamentally, in a queuing model, a sequence of customers
arrives at a server. If a customer arriving at the server finds the
server occupied, it waits in the queue until its turn to be served
comes. After the customer is served, it leaves the system [11]. If λ
customers arrive at the system per time unit, then the mean inter-

arrival time is equal to 1/λ. Similarly, if µ customers leave the
system per time unit, then the mean service time is equal to 1/µ.
Based on these parameters, we also define ρ=λ/µ as the traffic
intensity which denotes the server utilization. We require that ρ<1
or the queue length can become unbounded.

The distribution of the arrival and the service rates can take
different values (Poisson, constant, etc). Depending on these
distributions, different equations hold for predicting the mean
length of the queue and the mean service time for each customer.
A full discussion of these properties falls outside the scope of this
paper; therefore we refer the interested reader to [11, 23] for a
detailed discussion.

A fundamental relation between the mean number of customers in
the system N, the customer mean arrival rate in the system λ, and
the mean time T that a customer remains in the system is given by
Little's law. This relation is formulated as N=λ*T and its
importance resides in the fact that this equation holds for every
type of queuing system irrespectively of the arrival and service
rate distributions. By applying Markov Theory and Little’s law to
a queue with Poisson arrivals and exponentially distributed
processing times, (also known as M/M/1 queue), we can estimate
the mean response time of the system W = 1/(µ—λ) and the mean
queue length L=ρ/(1-ρ).

2.2. A Taxonomy of ETL Activities
Each ETL queue can direct customers to more than one
subsequent queue, depending on the type of operation it performs.
In queue theory, the composition of queues is treated by queue
networks. The computation of the interesting properties of such
networks depends on the nature of the involved individual queues.
The question that arises is what kind of individual queues do the
ETL activities produce. One possible way to answer this question
is to define an extension of the relational algebra, specifically
tailored for ETL purposes and study the properties of each
operator from the viewpoint of queue theory. Since this would
probably produce quite complex queues, we adopt a different,
black-box approach and define a taxonomy of ETL
transformations, based on the relationship of their input and
output. This way, we practically categorize ETL tasks in families
without delving in the particularities of their internal
functionality. Specifically, the taxonomy of activities consists of
the following categories: (a) Filters, (b) Transformers and (c)
Binary Operations.

Pa

 Pr

A

rejected

 accepted

λIN λOUT
λREJ

Fig. 2. Queuing model for multi-output activities

Filters examine each incoming tuple to determine whether it
meets certain criteria. If these criteria are fulfilled, then a tuple is
accepted and propagated towards an acceptance output. If not, it is
rejected and possibly propagated towards a rejection output. We
assume that tuple arrivals occur due to a Poisson process and
service times follow an exponential distribution. We define the
probability that some tuple i is accepted as Pa and the probability

that some tuple i is rejected by the system as Pr. This is illustrated
in Figure 2. It is obvious that Pa+Pr=1.

The filtering operations do not impose a change to the overall
number of tuples making the following equation valid:

| tuples entering service | = | tuples accepted |+| tuples rejected |

Also, these operations do not incur changes to the schema of the
tuples entering the service facility compared to the schema of the
exiting tuples. Typical operations of this category are not-null,
domain and foreign key checks, selections, and in general, any
type of operation, operating locally on a tuple and determining
whether it will be further propagated or not. Due to their multiple
outputs, filters can also act as routers for tuples whose destination
depends on their value.

Considering the case of Transformers, tuples entering a
transformer undergo changes to their value and/or their schema.
We can distinguish two subclasses of Transformers taking into
account the relationship between the number of tuples entering
and the number of tuples exiting the transformation.

In the first case the two quantities are equal which means:

| tuples entering service | = | tuples accepted |

We assume that tuple arrivals occur due to a Poisson process and
service times follow an exponential distribution, in other words
we have the same case with filters transformations. Again, we
define the probability that some tuple i is accepted as Pa and the
probability that some tuple i is rejected by the system as Pr. Since
all tuples are accepted, we have: Pa=1 and Pr=0 (Figure 3).
Examples of such transformations are the surrogate key
transformation, the usage of functions for the derivation of new
values and, in general, any transformation that derives an output
tuple solely on the basis of the value of a single input tuple.

Pa

T

λIN λOUT

Fig. 3. Queuing model for single-output activities

In the second case, the number of tuples entering the system is
different compared to the number of tuples exiting and in specific:

| tuples entering service | > | tuples accepted |

This occurs because some of the tuples entering service are
aggregated or merged. We assume that tuple arrivals occur due to
a Poisson process and service times follow an exponential
distribution. The problem with this kind of transformations is that
practically queue customers disappear and new customers are
produced by each transformation. To model this property in terms
of queue theory, we make the assumption that depending on the
aggregation or merging factor, some of the incoming customers
continue and some exit the system. In other words, we assume that
some of the tuples, after being transformed, continue through the
system as accepted. The number of these tuples equals the number
of tuples produced as a result of the transformation. The rest of
the tuples are assumed to be rejected by the system after their
service and exit the system. The following equation holds:

| tuples rejected | = | tuples entering service | - | tuples accepted |

Again, we define as Pa the probability that some tuple i is
accepted and Pr the probability that some tuple i is rejected by the
system: Pa+Pr=1. Given the aggregation factor of an incoming set
of data, we can easily compute the acceptance and rejection rate as
well as the respective routing probabilities. The routing
probabilities are:

result _ tuples
Pa

input _ tuples
= and

input _ tuples result _ tuples
Pr input _ tuples

−

=

The third class of ETL activities deals with Binary operators. This
is the case where data from multiple sources are combined and a
single outgoing stream is produced. Examples of such operations
involve variants of the join operation, including the join of data
from different tables, as well as difference and update detection
operations among different snapshots of the same table. [14]
describe a window-based hash join algorithm for continuous
streams. In the context of ETL, we make the following
assumptions and observations:

• One of the two inputs is considered as the primary input
flow. Tuples of this flow are checked over filters or
transformed according to the values of some other relation
and ultimately, either propagated towards the warehouse or
rejected.

