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Abstract

Background: The efficiency of drug development defined as a number of successfully launched new

pharmaceuticals normalized by financial investments has significantly declined. Nonetheless, recent advances in

high-throughput experimental techniques and computational modeling promise reductions in the costs and

development times required to bring new drugs to market. The prediction of toxicity of drug candidates is one of

the important components of modern drug discovery.

Results: In this work, we describe eToxPred, a new approach to reliably estimate the toxicity and synthetic

accessibility of small organic compounds. eToxPred employs machine learning algorithms trained on molecular

fingerprints to evaluate drug candidates. The performance is assessed against multiple datasets containing known

drugs, potentially hazardous chemicals, natural products, and synthetic bioactive compounds. Encouragingly,

eToxPred predicts the synthetic accessibility with the mean square error of only 4% and the toxicity with the

accuracy of as high as 72%.

Conclusions: eToxPred can be incorporated into protocols to construct custom libraries for virtual screening in

order to filter out those drug candidates that are potentially toxic or would be difficult to synthesize. It is freely

available as a stand-alone software at https://github.com/pulimeng/etoxpred.

Keywords: Virtual screening, Synthetic accessibility, Toxicity, Machine learning, Deep belief network, Extremely

randomized trees

Background

Drug discovery is an immensely expensive and time-con-

suming process posing a number of formidable chal-

lenges. To develop a new drug requires 6–12 years and

costs as much as $2.6 billion [1, 2]. These expenses do

not include the costs of basic research at the universities

focused on the identification of molecular targets, and

the development of research methods and technologies.

Despite this cumbersome discovery process, the pharma-

ceutical industry is still regarded as highly profitable

because the expenses are eventually accounted for in the

market price of new therapeutics. Although, a breakdown

of the overall capitalized costs shows that the clinical

period costing $1.5 billion is economically the most crit-

ical factor, the expenditures of the pre-human phase ag-

gregate to $1.1 billion [1]. Thus, technological advances in

discovery research and preclinical development could po-

tentially lower the costs of bringing a new drug to the

market.

Computer-aided drug discovery (CADD) holds a signifi-

cant promise to reduce the costs and speed up the develop-

ment of lead candidates at the outset of drug discovery [3].

Powered by continuous advances in computer technologies,

CADD employing virtual screening (VS) allows identifying

hit compounds from large databases of drug-like molecules

much faster than traditional approaches. CADD strategies

include ligand- and structure-based drug design, lead

optimization, and the comprehensive evaluation of absorp-

tion, distribution, metabolism, excretion, and toxicity

(ADMET) parameters [4]. Ligand-based drug design
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(LBDD) leverages the spatial information and physicochem-

ical features extracted from known bioactives against a

given target protein to design and optimize new com-

pounds for the same target [5]. VS employing features pro-

vided by pharmacophore modeling [6] and quantitative

structure-activity relationship (QSAR) analysis [7] can be

performed in order to identify potentially active com-

pounds. Although the capabilities of the traditional LBDD

to discover new classes of leads may be limited, recent

advances in generating targeted virtual chemical libraries by

combinatorial chemistry methods considerably extend the

application of LBDD methods [8–10]. Captopril, an

angiotensin-converting enzyme inhibitor, was one of the

first success stories of LBDD, which was considered a revo-

lutionary concept in 1970s compared to conventional

methods [11].

Although the combination of pharmacophore model-

ing, QSAR, and VS techniques has been demonstrated

to be valuable in the absence of the protein structure

data [12, 13], the three-dimensional (3D) information on

the target protein allows employing structure-based drug

design (SBDD) [14] in CADD. Foremost SBDD methods

include molecular docking [15], molecular dynamics

[16], receptor-based VS [17], and the de novo design of

active compounds [18]. Molecular docking is widely

used in CADD to predict the preferable orientation of a

drug molecule in the target binding pocket by finding

the lowest energy configuration of the protein-ligand

system. It is often employed to conduct receptor-based

VS whose goal is to identify in a large library of candidate

molecules those compounds that best fit the target bind-

ing site. VS performed with high-performance computing

machines renders docking programs such as AutoDock

Vina [19], rDock [20], Glide [21], and FlexX [22] capable

to search through millions of compounds in a matter of

days or even hours. A potent, pyrazole-based inhibitor of

the transforming growth factor-β type I receptor kinase

exemplifies benefits of utilizing receptor-based VS to dis-

cover leads. This inhibitor has been independently discov-

ered with the computational, shape-based screening of

200,000 compounds [23] as well as the traditional enzyme

and cell-based high-throughput screening of a large library

of molecules [24].

In addition to LBDD and SBDD, toxicity prediction is

an increasingly important component of modern CADD,

especially considering that the collections of virtual mole-

cules for VS may comprise tens of millions of untested

compounds. Methods to predict toxicity aim at identifying

undesirable or adverse effects of certain chemicals on

humans, animals, plants, or the environment. Conven-

tional approaches to evaluate toxicity profiles employing

animal tests are constrained by time, costs, and ethical

considerations. On that account, fast and inexpensive

computational approaches are often employed at first in

order to eliminate potentially toxic molecules and reduce

the number of experimental tests that need to be con-

ducted. For instance, a blockage of the human Ether-à--

go-go-Related Gene (hERG) potassium ion channels by a

surprisingly diverse group of drugs can induce lethal car-

diac arrhythmia [25]. Therefore, the effective identification

of putative hERG blockers and non-blockers in chemical

libraries plays an important role in the cardiotoxicity pre-

diction. A recently developed method, Pred-hERG, esti-

mates the cardiac toxicity with a set of features based on

statistically significant and externally predictive QSAR

models of the hERG blockage [26]. Pred-hERG employs a

binary model, a multi-class model, and the probability

maps of atomic contribution, which are combined for the

final prediction. Encouragingly, Pred-hERG achieves a

high correct classification rate of 0.8 and a multi-class ac-

curacy of 0.7.

Another example is chemTox (http://www.cyprotex.com/

insilico/physiological_modelling/chemtox) predicting key

toxicity parameters, the Ames mutagenicity [27] and the

median lethal dose (LD50) following intravenous and oral

administration, as well as the aqueous solubility. chemTox

employs molecular descriptors generated directly from

chemical structures to construct quantitative-structure

property relationships (QSPR) models. Since this method

requires a set of specific descriptors to generate QSPR

models for a particular type of toxicity, it may not be suit-

able to evaluate a broadly defined toxicity and drug

side-effects in general. A similar method, ProTox, predicts

rodent oral toxicity based on the analysis of toxic fragments

present in compounds with known LD50 values [28]. Pro-

Tox additionally evaluates possible targets associated with

adverse drug reactions and the underlying toxicity mecha-

nisms with the collection of protein-ligand pharmaco-

phores, called toxicophores. This tool was reported to

outperform the commercial software TOPKAT (TOxicity

Prediction by Komputer Assisted Technology, http://accel-

rys.com/products/collaborative-science/biovia-discovery-s-

tudio/qsar-admet-and-predictive-toxicology.html) against a

diverse external validation set, with the sensitivity, specifi-

city and precision of 0.76, 0.95 and 0.75, respectively. Other

techniques to predict toxicity utilize various features such

as fingerprints, physicochemical properties, and pharmaco-

phore models to build predictive dose- and time-response

models [29].