• The second input of the operator is acting as a regulator of
the primary flow. In other words, its values are only needed
in order to determine the processing and routing of the tuples
of the primary flow. For all practical purposes where active
ETL functionality is needed (update detection, difference,
facts joined with dimension values), a static snapshot of the
regulator flow can even be assumed.

• Adopting the model of [14], both inputs arrive at the same
queue – they simply undergo processing with different
distributions of processing times.

In principle, a binary operator has to be dealt with as a multi-class
queuing system, with one class for each flow (input or output) –
see Figure 4. We refer the interested reader to [14] for such a
treatment. Still, based on the aforementioned assumptions, we can
avoid modeling the system as a multi-class queue, and deal only
with the primary flow of the operator. In the rest of the paper, we
will consider single-class queues, the tuples of which either (a)
continue in the system or (b) are ultimately rejected. An
interesting observation here is that no matter how many different
categories of tuples enter the node for service, the output tuples
can be assumed to belong in one of the two aforementioned
categories.

We consider Poisson arrivals and exponential service times. As
stated earlier, the two routing classes are accepted with probability
Pa and rejected with probability Pr and as before Pa+ Pr=1. This
type of operations does not impose a change to the overall number
of tuples existing making the following equation valid (Figure 4):

| tuples entering service | = | tuples accepted |+| tuples rejected |

However, differently from Filters, the schema of the tuples
possibly changes.

We can generalize the three aforementioned classes, through a
Generic Model, where a node consisting of a single server serves
possibly more than one classes of customers. All customers arrive

according to a Poisson process and are serviced with exponential
service times. The general case is depicted in Figure 4.

In the general case we can assume that tuples belonging to one of
the two different classes of customers, say ci, after their ETL
transformation at the node, leave the system with probability Pri

and continue in the queue network with probability Pai.
Concerning the number of tuples in the system the following
equation is still valid:

| tuples entering service | = | tuples accepted |+| tuples rejected |

Concerning the schema of the tuples before and after service, we
observe that the schema changes in the general case, apart from
the case of filters.

Pa
(i)

 Pr
(i)

ETL

rejected

 accepted

λIN=λ(1)+λ(2) λOUT
λREJ

Fig. 4. Generic Model for ETL Queues

In the rest of this paper, we will follow the assumption of a
primary input flow. This obviously results in forming an M/M/1
queuing node as the constructing element of our ETL queue
network.

2.3. Queue Networks for ETL queues
Many queuing systems consist of a network of queues. In a
queuing network (QN), a customer finishing service in a service
facility is either immediately proceeding to another service facility
or leaves the system. For our purposes, we assume that each node
of this network consists of a single server with exponential arrival
and exponential service times. One basic classification of queuing
networks is the distinction between open and closed queuing
networks. In an open network, new customers may arrive from
outside (coming from a conceptually infinite population) and later
on leave the system. In a closed queuing network, the number of
customers is fixed and no customer enters or leaves the system. In
our case, we are exclusively interested in open networks.

If an open queuing network is in steady state (i.e., the number of
customers in the queue has converged over time), then for each
node i, its arrival rate λi equals its departure rate µi. The arrival
rate λi to node i is clearly the sum of all arrivals to i (including i
itself). Assuming that i has N neighbors, the rate of external
arrivals is λ0i, and the probability of an arrival from its j-th

neighbor is pj,i, we have: ∑
=

+=

N

j
jijii p

1
,0 λλλ

These equations are called traffic equations and they can be
transformed into a set of N simultaneous linear equations with a
unique solution for M/M/1 nodes. In order to calculate the
performance measures in queuing networks the steady state
probabilities π(k1,…, kN) have to be found. The term π(k1,…, kN)
denotes the probability of k1 customers in queue 1, k2 customers
in queue 2 and so on. To this end, we employ Jackson’s theorem
that allows the calculation of the steady state probabilities of the
whole network by separately calculating the probabilities of each

node, under reasonable assumptions (that our ETL queues fulfill)
[23].

Jackson’s Theorem [23]. If in an open network the condition λi <
µi · mi holds for every i ∈{1, ..,N} (with mi standing for the
number of servers at node i) then the steady state probability of
the network can be expressed as the product of the state
probabilities of the individual nodes:

π (k1,…, kN) = π1(k1)π2(k2)... πΝ(kΝ)

Therefore, we can solve this class of networks in four steps:

1. Solve the traffic equations to find λi for each queuing node i.

2. Determine separately for each queuing system i its steady-
state probabilities πi(ki).

3. Determine the global steady-state probabilities π (k1,…, kN).
Derive the desired global performance measures.

4. From step 1, we can derive the mean delay and queue length
for each node.

Methodology. How can we exploit the aforementioned theoretical
analysis for designing ETL workflows for active data
warehousing? The design problem for active data warehousing
involves predicting the mean delay and the queue length of ETL
queues in the ADSA, given the source production rates and the
processing power of the ADSA and the DW.

The methodology for this task is straightforward. First, we classify
each ETL task that we need to perform in one of the categories of
our taxonomy. Then, we construct a queue network of such ETL
queues. Finally, we solve the network equations as mentioned
above.

3. FRAMEWORK AND ISSUES RAISED
Apart from the theoretical issues, there are several issues
concerning the implementation of an active data warehouse.
Therefore, in this section, we will start by presenting the general
architecture of such a system. In subsection 3.1, we present the
grand view for active warehousing and its specific instantiation
that we have investigated. Then, in subsection 3.2, we proceed to
a detailed presentation of the issues raised within this framework.

3.1. System Architecture
Our architecture consists of the following elements: a Data Source
generating data, an intermediate data staging area that will be
referred to as the Active Data Staging Area (ADSA) where the
processing of data takes place and the Data Warehouse (DW). The
architecture is illustrated in Figure 5.

The source comprises a data store (legacy or conventional) and an
operational data management system (e.g., a DBMS or an
application, respectively). Changes that take place at the source
side have to be propagated towards the warehouse, which
typically resides in a different host computer. The communication
between hosts employs a network protocol (e.g., TCP or UDP).
To avoid the extra overhead of overloading the network with half-
full packets and, as our experiments indicate, to avoid overloading
the source with the extra task of performing this task, we employ a
Source Flow Regulator (SFlowR) module that compiles changes
in blocks and propagates them towards the warehouse.