The Tox21 Data Challenge 2014 (https://tripod.nih.gov/

tox21/challenge/index.jsp) has been conducted to assess a

number of methods predicting how chemical compounds

disrupt biological pathways in ways that may result in toxic

effects. In this challenge, the chemical structure data for

12,707 compounds were provided in order to evaluate the

capabilities of modern computational approaches to iden-

tify those environmental chemicals and drugs that are of

the greatest potential concern to human health. DeepTox
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[30] was the best performing methods in the Tox21 Data

Challenge winning the grand challenge, the nuclear recep-

tor panel, the stress response panel, and six single assays.

This algorithm employs the normalized chemical represen-

tations of compounds to compute a large number of de-

scriptors as an input to machine learning. Models in

DeepTox are first trained and evaluated, and then the most

accurate models are combined into ensembles ultimately

used to predict the toxicity of new compounds. DeepTox

was reported to outperform deep neural networks (DNNs)

[31], support vector machines (SVMs) [32], random forests

(RF) [33], and elastic nets [34].

In this communication, we describe eToxPred, a new

method to predict the synthetic accessibility and the tox-

icity of molecules in a more general manner. In contrast

to other approaches employing manually-crafted descrip-

tors, eToxPred implements a generic model to estimate

the toxicity directly from the molecular fingerprints of

chemical compounds. Consequently, it may be more ef-

fective against highly diverse and heterogeneous datasets.

Machine learning models in eToxPred are trained and

cross-validated against a number of datasets comprising

known drugs, potentially hazardous chemicals, natural

products, and synthetic bioactive compounds. We also

conduct a comprehensive analysis of the chemical com-

position of toxic and non-toxic substances. Overall,

eToxPred quite effectively estimates the synthetic accessi-

bility and the toxicity of small organic compounds directly

from their molecular fingerprints. As the primary

application, this technique can be incorporated into

high-throughput pipelines constructing custom libraries

for virtual screening, such as that based on eMolFrag [9]

and eSynth [10], to eliminate from CADD those drug can-

didates that are potentially toxic or would be difficult to

synthesize.

Implementation

Machine learning algorithms

Numerous machine learning-based techniques have been

developed to reveal complex relations between chemical

entities and their biological targets [35]. In Fig. 1, we

briefly present the concepts and the overall implementa-

tion of machine learning classifiers employed in this

study. The first algorithm is the Restricted Boltzmann

Machine (RBM), an undirected graphical model with a

visible input layer and a hidden layer. In contrast to the

unrestricted Boltzmann Machine, in which all nodes are

connected to one another (Fig. 1A) [36], all inter-layer

units in the RBM are fully connected, while there are no

intra-layer connections (Fig. 1B) [37]. The RBM is an

energy-based model capturing dependencies between

variables by assigning an “energy” value to each config-

uration. The RBM is trained by balancing the probability

of various regions of the state space, viz. the energy of

those regions with a high probability is reduced, with the

simultaneous increase in the energy of low-probability

regions. The training process involves the optimization

of the weight vector through Gibbs sampling [38].

Fig. 1 Schematics of various machine learning classifiers. (a) A two-layered Boltzmann Machine with 3 hidden nodes h and 2 visible nodes v.

Nodes are fully connected. (b) A Restricted Boltzmann Machine (RBM) with the same nodes as in A. Nodes belonging to the same layer are not

connected. (c) A Deep Belief Network with a visible layer V and 3 hidden layers H. Individual layers correspond to RBMs that are stacked against

one another. (d) A Random Forest with 3 trees T. For a given instance, each tree predicts a class based on a subset of the input set. The final

class assignment is obtained by the majority voting of individual trees
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The Deep Belief Network (DBN) is a generative prob-

abilistic model built on multiple RBM units stacked

against each other, where the hidden layer of an un-

supervised RBM serves as the visible layer for the next

sub-network (Fig. 1C) [39]. This architecture allows for

a fast, layer-by-layer training, during which the contrast-

ive divergence algorithm [40] is employed to learn a

layer of features from the visible units starting from the

lowest visible layer. Subsequently, the activations of pre-

viously trained features are treated as a visible unit to

learn the abstractions of features in the successive hid-

den layer. The whole DBN is trained when the learning

procedure for the final hidden layer is completed. It is

noteworthy that DBNs are first effective deep learning

algorithms capable of extracting a deep hierarchical rep-

resentation of the training data [41].

In this study, we utilize a DBN implemented in Python

with Theano and CUDA to support Graphics Processing

Units (GPUs) [42]. The SAscore is predicted with a DBN

architecture consisting of a visible layer corresponding

to a 1024-bit Daylight fingerprint (http://www.daylight.-

com) and three hidden layers having 512, 128, and 32

nodes (Fig. 1C). The L2 regularization is employed to re-

duce the risk of overfitting. The DBN employs an adap-

tive learning rate decay with an initial learning rate, a

decay rate, mini-batch size, the number of pre-training

epochs, and the number of fine-tuning epochs of 0.01,

0.0001, 100, 20, and 1000, respectively.

Finally, the Extremely Randomized Trees, or Extra

Trees (ET), algorithm [43] is used to predict the toxicity

of drug candidates (Fig. 1D). Here, we employ a simpler

algorithm because classification is generally less complex

than regression. Classical random decision forests con-

struct an ensemble of unpruned decision trees predicting

the value of a target variable based on several input vari-

ables [44]. Briefly, a tree is trained by recursively parti-

tioning the source set into subsets based on an attribute

value test. The dataset fits well the decision tree model

because each feature takes a binary value. The recursion

is completed when either the subset at a node has an in-

variant target value or when the Gini impurity reaches a

certain threshold [45]. The output class from a decision

forest is simply the mode of the classes of the individual

trees. The ET classifier is constructed by adding a ran-

domized top-down splitting procedure in the tree

learner. In contrast to other tree-based methods com-

monly employing a bootstrap replica technique, ET splits

nodes by randomly choosing both attributes and

cut-points, as well as it uses the whole learning sample

to grow the trees. Random decision forests, including

ET, are generally devoid of problems caused by overfit-

ting to the training set because the ensemble of trees re-

duces model complexity leading to a classifier with a low

variance. In addition, with a proper parameter tuning,

the randomization procedure in ET can help achieve ro-

bust performance even for small training datasets.

The ET classifier used in this study is implemented in

Python. We found empirically that the optimal perform-

ance in terms of the out-of-bag error is reached at 500

trees and adding more trees causes overfitting and in-

creases the computational complexity. The number of

features to be randomly drawn from the 1024-bit input

vector is log2 1024 = 10. The maximum depth of a tree

is 70 with minimum numbers of 3 and 19 samples to

create and split a leaf node, respectively.