ETL

Source

Source

S FlowR

ADSA DW

ETL

ETL

WS Client

ETL

WS Client

WS

WS

DW

Fig. 5. Architecture Overview

Once record blocks have left the source, an ETL workflow
receives them at the intermediate staging area. The role of the
ETL workflow is to cleanse and transform the data in the format
of the data warehouse. The ETL workflow comprises a set of ETL
activities, also called ETL queues, each pipelining blocks of tuples
to its subsequent activities, once its filtering or transformation
processing is completed. In order to perform this task, each ETL
activity checks its queue (e.g., in a periodic fashion) to see
whether data wait to be processed. Then, it picks a specified
number of records, performs the processing and forwards them to
the next stage. If less than the specified records exist in the queue,
then they are all retrieved. If the queue is empty, then the
invocation is postponed, until there exist data to be processed.

The role of the active data staging area is versatile: (a) it performs
all the necessary cleansings and transformations, (b) it relieves the
source from having to perform these tasks, (c) it can act as a
regulator for the data warehouse, too (in case the warehouse
cannot handle the online traffic generated by the source) and (d) it
can perform various tasks such as checkpointing, summary
preparation, and quality of service management.

Once all ETL processing is over, data are ready to be loaded at the
warehouse. As already explained, we chose to perform this task
through a heavy but reliable (syntactically and operationally)
middleware, web services. For each target table or materialized
view at the warehouse, we define a receiving web service. To be
able to invoke the web service, a client needs to be constructed.
To regulate the traffic between the staging area and the
warehouse, the client compiles the data in blocks, too. The web
service at the warehouse side then populates the target table it
serves. Load-balancing mechanisms at the warehouse side and
physical warehouse maintenance (e.g., index maintenance) can
also be part of this architecture. Still, for the moment, we do not
address these problems.

In terms of the particular implementation that we examine in this
paper, we have studied the problem as it appears over legacy
sources. In our configuration, the source includes two software
modules: (a) an ISAM file and (b) an application used to modify
data in the legacy data source. In order to manipulate ISAM files,
there is a library of ISAM routines that are invoked from the
application at the source side. We have modified these library
routines in order to replicate the data manipulation commands and
send updates towards the staging area. Several ETL queues reside
at the staging area performing cleanings, transformations and
aggregations. Each ETL activity retrieves data from its queue with
a constant rate, retrieving a given number of elements in constant
intervals. ETL activities communicate both with each other and
with the web service clients via Java thread-safe queues. The
transfer from the staging area towards the Data Warehouse is done
over HTTP (implying TCP as the underlying network protocol).

For our experiments, we assume that the warehouse simply stores
the data performing no other task.

3.2. Issues Raised
In order to fulfill all the goals mentioned in Section 1, using the
architectural elements described above, there are some issues
raised which mainly concern the tuning and configuration of the
system. The key issues that affect system performance and need to
be resolved are discussed in this section and classified with
respect to their locality at the source or the staging area, as well as
the overall setup of the environment. All the technical choices and
their alternatives are summarized in Τable 1.

3.2.1 Choices concerning the Topology
Having described our architectural elements, the next step is to
determine their topology. Our architecture offers the ability of
selecting different number of tiers. Several choices exist:

• Two-tier architecture, where the source and the warehouse
are found on different machines. There are two alternatives
concerning this choice: the first is to place the staging area
together with the source, putting the data warehouse on a
separate machine. The second alternative is to place the
staging area at the host where the data warehouse resides
(Figure 6).

• Three-tier architecture, where we use a separate dedicated
machine for the staging area, leading to a three-tier topology.

Fig. 6 Two-tier topology: The Data Warehouse and the ADSA
reside on the same host, while the Source resides on a separate
machine.

Coming to the two-tier architecture, the main issue that arises is
related to the placement of the staging area. In the case of the
staging area placed at the source, data warehousing operations do
not burden the source, but still the resources used by the web
services API to perform the invocation remain considerable. A
way for dealing with this is to move the staging area to the
warehouse host (Figure 6), which can be expected to be more
powerful from the source host. This way, the source is completely
detached from the active data warehousing process. Naturally, if
the warehouse server is too loaded or its configuration too
complex for the extra software setup of a web service server, the
three-tier architecture can also be employed. Using the three tier
architecture solves all the abovementioned problems, but
increases the setup and maintenance cost, since an extra server,
apart from the one used from the warehouse, has to be engaged
and administered.

Having discussed the architectural alternatives for our topology,
we can now proceed to discuss the technical issues raised for each
of the main components and their overall setup.

3.2.2 Choices concerning the Source
Concerning the source side, the first consideration that arises has
to do with the interconnection type between the source and the
staging area. Since our goals are to impose as little impact as
possible to the source and to make only minor changes, we have
chosen the solution of sockets both due to its anticipated (but not
thoroughly tested) lighter footprint characteristics and the easiness
of programming such a solution.

The next choice is between TCP and UDP protocols for the
transmission of data between the source and the staging area. On
one hand, TCP offers reliability. On the other hand, UDP offers
speed through non-blocking calls, followed by a concern on the
server side for the socket buffer size, in case of extended datagram
bursts and no reliability.

A third architectural choice concerns the way that changes to the
source file are written to the socket, i.e., whether data are
organized in blocks before being further propagated to the staging
area. There are two ways to deal with this issue: either to write
each modification to the socket, or to write bulks of modification
commands. In the first case, whenever a data manipulation
command is issued, it is immediately written to the socket along
with the respective data. In the second case, nothing is written,
until a number of records is completed. Then, all records together
are sent to the staging area.

3.2.3 Choices concerning the Staging Area
The internal structure of the data staging area and the tuning of its
operation are the major issues concerning the performance of our
architecture. The staging area is a multithreaded environment with
shared components, thus having to be set up properly to avoid
race conditions and consistency.

The problem of locking raises the issue of queue emptying rate.
Assuming that the input to the staging area is determined by the
workload of the source (i.e., it cannot be constrained by the
warehouse administrator), a proper emptying rate for the ETL
queues has to be determined. A high arrival rate compared to the
configured service rate will result in instability and queue length
explosion. On the contrary, a very high service rate potentially
results in too many locks of the queue (resulting again in delay,
contrary to what would normally be expected). It is obvious that
the service rate should be close to the arrival rate in order to have
both efficient service times, and as less locks as possible.