Datasets

Table 1 presents compound datasets are employed in

this study. The first two sets, the Nuclei of Bioassays,

Ecophysiology and Biosynthesis of Natural Products

(NuBBE), and the Universal Natural Products Database

(UNPD), are collections of natural products. NuBBE is a

virtual database of natural products and derivatives from

the Brazilian biodiversity [46], whereas UNPD is a gen-

eral resource of natural products created primarily for

virtual screening and network pharmacology [47]. Re-

moving the redundancy at a Tanimoto coefficient (TC)

[48] of 0.8 with the SUBSET [49] program resulted in

1008 NuBBE and 81,372 UNPD molecules. In addition

to natural products, we compiled a non-redundant set of

mostly synthetic bioactive compounds from the Data-

base of Useful Decoys, Extended (DUD-E) database [50]

by selecting 17,499 active molecules against 101 pharma-

cologically relevant targets.

The next two sets, FDA-approved and Kyoto

Encyclopedia of Genes and Genomes (KEGG) Drug,

comprise molecules approved by regulatory agencies,

which possess acceptable risk versus benefit ratios. Al-

though these molecules may still cause adverse drug re-

actions, we refer to them as non-toxic because of their

relatively high therapeutic indices. FDA-approved drugs

were obtained from the DrugBank database, a widely

used cheminformatics resource providing comprehensive

information on known drugs and their molecular targets

[51]. The KEGG-Drug resource contains drugs approved

in Japan, United States, and Europe, annotated with the

information on their targets, metabolizing enzymes, and

molecular interactions [52]. Removing the chemical re-

dundancy from both datasets yielded 1515 FDA-approved

and 3682 KEGG-Drug compounds.

Two counter-datasets, TOXNET and the Toxin and

Toxin Target Database (T3DB), contain compounds indi-

cated to be toxic. The former resource maintained by the

National Library of Medicine provides databases on toxi-

cology, hazardous chemicals, environmental health, and

toxic releases [53]. Here, we use the Hazardous Sub-

stances Data Bank focusing on the toxicology of poten-

tially hazardous chemicals. T3DB houses detailed toxicity
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data in terms of chemical properties, molecular and cellu-

lar interactions, and medical information, for a number of

pollutants, pesticides, drugs, and food toxins [54]. These

data are extracted from multiple sources including other

databases, government documents, books, and scientific lit-

erature. The non-redundant sets of TOXNET and T3DB

contain 3035 and 1283 toxic compounds, respectively.

As an independent set, we employ the Traditional

Chinese Medicine (TCM) Database@Taiwan, currently

the largest and most comprehensive small molecule

database on traditional Chinese medicine for virtual

screening [55]. TCM is based on information collected

from Chinese medical texts and scientific publications

for 453 different herbs, animal products, and minerals.

From the original dataset, we first selected molecules

with a molecular weight in the range of 100–600 Da,

and then removed redundancy at a TC of 0.8, producing

a set of 5883 unique TCM compounds.

Finally, we use four datasets to evaluate the prediction of

specific toxicities. Compounds causing cancer in high dose

tests were obtained from the Carcinogenicity Potency (CP)

database [56]. These data are labeled based on series of ex-

periments carried out on rodents considering different tis-

sues of the subjects. A chemical is deemed toxic if it caused

tumor growth in at least one tissue specific experiment.

The CP set comprises 796 toxic and 605 non-toxic com-

pounds. The cardiotoxicity (CD) dataset contains 1571

molecules characterized with bioassay against human

ether-a-go-go related gene (hERG) potassium channel.

hERG channel blockade induces lethal arrhythmia causing

a life-threatening symptom [57]. The CD set includes 350

toxic compounds with an IC50 of < 1 μM [58]. The endo-

crine disruption (ED) dataset is prepared based on the bio-

assay data for androgen and estrogen receptors taken from

the Tox21 Data Challenge. Endocrine disrupting chemicals

interfere with the normal functions of endogenous hor-

mones causing metabolic and reproductive disorders, the

dysfunction of neuronal and immune systems, and cancer

growth [59]. The ED set contains 1317 toxic and 15,742

non-toxic compounds. The last specific dataset is focused

on the acute oral toxicity (AO). Among 12,612 molecules

with LD50 data provided by the SuperToxic database [60],

7392 compounds are labeled as toxic with a LD50 of < 500

mg kg− 1. It is important to note that since LD50 is not indi-

cative of non-lethal toxic effects, a chemical with a high

LD50 may still cause adverse reactions at small doses.

Model training, cross-validation, and evaluation

Input data to machine learning models are 1024-bit Day-

light fingerprints constructed for dataset compounds with

Open Babel [61]. The reference SAscore values are com-

puted with an exact approach that combines the

fragment-based score representing the “historical synthetic

knowledge” with the complexity-based score penalizing the

presence of ring systems, such as spiro and fused rings,

multiple stereo centers, and macrocycles [62]. The

DBN-based predictor of the SAscore was trained and

cross-validated against NuBBE, UNPD, FDA-approved, and

DUD-E-active datasets. Cross-validation is a common

technique used in statistical learning to evaluate the

generalization of a trained model [63]. In a k-fold

cross-validation protocol, one first divides the dataset into k

different subsets and then the first subset is used as a valid-

ation set for a model trained on the remaining k – 1 sub-

sets. This procedure is repeated k times employing different

subsets as the validation set. Averaging the performance

obtained for all k subsets yields the overall performance

and estimates the validation error of the model. In this

Table 1 Compound datasets used to evaluate the performance of eToxPred. These non-redundant sets are employed to train and

test SAscore, Tox-score, and specific toxicities

Dataset Size Usage Description

NuBBE 1008 Train/test (SAscore) Natural products and derivatives from the Brazilian biodiversity

UNPD 81,372 Train/test (SAscore) Diverse collection of natural products

DUD-E (actives) 17,499 Train/test (SAscore) Mostly synthetic bioactive compounds against 102 protein targets

FDA-approved 1515 Train/test (SAscore)
Train (Tox-score)

FDA approved drugs from DrugBank

KEGG-Drug 3682 Test (Tox-score) Drugs approved in Japan, United States, and Europe

TOXNET 3035 Train (Tox-score) Potentially hazardous chemicals

T3DB 1283 Test (Tox-score) Collection of pollutants, pesticides, drugs, and food toxins

TCM 5883 Test (SAscore, Tox-score, unlabeled) Traditional Chinese medicines

CP 1401 Train/test (specific toxicity) Carcinogenic compounds tested in rodents

CD 1571 Train/test (specific toxicity) Cardiotoxic compounds tested against hERG potassium channel

ED 17,059 Train/test (specific toxicity) Endocrine disrupting compounds tested against androgen and
estrogen receptors

AO 12,612 Train/test (specific toxicity) Toxins from various sources annotated with acute oral toxicity
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work, the SAscore predictor is evaluated with a 5-fold

cross-validation protocol, which was empirically demon-

strated to be sufficient for most applications [64].

The Tox-score prediction is conducted with a binary,

ET-based classifier. The training and cross-validation are

carried out for the FDA-approved dataset used as posi-

tive (non-toxic) instances and the TOXNET dataset used

as negative (toxic) instances. Subsequently, the toxicity

predictor is trained on the entire FDA-approved/TOX-

NET dataset and then independently tested against the

KEGG-Drug (positive, non-toxic) and T3DB (negative,

toxic) sets. In addition, the capability of the classifier to

predict specific toxicities is assessed against CP, CD, ED,

and AO datasets. Similar to the SAscore predictor, a

5-fold cross-validation protocol is employed to rigor-

ously evaluate the performance of the toxicity classifier.