Another dilemma is related to the interconnection type between
the staging area and the data warehouse. As already mentioned,
the staging area invokes a web service residing at the warehouse
side. Although the SOAP protocol is one-way and asynchronous,
implementations abide by the traditional middleware conventions
of remote invocation, namely (a) blocking and (b) non-blocking.
Blocking invocation involves an acknowledgment message to be
sent from the web service, before its client can continue. In our
case, this means that a response from the warehouse is required,
delaying however the queue emptying rate. Non-blocking
invocation does not delay the queue-emptying process of the web
service client, since no response is returned from the invocation.

ISAM

Application ETL
Workflow

Host 1 Host 2

DW DW

WS

Finally, the issue of sending data as tuple-at-a-time or blocks is
raised again for the communication between the staging area and
the warehouse. In this case, apart from the network overhead, the
cost of parsing the incoming web service messages at the
warehouse plays a role for this choice.

3.2.4 Choices concerning the Warehouse
The data warehouse side is characterized by a web wervice per
target table, receiving the cleansed data from the data staging area.
The web services API offers three ways of handling the remote
invocations of the client that resides in the data staging area. The
first way is to create a single web service instance that handles all
incoming requests. The second way is to create an instance for
every session, and the third is to create an instance for each
invocation request. In our configurations, we use the first of these
alternatives. The reason is that in our experiments, we have
employed one client for the service, which stops its operation after
inserting a specific amount of records into the ISAM file. This
makes the case of using an instance per session the same as using
a single instance. Using an object per request is prohibitive, since
we assume high frequency invocations.

Table 1. Architectural choices

Issue Alternatives
General Architecture

Topology
- 2-tier, ADSA at the source side
- 2-tier, ADSA at the DW side
- 3 tier

Source

Connection Type
- UDP
- TCP

Propagation Type
- One at a time
- Block-based

Active Data Staging Area

Interface between the two APIs
- None
- Synchronized Queue

Web Service invocation type
- Blocking
- Non Blocking

Propagation Type
- One at a time
- Block-based

Data Warehouse

Session management
- Single WS
- Instance per session
- Instance per request

4. EXPERIMENTS
In this section, we present the experiments we conducted. We
present two sets of experiments. The first set presented in section
4.1 deals with the general behavior of the system. The purpose of
this set of experiments is to figure out the behavior of each system
component separately, and to establish guidelines for building the
system. In this case, data are just transferred to the warehouse and
no ETL operations are involved. In the second set of experiments,
presented in section 4.2, we evaluate the behavior of our system in
a realistic setup, based on the conclusions derived from the first
set. Naturally, in this case, we also transform data using ETL
operations.

Our experimental setup, which stands for both cases, is as follows:
The ISAM library that we altered is the PBL/ISAM suite [20]

available under GPL license. We have used a sample program
distributed within the suite as the legacy application. We use two
different data sets for our purposes. The first consists of 100,000
records and the second of 1,000,000 records. The ETL queues of
the ADSA have been implemented using the Sun JDK 1.4, whose
runtime engine has also been used. As a Web Services platform
we have used Apache Axis 1.1 [4] with Xerces XML parser
running over Apache Tomcat 1.3.29. Our data warehouse is
implemented as a MySQL 4.1 database.

The host we used for the source was a PIII 700MHz with 256MB
of physical memory running SuSE Linux 8.1. The host used as the
data warehouse was a Pentium 4 2.8GHz with 1GB of physical
memory running Mandrake Linux. This server also hosted the
staging area. The hosts are interconnected via the switched Fast
Ethernet LAN of our department.

Our data were created from the TPC-H data generation tool. For
the first case, each row of data has fixed size equal to 20 bytes. In
the second case, where we evaluate the system behavior under
operational conditions, we used data of variable size. In this case
each row has an average size of 140 bytes.

In our experiments we evaluate the cost in marginal conditions.
Thus in order to evaluate the worst case, the source stores data at
its peak capability. Moreover, since our warehouse host is a much
faster computer than the source host, we would not be able to
make safe conclusions if we let it operate at full capability (see
also subsection 4.1.4). Thus we simulate slower server
performance by employing timeouts between operations. This will
be explained in more detail later.

4.1. Experiments on Architecture without
ETL Processing

This section includes the first set of experiments we conducted.
The aim of these experiments is to decide on basic architectural
choices of our system. Throughout the experiments, the software
operating at the staging area is a simple queue, called Data
Warehouse Flow Regulator (DWFlowR), receiving source blocks
of records and passing them to the warehouse.

4.1.1 Smooth Upgrade
One of the goals of our architecture is to pose minimal
modifications to the source’s code. In our approach, we do not
alter the legacy application itself, but the library that manipulates
the ISAM files by adding few lines of code to the routines that are
of interest to the purpose of active warehousing. These routines
are: the file opening routine, the record insertion routine and the
file closing routine. The alterations are located only in the
following four points of the library’s source code:

1. The first modification is to include our library which
contains the socket’s client and the SFlowR.

2. The second modification is to add a call to the routine of our
library that opens a socket to the staging area at the ISAM
file opening routine. This call is performed only if the
opening of the ISAM file is successful.

3. The third modification is to extend the insertion routine of
the ISAM file library that writes the record to the file with a
call to our library’s function that propagates the change to
the socket. This routine stores the specific record to the

SFlowR’s buffer and when the defined number of records is
completed, it delivers them to the staging area. Again, this
routine is called only after a successful insertion.

4. The fourth modification is to add a call to the routine of our
library that closes the opened socket to the staging area, at
the ISAM file closing routine. This call is performed only if
the closing of the ISAM file is successful.

Figure 7 shows the alterations that we have performed to the
library in pseudo-code. The overall length of code that had to be
written for this part of the implementation, including the additions
at the ISAM library, is approximately 100 lines.

The routine that opens the socket to the DWFlowR reads
configuration information from a plain text file, before the
opening of the socket. This file contains the following three pieces
of information:

1. The number of records the SFlowR will gather
2. The address of the DWFlowR
3. The port of the DWFlowR

Original Routine Altered Routine

Open_isam_File()
{
 …
opening_isam_file_co
mmands
 …
}

Open_isam_File()
{
 …
opening_isam_file_comm
ands
 …
if(open==success)
DWFlowR_socket_open()
}

Write_record_to_File
()
{
 …
insert_record_comman
ds
 …
}

Write_record_to_File()
{
 …
insert_record_commands
 …
if(write==success)
write_to_SFlowR()
}

Close_isam_File()
{
 …
closing_isam_file_co
mmands
 …
}

Close_isam_File()
{
 …
closing_isam_file_comm
ands
 …
if(close==success)
DWFlowR_socket_close()
}

Fig. 7. Code alterations at the routine opening the ISAM file.

As an overall assessment of the impact of our changes, we can say
that (a) minimal code had to be written to achieve the replication
of incoming updates to the warehouse in an active fashion, (b)
simple configuration parameters are required, (c) no changes were
required to the code, rather than a simple recompilation under the
new library.

4.1.2 UDP vs. TCP
The first parameter that needed to be tested involved the network
protocol between the source and the staging area. The goal of our
first experiment is to determine the system’s behavior using UDP
and specifically if there are any datagram losses. The results show
a 35% packet loss of data, most probably due to the overflowing
of data. Such losses are prohibitive for normal operation of an on-
line environment. Therefore, for the rest of the paper, we have

fixed TCP as the interconnection protocol between the source and
the staging area.

4.1.3 Overhead at the Source
The main requirement for the architecture at the source side
involves minimal overhead during regular operation. Therefore,
the goal of the next experiment is to measure the overhead that
our configuration incurs at the source side. We measure the time
to complete the insertion of (a) 100 000 and (b) 1 000 000 to the
ISAM file.

First, we measure the effect of using the SFlowR at the source.
We try three values: 1, 100, and 1000 records for each packet that
the SFlowR sends to the staging area. When using one record at a
package, we have in fact the case of not using a SFlowR. In Fig. 8
and 9, we refer to the regular operation of the source (without
sending records towards the ADSA) as “plain”.

Time to insert 100 000 records

0

20

40

60

80

100

120

1 100 1000

Number of records sent
simultaneously

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
s)

plain

non blocking invocation

blocking invocation

Fig. 8. Time to insert 100 000 records using two-tier topology

Time to insert 1 000 000 records

0

200

400

600

800

1000

1200

1 100 1000

Number of records sent
simultaneously

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
s)

plain

non blocking invocation

blocking invocation

Fig. 9. Time to insert 1 000 000 records using two-tier topology

Another issue worth investigating is the isolation of the Source,
ADSA and Data Warehouse layers. Therefore, we employ two
modes for the operation of the staging area, to assess its impact.
Each test case is examined with blocking and non-blocking
invocation for the communication between the staging area and
the Web Service at the data warehouse side. The staging area uses
a synchronized queue. The input rate at the queue is equal to the
output rate of the Legacy Application. The queue’s output rate is
fixed to one thousand records per second.

Figure 8 depicts the results of the experiment for 100 000 records,
while Figure 9 the results for 1 000 000 records. The x-axis for
Figures 8 and 9 shows the number of rows in a packet. The y-axis
of the diagrams measures the throughput of inserting the records
to the ISAM file.

Based on our experimental results, the following observations are
made:

1. The SFlowR plays a very important role, since without it
the throughput deteriorates by 34%, while using a SFlowR
incurs an impact of approximately 1.7%.

2. The way that the DWFlowR is tuned does not affect the
source. Regardless of using blocking or non blocking Web
Service invocation at the DWFlowR, the source’s
throughput is the same in both cases.

3. Sending smaller packets of records performs slightly better,
since in the case of 1000 records, network propagation time
decreases throughput. Moreover, choosing a packet size of
100 instead of 1000 records saves buffer size at the
SFlowR.

4. The cost delay ratio in terms of the size of data sent to the
warehouse remains stable both in the case of 100 000 and 1
000 000 records.

5. The behavior of our system remains stable regardless of the
size of data it has to handle.

4.1.4 Data Freshness
A major requirement in our setting is to achieve the maximum
data freshness possible, through our framework. With a 1.7%
delay at the source, the focus of interest is isolated in the side of
the staging area. The goal of the next set of experiments is to
measure the data freshness time provided by our application with
respect to the queue emptying rate and the block retrieved from
the queue. We consider as data freshness time the time required
for a record that was inserted in the ISAM file to be transferred to
the warehouse.

Specifically, we measure the overall throughput, i.e., the time
needed to empty the DWFlowR’s queue after the first record is
sent to the warehouse. The freshness is then measured as the time
needed to empty the queue, which practically stands for the
response time for the last record. To perform these measurements,
we assume that the legacy application sends 100 000 records to
the staging area in blocks of 100 records over TCP. Also, we
measure the queue length as an indicator of resource consumption
at the staging area.

It is important to determine the behavior of the ADSA using data
service rates close to the service rate of the source. Since our data
warehouse server is faster than our source, we wanted to simulate
slower performance to determine the behavior of the system in
marginal conditions. Thus, we empty the queue retrieving the
records from the queue using timeouts of 0.1 seconds and
retrieving 100, 150 and 200 records each time and then invoking
the web service, having as a source data rate approximately 1300
records per second. These are the maximum emptying rates,
meaning that if the queue contains fewer records, then all the
records from the queue are retrieved. We also present the results
of the server operating at its top performance.

The results of emptying the queue using various rates are depicted
in Figure 10. In these graphs, two other parameters play a major
role. The first parameter, as indicated on the x-axis, is the time
required to empty the queue. The second parameter, as shown on
the y-axis, is the number of elements in the DWFlowR’s queue.
Figure 11 depicts the data freshness provided by our architecture.

We measure the time required to transfer all data from the staging
area to the data warehouse.