Finally, both machine learning predictors of SAscore

and Tox-score are applied to the TCM dataset.

The performance of eToxPred is assessed with several

metrics derived from the confusion matrix, the accuracy

(ACC), the sensitivity or true positive rate (TPR), and

the fall-out or false positive rate (FPR):

ACC ¼
TP þ TN

TP þ FP þ TN þ FN
ð1Þ

TPR ¼
TP

TP þ FN
ð2Þ

FPR ¼
FP

FP þ TN
ð3Þ

where TP is the number of true positives. i.e.

non-toxic compounds classified as non-toxic, and TN is

the number of true negatives, i.e. toxic compounds clas-

sified as toxic. FP and FN are the numbers of over- and

under-predicted non-toxic molecules, respectively.

In addition, we assess the overall quality of a binary

classifier with the Matthews correlation coefficient

(MCC) [65] and the Receiver Operating Characteristic

(ROC) analysis. The MCC is generally regarded as a

well-balanced measure ranging from − 1 (anti-correla-

tion) to 1 (a perfect classifier) with values around 0 cor-

responding to a random guess:

MCC ¼
TN � TP−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p

ð4Þ

where TP, TN, FP, and FN are defined above. The ROC

analysis describes a trade-off between the FPR and the

TPR for a classifier at varying decision threshold values.

The MCC and ROC are important metrics to help select

the best model considering the cost and the class distri-

bution. The hyperparameters of the model, including the

number of features resulting in the best split, the mini-

mum number of samples required to split an internal

node, and the minimum number of samples required to

be at a leaf node, are tuned with a grid search method.

The best set of hyperparameters maximizes both the

MCC and ROC.

Finally, the performance of the regression classifier is

evaluated with the mean squared error (MSE) and the

Pearson correlation coefficient (PCC) [66]. The MSE is a

risk function measuring the average of the squares of the

errors:

MSE ¼
1

N

XN

i¼1

byi−yið Þ2 ð5Þ

where N is the total number of evaluation instances,

and byi and yi are the predicted and actual values of i-th

instance, respectively. Further, the PCC is often

employed to assess the accuracy of point estimators by

measuring the linear correlation between the predicted

and actual values. Similar to the MCC, PCC ranges from

− 1 to 1, where − 1 is a perfect anti-correlation, 1 is a

perfect correlation, and 0 is the lack of any correlation.

It is calculated as:

PCC ¼
cov ŷ; yð Þ

σ ŷσy

ð6Þ

where covðŷ; yÞ is the covariance matrix of the pre-

dicted and actual values, and σ ŷ and σy are the standard

deviations of the predicted and actual values, respectively.

Results and discussion

SAscore prediction with eToxPred

The SAscore combining contributions from various mo-

lecular fragments and a complexity penalty, was devel-

oped to help estimate the synthetic accessibility of

organic compounds [62]. It ranges from 1 for molecules

easy to make, up to 10 for those compounds that are very

difficult to synthetize. The datasets used to train and valid-

ate the SAscore predictor, including FDA-approved,

DUD-E-active, NuBBE, and UNPD datasets, are highly

skewed, i.e., SAscore values are non-uniformly distributed

over the 1–10 range. For instance, Fig. 2 (solid gray line)

shows that as many as 28.3% of molecules in the original

dataset have a SAscore between 2 and 3. Therefore, a

pre-processing is needed to balance the dataset for a bet-

ter performance of the SAscore predictor. Specifically, an
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over/under-sampling procedure is employed by duplicat-

ing those cases with under-represented SAscore values

and randomly selecting a subset of over-represented in-

stances. The over-sample ratio for the 1–2 range is 2.

The number of data points in the 2–5 range are uni-

formly under-sampled to 90,000, whereas those in the

5–6 range remain unchanged. For 6–7, 7–8, 8–9, and

9–10 ranges, the over-sample ratios are 2, 5, 20, and

100, respectively. Figure 2 (dashed black line) shows

that the over/under-sampled set contains more in-

stances with low (1–2) and high (6–10) SAscore

values compared to the original dataset.

A scatter plot of the predicted vs. actual SAscore

values is shown in Fig. 3 for FDA-approved,

DUD-E-active, NuBBE, and UNPD datasets. Encour-

agingly, the cross-validated PCC (Eq. 6) across all four

datasets is as high as 0.89 with a low MSE (Eq. 5) of 0.81

(~ 4%) for the predicted SAscore. Next, we apply the

DBN predictor to individual datasets and analyze the dis-

tribution of the estimated SAscore values in Fig. 4. As ex-

pected, mostly synthetic molecules from the DUD-E-

active dataset have the lowest median SAscore of 2.9,

which is in line with values previously reported for cata-

logue and bioactive molecules from the World Drug Index

(http://www.daylight.com/products/wdi.html) and MDL

Drug Data Report (http://www.akosgmbh.de/accelrys/da-

tabases/mddr.htm) databases. The median SAscore for

FDA-approved drugs is 3.2 because in addition to syn-

thetic and semi-synthetic compounds, this heterogeneous

dataset also contains natural products whose chemical

structures are generally more complex than the “standard”

organic molecules. Both datasets of natural products,

NuBBE and UNPD, have even higher median SAscore

values of 3.4 and 4.1, respectively. Further, similar to the

analysis of the Dictionary of Natural Products (http://

dnp.chemnetbase.com) conducted previously [62], natural

products employed in the present study have a character-

istic bimodal distribution with two distinct peaks at a

SAscore of about 3 and 5. Finally, the median SAscore for

TCM is 4.1 concurring with those values calculated for

natural products. Interestingly, a number of TCM mole-

cules have relatively high synthetic accessibility and the

shape of the distribution of the estimated SAscore values

is similar to that for the active compounds from the

DUD-E dataset. Overall, the developed DBN-based model

is demonstrated to be highly effective in estimating the

SAscore directly from binary molecular fingerprints.

Tox-score prediction with eToxPred

eToxPred was developed to quickly estimate the toxicity

of large collections of low molecular weight organic

compounds. It employs an ET classifier to compute the

Tox-score ranging from 0 (a low probability to be toxic)

to 1 (a high probability to be toxic). The primary dataset

to evaluate eToxPred consists of FDA-approved drugs,

considered to be non-toxic, and potentially hazardous

chemicals from the TOXNET database. Figure 5 shows

the cross-validated performance of eToxPred in the pre-

diction of toxic molecules. The ROC curve in Fig. 5A

demonstrates that the ET classifier is highly accurate

Fig. 2 Resampling strategy to balance the dataset. The histogram shows the distribution of SAscore values across the training set before (solid

gray line) and after (dashed black line) the over/under-sampling
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Fig. 3 SAscore prediction for several datasets. The scatter plot shows the correlation between the predicted and true SAscore values for active

compounds from the Directory of Useful Decoys, Extended (DUD-E), FDA-approved drugs, and natural products from the NuBBE and UNPD

databases. The regression line is dashed black

Fig. 4 SAscore and Tox-score prediction for several datasets. Violin plots show the distribution of (a) SAscore and (b) Tox-score values across

active compounds from the Directory of Useful Decoys, Extended (DUD-E), FDA-approved drugs, natural products from the NuBBE and UNPD

databases, and traditional Chinese medicines (TCM)
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with the area under the curve (AUC) of 0.82. According

to Fig. 5B, a Tox-score of 0.58 the most effectively dis-

criminates between toxic and non-toxic molecules, yield-

ing an MCC (Eq. 4) of 0.52. Employing this threshold

gives a high TPR of 0.71 at a low FPR of 0.19.