Queue size over time. Emptying the queue as
soon as possible

0
200
400
600
800

1000
1200
1400
1600

0

4.
85

9.
84

14
.6

19
.2

23
.8

28
.3

33
.6

38
.2

42
.8

47
.3

51
.8

56
.4

61
.1

65
.9

70
.5 75

Time (secs)

S
iz

e
o

f
q

u
eu

e
(#

el
em

en
ts

)

Queue size over time. Emptying rate 100 records
per 0.1 sec

0

5000

10000

15000

20000

25000

30000

35000

0

7.
2

14
.2

21
.2

28
.2

35
.1 42

48
.9

55
.9

62
.7

69
.6

76
.5

83
.4

90
.2 97 10
4

11
1

Time (secs)

S
iz

e
o

f
q

u
eu

e
(#

el
em

en
ts

)

Queue size over time. Emptying rate 150 records
per 0.1 sec

0

500

1000

1500

2000

0

4.
9

9.
69

14
.4

19
.1

23
.8

28
.5

33
.2

37
.9

42
.5

47
.2 52

56
.6

61
.3

65
.9

70
.6

75
.2

Time (secs)

S
iz

e
o

f q
u

eu
e

(#
el

em
en

ts
)

Queue size over time. Emptying rate 250 records
per 0.1 sec

0
200
400
600
800

1000
1200
1400
1600

0

4.
88

9.
81

16
.3 21

25
.7

30
.3

34
.9

39
.6

44
.2

48
.8

53
.5

58
.1

62
.8

67
.4 72

76
.7

Time (secs)

S
iz

e
o

f
q

u
eu

e
(#

el
em

en
ts

)

Fig 10 Queue size at the staging area emptying the queue as
soon as possible

In Figure 10, the top left graph shows what happens when we let
the ADSA operate fully. We can easily see that practically no
queue is ever formed. The mean queue size is 100 records which
is the rate of the SFlowR. In other words, the ADSA is one step
later than the source, in terms of performance.

 Time to complete transfer from DWFlowr to DW

0
50

100

150
200

250

500 1000 1500 2000 2500 3000
Queue emptying rate

Ti
me
(se
cs) Time to

complete
transfer from
DWFlowr to
DW

Fig. 11 Queue emptying time at the staging area.

The other three graphs show the queue sizes using service rates of
1000, 1500 and 2000 rows per second. In the first case, where the
service rate is lower than the arrival rate, the queue explodes, as
expected. In the second case, where we are close to the arrival
rate, the queue displays a quite transient yet stable behavior. The
last graph practically presents the same behavior as in the first
graph even though the service rate is slightly increased compared
to the case of 1500 rows per second. We have also experimented
with even higher service rates i.e., up to 3000 rows per second,
which still present the same behavior. We omit these results due
to lack of space.

Observing the results of this set of experiments, we are led to the
following conclusions:

1. We can achieve data freshness time equal to data insertion
time when we continuously empty a small size queue.

2. In this case, the size of the queue is equal to the arrival rate
from the source, i.e., there is practically no delay at the
queue.

4.2. Operational Evaluation
In this subsection, we will use the architectural guidelines derived
from the first set of experiments presented in subsection 4.1 to
build an active data warehouse where we will also deploy our
online ETL operations. The aim of this section is to evaluate the
behavior of this fully deployed system.

4.2.1 Impact at the Source
In this paragraph, we will try to refine the results learned in 4.1.
For this reason, we examine again the impact on the source system
of the packet size of the SflowR. This time we will use small
package sizes, as derived from the previous set of experiments.

Figure 12 shows the impact at the source using packets at the
SflowR of various sizes. In general, packet sizes of over 25
records offer the least burden to the source. The smallest delay
was achieved with a packet size equal to 50, where the source
delay was measured to be at 5.8%.

0

20

40

60

80

100

120

140

ti
m

es
 (

se
cs

)

Packet size at source:
plain

Packet size at source: 1
row/packet

Packet size at source:
10 rows/packet

Packet size at source:
25 rows/packet

Packet size at source:
50 rows/packet

Packet size at source:
75 rows/packet

Fig. 12 Packet size of the SFlowR and impact at source

4.2.2 Data Freshness of Online ETL
In this paragraph, we deploy certain ETL scenarios and evaluate
their performance compared to the theoretical analysis and in
terms of data freshness. For this reason, we consider the following
scenarios and their individual steps:

• Scenario (a): We simply transfer data inserted into the legacy
application to the warehouse using various service rates.

• Scenario (b): (1) We filter 10% of incoming data through a
selection predicate. (2) Then, we employ a surrogate key
transformation to the first column of the filtered data. (3)
Next, we perform a cumulative aggregation (group by with
sum). (4) Finally, data are fed to the warehouse.

• Scenario (c): (1) We filter 10% of incoming data. (2) Then,
we additionally filter another 2% of the remaining data. (3)
Next, a surrogate key operation is applied to the first column
of the data. Then, the stream is replicated along two
branches.

� For the first branch populating a materialized view,
(4.1.1) a cumulative aggregation is performed and
(4.1.2) data are fed to the warehouse.

� For the second branch, populating the detailed fact
table (4.2), data are fed to the warehouse.

• Scenario (d): (1) We filter 10% of incoming data. (2) We
replace the values of the first field, to simulate value
computations through functions. (3) A surrogate key

transformation is applied. Then, the stream is replicated
along two branches:

� For the first branch, (4.1.1) a cumulative
aggregation is performed first and (4.1.2) a filter
(HAVING clause) rejecting 6% of the groups is
applied. Then, (4.1.3) data are fed to the warehouse.

� For the second branch, (4.2.1) a second value
derivation is performed, (4.2.2) a filter rejecting 2%
of detailed input data is applied and, finally, (4.2.3)
data are fed to the warehouse.

In Figures 13, 14, 15 and 16 we depict the evolution of the
experiments as time passes. The x-axis depicts the time points
when we measured the queue length. The final time point gives
the time (in seconds) required to complete the transfer from the
ADSA to the Warehouse. The y-axis depicts the number of rows
existing in the queue. The graphs only show the time points when
our measurement showed that the queue is not empty. Each of the
queues in the graph is identified by its operation name (e.g., in
Figure 13, “FILTER”), possibly its selectivity (e.g., “10” for 10%)
and its occurrence in the scenario (e.g., “01” for the first
occurrence).

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 10
0

P
ac

ke
ts

 i
n

 t
he

 q
ue

u
e

20 packets/sec

22.5 packets/sec

30 packets/sec

40 packets/sec

Scenario (a)

0

0.5

1

1.5

2

2.5

3

3.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

P
ac

ke
ts

 i
n

 t
h

e
q

u
eu

e

FILTER_10_01

GBSUM_01

SK_01

WS_01

Scenario (b)

0

0.5

1

1.5

2

2.5

3

3.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

P
ac

ke
ts

 i
n

 t
he

 q
ue

u
e FILTER_10_01

FILTER_2_01

GBSUM_01

SK_01

WS_GB_01

WS_UPD2_01

Scenario (c)

0

0.5

1

1.5

2

2.5

3

3.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

P
ac

ke
ts

 i
n

 t
h

e
q

u
eu

e

FILTER_10_01

FILTER_2_01

FILTER_6_01

GBSUM_01

REP_01

REP_02

SK_01

WS_GB_01

WS_UPD2_01

Scenario (d)

Fig. 13-16 Queues for scenarios (a), (b), (c), (d)

88.5
89

89.5
90

90.5
91

91.5
92

92.5
93

scenario
(a)

scenario
(b)

scenario
(c)

STORE

scenario
(c)

GROUP
BY

scenario
(d)

STORE

scenario
(d)

GROUP
BY

T
im

e
(s

ec
s)

Fig. 17 Data freshness for each scenario

In all the scenarios the block size of the SFlowR was fixed at 50
rows per block. Scenario (a) was configured to use the following
service rates: 20, 22.5, 30 and 40 packets per second, which
represent rates of 1000, 1250, 1500 and 2000 rows per second
respectively. In scenarios (b), (c) and (d) the service rates were
simulated to 30 packets per second both for the ETL rates and the
Web Service clients.

Finally, Figure17 summarizes the total times needed for the
ADSA to transfer all data to the warehouse, for each scenario of
ETL queues.

Observing the figures, we derive the following conclusions:

1. The source capability is approximately 1100 rows/sec. In
scenario (a) we are led to queue explosion, when we employ
service rate smaller than the source’s arrival rate. Using a
service rate of 1250 rows / sec, which is a setting close to the
arrival rate, we can see that transient effects tend to appear,
but the queue converges to steady state. By using higher
service rates, 1500 and 2000 rows / sec respectively, the
queue maintains its steady state.

2. In scenarios (b), (c) and (d) we observe that the entire
system, as well as the queue of each operation, maintains a
steady state. The number of packets in the queue is less or
equal to the maximum number of packets polled
simultaneously from the queue. This practically means that
after each poll the queue empties and that the ADSA is only
one step behind the source.

3. In Figure 17, the total time needed for the entire dataset to be
transferred from the ADSA to the Warehouse is dependent
on the number of the intermediate ETL operations. As the
number of intermediate ETL operations that a packet has to
visit increases, the total delay increases as well. Nevertheless,
in our exemplary scenarios, the increase is rather small, due
to the pipelining of data. The average delay per row is around
0.9 msec for all scenarios.

In Table 2 we present the comparison of our theoretical evaluation
of queue length against the observed values. For lack of space, we
show only the results of scenario (c) with service rate of 2000
rows/sec; all the other scenarios present identical behavior. As
one can observe, in average, the theoretical prediction typically
underestimates the average queue length by a very small amount
(of the size of 5 records). In our detailed experiments, the system
behaves in accordance with this pattern for all four scenarios, with
an average error of half a packet (i.e., 25 records).

Table 2. Theoretical prediction vs. actual measurements of
average queue length for scenario (c) in packets

 Measured
Theoretical
Prediction

Difference

FILTER_10_01 0.160 0.056 0.104
FILTER_02_01 0.134 0.047 0.087

SK_01 0.154 0.054 0.100
GB_SUM_01 0.137 0.048 0.089

WS_GB 0.091 0.031 0.059
WS_GB_UPD 0.100 0.035 0.066

5. RELATED WORK
In this section, we present work related to our approach. Research
in ETL has provided results in (a) tools [10, 21], (b) algorithms
for specific tasks [7, 15, 16, 18]. Both tools and algorithms
operate in a batch, off-line fashion. So far, minimum emphasis has
been paid to the investigation of ETL tasks, apart from a general
model for [7, 18], where ETL activities are studied under the
prism of lineage or resumption of a failed process. As already
mentioned, data streams [1, 5, 17] could possibly appear as the
paradigm for active warehouse maintenance. So far, streams have
been studied from the point of view of continuous querying,

without any investigation of transformations or updates. Both our
architecture and theoretical analysis could possibly be applied
over streams for this purpose. To our knowledge, the only paper
related to our approach is [14], where the authors apply a “white-
box” (as opposed to our black box) method to determine the
properties of SPJ relational operators with respect to queue
theory.

Work in materialized views refreshment [12, 13, 24, 25] is
orthogonal to our setting. In [13] the authors describe materialized
views, their applications, and the problems and techniques for
their maintenance. Novel techniques and an up-to-date survey of
related work in the field are presented in [12]. Materialized views
refreshment fits orthogonally with our on-line refreshment
technique, since we can treat each ETL queue as a black-box
process. In the context of this paper, a dedicated web service is
assigned to each materialized view. Although the tuning of the
system for large workloads of views is an interesting topic of
research, we find this issue outside the scope of this paper.

Another area related to our approach is the one of active
databases. In particular, if conventional systems (rather than
legacy ones) are employed, one might argue that the usage of
triggers [7] could facilitate the on-line population of the
warehouse. Still, related material suggests that triggers are not
quite suitable for our purpose, since they can (a) slow down the
source system and (b) require changes to the database
configuration [6]. In [19] it is also stated that capture mechanisms
at the data layer such as triggers have either a prohibitively large
performance impact on the operational system. As compared to
these problems, our architecture achieves low overhead with
minimal impact in the configuration of the source. We conjecture
that a replication mechanism similar with the proposed one,
propagating log entries towards the warehouse is a possible
solution towards this problem.