Next, we apply eToxPred with the optimized

Tox-score threshold to an independent dataset consist-

ing of KEGG-Drug molecules, regarded as non-toxic,

and toxic substances obtained from T3DB. Despite the

fact that many of these compounds are unseen to the

ET classifier, eToxPred quite efficiently recognizes toxic

molecules. The MCC for the KEGG-Drug and T3DB

datasets is 0.35, corresponding to the TPR and FPR of

0.63 and 0.25, respectively. Table 2 shows that using the

ET classifier yields the best performance on this inde-

pendent dataset compared to other machine learning

techniques. Even though RF is slightly more accurate

than ET against FDA-approved and TOXNET, the per-

formance of ET is noticeably higher for KEGG-Drug and

T3DB. In addition, we tested two other classifiers, the

Linear Discriminant Analysis (LDA) [67] and Multi-

layer Perceptron (MLP) [68], however, their perform-

ance is generally not as high as those of RF and ET.

Furthermore, the results obtained for the TCM data-

set show that ET has the lowest tendency to

over-predict the toxicity compared to other classifiers

(the last row in Table 2).

Switching to an independent dataset causes the per-

formance of machine learning classifiers to deteriorate

on account of a fair amount of ambiguity in the training

and testing sets. To better understand the datasets, we

present a Venn diagram in Fig. 6. For instance,

FDA-approved and TOXNET share as many as 559 mol-

ecules, whereas the intersection of KEGG-Drug and

T3DB consists of 319 compounds. Further, 36 molecules

classified as non-toxic in the FDA-approved / TOXNET

dataset are labelled toxic in the KEGG-Drug / T3DB

dataset (162 compounds are classified the other way

around). As a result, the accuracy of both LDA and

MLP drops from 0.74 to 0.65, however, the accuracy of

ET only slightly decreases from 0.76 to 0.72, demon-

strating the robustness of this classifier. Indeed, ET was

previously shown to be resilient to high-noise conditions

[43], therefore, we decided to employ this machine

learning technique as a default classifier in eToxPred.

We also apply eToxPred to evaluate the compound

toxicity across several datasets used to predict the syn-

thetic accessibility. Not surprisingly, Fig. 4B shows that

FDA-approved drugs have the lowest median Tox-score

of 0.34. The toxicity of active compounds from the

DUD-E dataset is a bit higher with a median Tox-score

of 0.46. Molecules in both natural products datasets as

well as traditional Chinese medicines are assigned even

higher toxicity values; the median Tox-score is 0.56,

Fig. 5 Performance of eToxPred in the prediction of toxic molecules. (a) The receiver operating characteristic plot and (b) the Matthews

correlation coefficient (MCC) plotted as a function of the varying Tox-score. TPR and FPR are the true and false positive rates, respectively. Gray

areas correspond to the performance of a random classifier. eToxPred is first applied to the primary training set (FDA-approved / TOXNET, solid

black lines) to select the optimum Tox-score threshold. Then, the optimized eToxPred is applied to the independent testing set (KEGG-Drug and

T3DB, solid black stars)
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0.54, and 0.54 for NuBBE, UNPD, and TCM, respect-

ively. These results are in line with other studies examin-

ing the composition and toxicology of TCM, for

instance, toxic constituents from various TCM sources

include alkaloids, glycosides, peptides, amino acids, phe-

nols, organic acids, terpenes, and lactones [69].

Finally, the prediction of specific toxicities is assessed

against four independent datasets. Figure 7 and Table 3

show that the performance of eToxPred is the highest

against the AO and CD datasets with AUC values of

0.80. The performance against the remaining datasets,

CP (AUC of 0.72) and ED (AUC of 0.75), is only slightly

lower. These results are in line with benchmarking data

reported for other classifiers; for instance, eToxPred

compares favorably with different methods particularly

against the AO and ED datasets [30, 70]. Importantly,

the ET-based classifier employing molecular fingerprints

turns out to be highly effective predicting not only the

general toxicity, but also specific toxicities as demon-

strated for the carcinogenicity potency, cardiotoxicity,

endocrine disruption, and acute oral toxicity.

Composition of non-toxic compounds

Since eToxPred quite effectively estimates the toxicity of

small organic compounds from their molecular finger-

prints, there should be some discernible structural attri-

butes of toxic and non-toxic substances. On that

account, we decomposed FDA-approved and TOXNET

molecules into chemical fragments with eMolFrag [9] in

order to compare their frequencies in both datasets.

Table 2 Performance of various machine learning classifiers to predict toxicity. The following classifiers are tested

Dataset Metric Toxicity classifiers

LDA MLP RF ET

FDA-appr. /
TOXNET

ACC 0.745 0.744 0.760 0.756

TPR / FPR 0.723 / 0.232 0.679 / 0.180 0.733 / 0.218 0.719 / 0.186

MCC 0.495 0.525 0.528 0.523

KEGG-Drug /
T3DB

ACC 0.647 0.645 0.674 0.721

TPR / FPR 0.671 / 0.362 0.675 / 0.365 0.688 / 0.331 0.631 / 0.248

MCC 0.272 0.273 0.316 0.353

TCM Tox-score 0.504 ± 0.013 0.537 ± 0.242 0.574 ± 0.143 0.552 ± 0.122

% toxic 63.9 61.8 68.5 59.7

Linear Discriminant Analysis (LDA), Multi-Layer Perceptron (MLP), Random Forest (RF), and Extra Trees (ET). Individual models are first trained and 5-fold cross-

validated against FDA-approved and TOXNET datasets and then applied to KEGG-Drug and T3DB as an additional validation against independent datasets. The

performance of toxicity classifiers on FDA-approved / TOXNET and KEGG-Drug / T3DB datasets is assessed with the accuracy (ACC, Eq. 1), true (TPR, Eq. 2) and

false (FPR, Eq. 3) positive rates, and the Matthews correlation coefficient (MCC, Eq. 4). The best performance across all models in terms of the highest ACC and

MCC values are highlighted in bold. Finally, the trained models are applied to estimate the toxicity of traditional Chinese medicines in the TCM dataset and the

average ± standard deviation Tox-score values as well as the percentage of predicted toxic molecules are reported

Fig. 6 Venn diagrams showing the overlap among various datasets.

FDA-approved and TOXNET are the primary training datasets,

whereas KEGG-Drug and T3DB are independent testing sets

Fig. 7 Performance of eToxPred in the prediction of specific

toxicities. The receiver operating characteristic plots are shown for

Carcinogenicity Potency (CP), cardiotoxicity (CD), endocrine

disruption (ED), and acute oral toxicity (AO)
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Figure 8 shows a scatter plot of 698 distinct fragments

extracted by eMolFrag. As expected, the most common

moiety is a benzene ring, whose frequency is 0.27 in the

FDA-approved and 0.17 in TOXNET fragment sets. In

general, fragment frequencies are highly correlated with

a PCC of 0.98, however, certain fragments are more

often found in either dataset. To further investigate

these cases, we selected three examples of fragments

more commonly found in FDA-approved molecules,

represented by green dots below the regression line in

Fig. 8, and three counter examples of those fragments

that are more frequent in the TOXNET dataset, shown

as red dots above the regression line in Fig. 8. In

addition, the selected parent molecules for these frag-

ments are presented in Fig. 9 (FDA-approved) and Fig. 10

(TOXNET).

Examples shown in Fig. 9 include piperidine (Fig. 9A),

piperazine (Fig. 9B), and fluorophenyl (Fig. 9C) moieties,

whose frequencies in FDA-approved/TOXNET datasets

are 0.069/0.026, 0.032/0.010, and 0.024/0.007, respect-

ively. Nitrogen-bearing heterocycles, piperidine and pi-

perazine, are of central importance to medicinal

chemistry [71]. Piperidine offers a number of important

functionalities that have been exploited to develop central

nervous system modulators, anticoagulants, antihistamines,

anticancer agents and analgesics [72]. This scaffold is the

basis for over 70 drugs, including those shown in Fig. 9A,

trihexyphenidyl (DrugBank-ID: DB00376), a muscarinic an-

tagonist to treat Parkinson’s disease [73], donepezil (Drug-

Bank-ID: DB00843), a reversible acetyl cholinesterase

inhibitor to treat Alzheimer’s disease [74], an opioid anal-

gesic drug remifentanil (DrugBank-ID: DB00899) [75], and

dipyridamole (DrugBank-ID: DB00975), a phosphodiester-

ase inhibitor preventing the blood clot formation [76].

Similarly, many well established and commercially avail-

able drugs contain a piperazine ring as part of their mo-

lecular structures [77]. A wide array of pharmacological

Table 3 Performance of the Extra Trees classifier to predict

specific toxicities

Dataset AUC ACC

CP 0.721 0.722

CD 0.799 0.798

ED 0.750 0.744

AO 0.800 0.854

The following datasets are used: carcinogenicity potency (CP), cardiotoxicity

(CD), endocrine disruption (ED), and acute oral toxicity (AO). The performance

is assessed with the area under the curve (AUC) and the accuracy (ACC, Eq. 1)

Fig. 8 Composition of non-toxic and toxic compounds. The scatter plot compares the frequencies of chemical fragments extracted with

eMolFrag from FDA-approved (non-toxic) and TOXNET (toxic) molecules. The regression line is dotted black and the gray area delineates the

corresponding confidence intervals. Three selected examples of fragments more commonly found in FDA-approved molecules (piperidine,

piperazine, and fluorophenyl) are colored in green, whereas three counter examples of fragments more frequent in the TOXNET dataset

(chlorophenyl, n-butyl, and acetic acid) are colored in red
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activities exhibited by piperazine derivatives make them

attractive leads to develop new antidepressant, anticancer,

anthelmintic, antibacterial, antifungal, antimalarial, and

anticonvulsant therapeutics [78]. Selected examples of

piperazine-based drugs presented in Fig. 9B, are anti-

psychotic fluphenazine (DrugBank-ID: DB00623), antiretro-

viral delavirdine (DrugBank-ID: DB00705), antihistamine

meclizine (DrugBank-ID: DB00737), and flibanserin (Drug-

Bank-ID: DB04908) to treat hypoactive sexual desire dis-

order among pre-menopausal women [79]. All of these

compounds contain substituents at both N1- and

N4-positions, which concurs with the analysis of piperazine

substitution patterns across FDA-approved pharmaceuticals

revealing that 83% of piperazine-containing drugs are

substituted at both nitrogens, whereas only a handful have

a substituent at any other position [77].

Incorporating fluorine into drug leads is an established

practice in drug design and optimization. In fact, so-called

fluorine scan is often employed in the development of

drug candidates to systematically exploit the benefits of

Fig. 9 Composition of selected non-toxic compounds. Three examples of fragments more commonly found in FDA-approved molecules than in

the TOXNET dataset: (a) piperidine, (b) piperazine, and (c) fluorophenyl. Four sample molecules containing a particular moiety (highlighted by

green boxes) are selected from DrugBank and labeled by the DrugBank-ID

Fig. 10 Composition of selected toxic compounds. Three examples of fragments more commonly found in the TOXNET dataset than in FDA-

approved molecules: (a) chlorophenyl, (b) n-butyl, and (c) acetic acid. Four sample molecules containing a particular moiety (highlighted by red

boxes) are selected from ZINC and labeled by the ZINC-ID
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fluorine substitution [80]. As a result, an estimated

one-third of the top-performing drugs currently on the

market contain fluorine atoms in their structure [81]. The

presence of fluorine atoms in pharmaceuticals increases

their bioavailability by modulating pKa and lipophilicity, as

well as by improving their absorption and partitioning into

membranes [82]. Further, fluorination helps stabilize the

binding of a drug to a protein pocket by creating additional

favorable interactions, as it was suggested for the fluorophe-

nyl ring of paroxetine (DrugBank-ID: DB00715) [83], a se-

lective serotonin reuptake inhibitor shown in Fig. 9C. A

low metabolic stability due to cytochrome P450-mediated

oxidation can be mitigated by blocking metabolically un-

stable hydrogen positions with fluorine atoms [84], as ex-

emplified by drug structures shown in Fig. 9C. Indeed, a

targeted fluorination of a nonsteroidal anti-inflammatory

drug flurbiprofen (DrugBank-ID: DB00712) helped prolong

its metabolic half-life [85]. Another example is cholesterol

inhibitor ezetimibe (DrugBank-ID: DB00973), in which two

metabolically labile sites are effectively blocked by fluorine

substituents [86]. Finally, replacing the chlorine atom with

a fluorine improves safety profile and pharmacokinetic

properties of prasugrel (DrugBank-ID: DB06209) compared

to other thienopyridine antiplatelet drugs, ticlopidine and

clopidogrel [87].

Composition of toxic compounds

Next, we selected three counter examples (red dots in

Fig. 8) of fragments frequently found in toxic sub-

stances, chlorophenyl, n-butyl, and acetic acid, whose

representative parent molecules are presented in Fig. 10.