6. CONCLUSIONS AND FUTURE WORK
Active Data Warehousing refers to a new trend where data
warehouses are updated as frequently as possible, due to the high
demands of users for fresh data. In this paper, we have proposed a
framework for the implementation of active data warehousing,
keeping in mind the following goals: (a) minimal changes in the
software configuration of the source, (b) minimal overhead for the
source due to the "active" nature of data propagation, (c) the
possibility of smoothly regulating the overall configuration of the
environment in a principled way. In our framework, we have
implemented ETL activities over queue networks and employed
queue theory for the prediction of the performance and the tuning
of the operation of the overall refreshment process. In terms of
data freshness, source overhead and minimal impact of software
configuration the results seem satisfactory. A summary of the
lessons learned is as follows:

• In terms of architecture, isolating the ETL tasks in a special-
purpose area, either in the warehouse, or in an intermediate
tier, guarantees both minimum performance overhead at the
source and the possibility of regulating the flow towards the
warehouse target tables.

• Queue theory can be successfully employed as the theoretical
background for the estimation of the response of the active
staging area. The system reaches a steady state quite close to
the predicted behavior. Freshness is quite satisfactory too.

• The overall overhead at the source side is around 1.7% and
the amount of code modification is around 100 lines, without
affecting applications.

• Tuning the network-related parameters helps. TCP should be
used instead of UDP, due to the packet loss of the latter.
Organization of rows in blocks, both at the source and the
ADSA side increases performance.

Future work includes several directions. A first line of research
would have to do with the failure management of the components
of the environment, to determine safeguarding techniques and fast
resumption algorithms for the event of a failure. Further tuning
can be made, by testing multiple concurrent loading sources for
the warehouse. Also, the case of materialized aggregate views and
schema evolution poses interesting challenges in this context.

7. ACKNOWLEDGMENTS
E. Papapetrou has helped with comments on issues of queue
theory and implementation. This research has been partially
supported from the European Commission and the Greek Ministry
of Education through the Pythagoras Program.

8. REFERENCES
[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, et al.

Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2), 120-139, 2003.

[2] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web
Services: Concepts, Architectures and Applications.
Springer-Verlag, 2003.

[3] J. Adzic, V. Fiore. Data Warehouse Population Platform.
In Proc. 5th Intl. Workshop on the Design and
Management of Data Warehouses (DMDW’03), Berlin,
Germany, 2003.

[4] Apache Software Foundation. Axis. Available at
http://ws.apache.org/axis/

[5] S. Babu, J. Widom. Continuous Queries over Data
Streams. SIGMOD Record 30(3), 109-120, 2001.

[6] Donald Burleson. New Developments In Oracle Data
Warehousing. Available at: http://dba-
oracle.com/oracle_news/2004_4_22_burleson.htm

[7] Stefano Ceri, Jennifer Widom. Deriving Production Rules
for Incremental View Maintenance. In Proc. VLDB,
Barcelona Spain, September 1991, 577-589

[7] Yingwei Cui, Jennifer Widom. Lineage tracing for general
data warehouse transformations. The VLDB Journal 12(1),
41-58, 2003.

[9] W. Duquaine Web Services Ruminations. Presentation at
High Performance Transaction Systems Workshop
(HPTS’03). Asilomar Conference Center, California,
October 12-15, 2003. Available at
http://research.sun.com/hpts2003/

[10] Galhardas, H., Florescu, D., Shasha, D., and Simon, E..
Ajax: An Extensible Data Cleaning Tool. In Proc. ACM

SIGMOD, Dallas, Texas, May 2000, p. 590.
[11] D. Gross, C. Harris. Fundamentals of Queuing Theory.

Wiley, 3rd Edition, 1998.
[12] H. Gupta and I.S. Mumick. Incremental Maintenance of

Aggregate and Outerjoin Expressions. To appear in
Information Systems, 2004.

[13] Ashish Gupta, Inderpal Singh Mumick. Maintenance of
Materialized Views: Problems, Techniques, and
Applications. Data Engineering Bulletin 18(2), 3-18,
1995.

[14] Qingchun Jiang, Sharma Chakravarthy. Queueing analysis
of relational operators for continuous data streams. In
Proc. CIKM, New Orleans, Louisiana, USA, November
2003, 271-278.

[15] Wilburt Labio, Jun Yang, Yingwei Cui, Hector Garcia-
Molina, Jennifer Widom: Performance Issues in
Incremental Warehouse Maintenance. In Proc. VLDB,
Cairo, Egypt, September 2000, 461-472.

[16] Wilburt Labio, Hector Garcia-Molina: Efficient Snapshot
Differential Algorithms for Data Warehousing. In Proc.
VLDB, Mumbai, India, September 1996, 63-74.

[17] D. Lomet, J. Gehrke. Special Issue on Data Stream
Processing. Data Engineering Bulletin, 26(1), 2003.

[18] Wilburt Labio, Janet L. Wiener, Hector Garcia-Molina,
Vlad Gorelik. Efficient Resumption of Interrupted
Warehouse Loads. In Proc. of ACM SIGMOD, Dallas,
Texas, USA, May 2000, 46-57.

[19] On-Time Data Warehousing with Oracle10g - Information
at the Speed of your Business. An Oracle White Paper.
August 2003. Available at http://www.oracle.com/
technology/products/bi/pdf/10gr1_twp_bi_ontime_etl.pdf

[20] P. Graf. The Program Base Library. Publicly available
through http://mission.base.com/peter/source/

[21] Vijayshankar Raman, Joseph M. Hellerstein: Potter's
Wheel. An Interactive Data Cleaning System. In Proc.
VLDB, Rome, Italy, September 2001, 381-390.

[22] C. White. Intelligent Business Strategies: Real-Time Data
Warehousing Heats Up. DM Ρeview, August 2002.
Available at http://www.dmreview.com/article_sub.cfm?
articleId=5570

[23] A. Willig. Performance Evaluation Techniques. Available
at http://www-ks.hpi.uni-potsdam.de/docs/engl/teaching/
pet/ss2004/script.pdf, 2004.

[24] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer,
Jennifer Widom: View Maintenance in a Warehousing
Environment. In Proc. of ACM SIGMOD, 1995, 316-327.

[25] Xin Zhang, Elke A. Rundensteiner: Integrating the
maintenance and synchronization of data warehouses
using a cooperative framework. Information Systems
27(4), 219-243, 2002.