For instance, the chlorophenyl moiety (Fig. 10A) is the con-

stituent of p-chloroacetophenone (ZINC-ID: 896324) used

as a tear gas for riot control, crufomate (ZINC-ID:

1557007), an insecticide potentially toxic to humans, the

herbicide oxyfluorfen (ZINC-ID: 2006235), and phosacetim

(ZINC-ID: 2038084), a toxic acetylcholinesterase inhibitor

used as a rodenticide. Further, n-butyl groups (Fig. 10B) are

present in a number of toxic substances, including merphos

(ZINC-ID: 1641617), a pesticide producing a delayed

neurotoxicity in animals, n-butyl lactate (ZINC-ID:

1693581), an industrial chemical and food additive, diethyl-

ene glycol monobutyl ether acetate (ZINC-ID: 34958085)

used as solvents for cleaning fluids, paints, coatings and

inks, and n-butyl benzyl phthalate (ZINC-ID: 60170917), a

plasticizer for vinyl foams classified as toxic in Europe and

excluded from the manufacturing of toys and child care

products in Canada. The last example is the acetic acid

moiety (Fig. 10C) found in many herbicides, e.g. chlorfenac

(ZINC-ID: 156409), 4-chlorophenoxyacetic acid (ZINC-ID:

347851), and glyphosate (ZINC-ID: 3872713) as well as in

thiodiacetic acid (ZINC-ID: 1646642), a chemical used by

the material industry to synthesize sulfur-based electro-

conductive polymers.

Conclusions

In this study, we developed a new program to predict the

synthetic accessibility and toxicity of small organic com-

pounds directly from their molecular fingerprints. The esti-

mated toxicity is reported as the Tox-score, a new machine

learning-based scoring metric implemented in eToxPred,

whereas the synthetic accessibility is evaluated with the

SAscore, an already established measure in this field. We

previously developed tools, such as eMolFrag and eSynth,

to build large, yet target-specific compound libraries for

virtual screening. eToxPred can be employed as a

post-generation filtering step to eliminate molecules that

are either difficult to synthesize or resemble toxic sub-

stances included in TOXNET and T3DB rather than

FDA-approved drugs and compounds listed by the

KEGG-Drug dataset. Additionally, it effectively predicts

specific toxicities, such as the carcinogenicity potency, car-

diotoxicity, endocrine disruption, and acute oral toxicity. In

principle, this procedure could save considerable resources

by concentrating the subsequent virtual screening and mo-

lecular modeling simulations on those compounds having a

better potential to become leads.

Availability and requirements

Project name: eToxPred.

Project home page: https://github.com/pulimeng/

etoxpred

Operating system(s): Platform independent.

Programming language: Python 2.7+ or Python 3.5+.

Other requirements: Theano, numpy 1.8.2 or higher,

scipy 0.13.3 or higher, scikit-learn 0.18.1, OpenBabel 2.3.1,

CUDA 8.0 or higher (optional).

License: GNU GPL.

Any restrictions to use by non-academics: license

needed.

Abbreviations

ACC: accuracy; ADMET: absorption, distribution, metabolism, excretion, and

toxicity; CADD: computer-aided drug discovery; DBN: deep belief network;

DNN: deep neural network; DUD-E: Database of Useful Decoys, Extended;

ET: extra trees; FDA: Food and Drug Administration; FPR: false positive rate;

GPU: graphics processing units; hERG: human Ether-à-go-go-Related Gene;

KEGG: Kyoto Encyclopedia of Genes and Genomes; LBDD: ligand-based drug

design; LD: lethal dose; LDA: Linear Discriminant Analysis; MCC: Matthews

correlation coefficient; MLP: Multilayer Perceptron; MSE: mean squared error;

NuBBE: Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural

Products; PCC: Pearson correlation coefficient; QSAR: quantitative structure-

activity relationship; QSPR: quantitative-structure property relationships;

RBM: restricted Boltzmann machine; RF: random forest; ROC: Receiver

Operating Characteristic; SBDD: structure-based drug design; SVM: support

vector machine; T3DB: Toxin and Toxin Target Database; TC: Tanimoto

coefficient; TCM: Traditional Chinese Medicine; TOPKAT: TOxicity Prediction

by Komputer Assisted Technology; TPR: true positive rate; UNPD: Universal

Natural Products Database; VS: virtual screening

Acknowledgements

The authors are grateful to Louisiana State University for providing

computing resources.

Pu et al. BMC Pharmacology and Toxicology            (2019) 20:2 Page 13 of 15

https://github.com/pulimeng/etoxpred
https://github.com/pulimeng/etoxpred


Availability of data and material

Datasets are freely available to the community through the Open Science

Framework at https://osf.io/m4ah5/.

Funding

Research reported in this publication was supported by the National Institute

of General Medical Sciences of the National Institutes of Health under Award

Number R35GM119524.

Authors’ contributions

LP implemented eToxPred, performed calculations and validation. MN and

MB prepared datasets. TL decomposed molecules into chemical fragments.

LP, MN, TL, and MB analyzed results. HCW and SM contributed algorithms. LP

drafted the manuscript. MB coordinated the project and prepared the final

version of the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Michal Brylinski serves as Associate Editor for BMC Pharmacology and

Toxicology.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Division of Electrical & Computer Engineering, Louisiana State University,

Baton Rouge, LA 70803, USA. 2Department of Biological Sciences, Louisiana

State University, Baton Rouge, LA 70803, USA. 3Department of Mechanical

Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
4Department of Computer Science, Louisiana State University, Baton Rouge,

LA 70803, USA. 5Center for Computation & Technology, Louisiana State

University, Baton Rouge, LA 70803, USA.

Received: 14 August 2018 Accepted: 26 December 2018

References

1. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical

industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.

2. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR,

Schacht AL. How to improve R&D productivity: the pharmaceutical

industry's grand challenge. Nat Rev Drug Discov. 2010;9:203–14.

3. Hung CL, Chen CC. Computational approaches for drug discovery. Drug

Dev Res. 2014;75:412–8.

4. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in

drug discovery. Pharmacol Rev. 2014;66:334–95.

5. Acharya C, Coop A, Polli JE, Mackerell AD Jr. Recent advances in ligand-

based drug design: relevance and utility of the conformationally sampled

pharmacophore approach. Curr Comput Aided Drug Des. 2011;7:10–22.

6. Yang SY. Pharmacophore modeling and applications in drug discovery:

challenges and recent advances. Drug Discov Today. 2010;15:444–50.

7. Perkins R, Fang H, Tong W, Welsh WJ. Quantitative structure-activity

relationship methods: perspectives on drug discovery and toxicology.

Environ Toxicol Chem. 2003;22:1666–79.

8. Chevillard F, Kolb P. SCUBIDOO: a large yet screenable and easily searchable

database of computationally created chemical compounds optimized

toward high likelihood of synthetic tractability. J Chem Inf Model. 2015;55:

1824–35.

9. Liu T, Naderi M, Alvin C, Mukhopadhyay S, Brylinski M. Break down in order

to build up: decomposing small molecules for fragment-based drug design

with eMolFrag. J Chem Inf Model. 2017;57:627–31.

10. Naderi M, Alvin C, Ding Y, Mukhopadhyay S, Brylinski M. A graph-based

approach to construct target-focused libraries for virtual screening. J

Cheminform. 2016;8:14.

11. Cushman DW, Ondetti MA. History of the design of captopril and related

inhibitors of angiotensin converting enzyme. Hypertension. 1991;17:589–92.

12. Braga RC, Andrade CH. Assessing the performance of 3D pharmacophore

models in virtual screening: how good are they? Curr Top Med Chem. 2013;

13:1127–38.

13. Kim KH, Kim ND, Seong BL. Pharmacophore-based virtual screening: a

review of recent applications. Expert Opin Drug Discov. 2010;5:205–22.

14. Anderson AC. The process of structure-based drug design. Chem Biol. 2003;

10:787–97.

15. Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:

365–82.

16. De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of molecular dynamics

and related methods in drug discovery. J Med Chem. 2016;59:4035–61.

17. Cerqueira NM, Gesto D, Oliveira EF, Santos-Martins D, Bras NF, Sousa SF,

Fernandes PA, Ramos MJ. Receptor-based virtual screening protocol for

drug discovery. Arch Biochem Biophys. 2015;582:56–67.

18. Schneider G, Fechner U. Computer-based de novo design of drug-like

molecules. Nat Rev Drug Discov. 2005;4:649–63.

19. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of

docking with a new scoring function, efficient optimization, and

multithreading. J Comput Chem. 2010;31:455–61.

20. Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S,

Schmidtke P, Barril X, Hubbard RE, Morley SD. rDock: a fast, versatile and

open source program for docking ligands to proteins and nucleic acids.

PLoS Comput Biol. 2014;10:e1003571.

21. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky

MP, Knoll EH, Shelley M, Perry JK, et al. Glide: a new approach for rapid,

accurate docking and scoring. 1. Method and assessment of docking

accuracy. J Med Chem. 2004;47:1739–49.

22. Schellhammer I, Rarey M. FlexX-scan: fast, structure-based virtual screening.

Proteins. 2004;57:504–17.

23. Singh J, Chuaqui CE, Boriack-Sjodin PA, Lee WC, Pontz T, Corbley MJ,

Cheung HK, Arduini RM, Mead JN, Newman MN, et al. Successful shape-

based virtual screening: the discovery of a potent inhibitor of the type I

TGFbeta receptor kinase (TbetaRI). Bioorg Med Chem Lett. 2003;13:4355–9.

24. Sawyer JS, Anderson BD, Beight DW, Campbell RM, Jones ML, Herron DK,

Lampe JW, McCowan JR, McMillen WT, Mort N, et al. Synthesis and activity

of new aryl- and heteroaryl-substituted pyrazole inhibitors of the

transforming growth factor-beta type I receptor kinase domain. J Med

Chem. 2003;46:3953–6.

25. Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac

arrhythmia. Nature. 2006;440:463–9.

26. Braga RC, Alves VM, Silva MF, Muratov E, Fourches D, Liao LM, Tropsha A,

Andrade CH. Pred-hERG: a novel web-accessible computational tool for

predicting cardiac toxicity. Mol Inform. 2015;34:698–701.

27. Mortelmans K, Zeiger E. The Ames salmonella/microsome mutagenicity

assay. Mutat Res. 2000;455:29–60.

28. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web

server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res.

2014;42:W53–8.

29. Raies AB, Bajic VB. In silico toxicology: computational methods for the

prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016;

6:147–72.

30. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity

prediction using deep learning. Front Environ Sci. 2016;3.

31. Schmidhuber J. Deep learning in neural networks: an overview. Neural

Netw. 2015;61:85–117.

32. Rosenbaum L, Hinselmann G, Jahn A, Zell A. Interpreting linear support

vector machine models with heat map molecule coloring. J Cheminform.

2011;3:11.

33. Breiman L. Random forests. Mach Learn. 2001;45:61–3.

34. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear

models via coordinate descent. J Stat Softw. 2010;33:1–22.

35. Chaudhari R, Tan Z, Huang B, Zhang S. Computational polypharmacology: a

new paradigm for drug discovery. Expert Opin Drug Discov. 2017;12:279–91.

36. Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for boltzmann

machines. Cognitive Sci. 1985;9:147–69.

37. Smolensky P. Information processing in dynamical systems: foundations of

harmony theory. In: Rumelhart DE, McClelland JL, editors. Parallel distributed

processing: explorations in the microstructure of cognition, vol. 1.

Cambridge, MA: MIT Press; 1986. p. 194–281.

Pu et al. BMC Pharmacology and Toxicology            (2019) 20:2 Page 14 of 15

https://osf.io/m4ah5/


38. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the

bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell.

1984;6:721–41.

39. Hinton GE. Deep belief networks. Scholarpedia. 2009;4:5947.

40. Hinton GE. Training products of experts by minimizing contrastive

divergence. Neural Comput. 2002;14:1771–800.

41. Bengio Y. Learning deep architectures for AI. Foundations and Trends in

Machine Learning. 2009;2:1–127.

42. Theano_Development_Team: Theano: A Python framework for fast

computation of mathematical expressions. arXiv e-prints 2016:abs/

1605.02688.

43. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn.

2006;63:3–42.

44. Ho TK. Random decision forests. Third Int’l Conf Document Analysis and

Recognition. 1995:278–82.

45. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression

trees. Belmont, CA: Wadsworth; 1984.

46. Valli M, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I,

Andricopulo AD, Bolzani VS. Development of a natural products database

from the biodiversity of Brazil. J Nat Prod. 2013;76:439–44.

47. Gu J, Gui Y, Chen L, Yuan G, Lu HZ. Xu X: use of natural products as

chemical library for drug discovery and network pharmacology. PLoS One.

2013;8:e62839.

48. Tanimoto TT. An elementary mathematical theory of classification and

prediction. In: Book An elementary mathematical theory of classification and

prediction. (editor ed.^eds.). City; 1958.

49. Voigt JH, Bienfait B, Wang S, Nicklaus MC. Comparison of the NCI open

database with seven large chemical structural databases. J Chem Inf

Comput Sci. 2001;41:702–12.

50. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys,

enhanced (DUD-E): better ligands and decoys for better benchmarking. J

Med Chem. 2012;55:6582–94.

51. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang

Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug

discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.

52. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for

representation and analysis of molecular networks involving diseases and

drugs. Nucleic Acids Res. 2010;38:D355–60.

53. Wexler P. TOXNET: the National Library of Medicine's toxicology database.

Am Fam Physician. 1995;52:1677–8.

54. Lim E, Pon A, Djoumbou Y, Knox C, Shrivastava S, Guo AC, Neveu V, Wishart

DS. T3DB: a comprehensively annotated database of common toxins and

their targets. Nucleic Acids Res. 2010;38:D781–6.

55. Chen CY. TCM database@Taiwan: the world's largest traditional Chinese

medicine database for drug screening in silico. PLoS One. 2011;6:e15939.

56. Gold LS, Slone TH, Ames BN. Overview of analyses of the carcinogenic potency

database. In: Gold LS, Zeiger E, editors. Handbook of carcinogenic potency and

genotoxicity databases. Boca Raton, FL: CRC Press; 1997. p. 661–85.

57. Du L, Li M, You Q. The interactions between hERG potassium channel and

blockers. Curr Top Med Chem. 2009;9:330–8.

58. Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, Hou T. ADMET evaluation in drug

discovery. 12. Development of binary classification models for prediction of

hERG potassium channel blockage. Mol Pharm. 2012;9:996–1010.

59. Lee HR, Jeung EB, Cho MH, Kim TH, Leung PC, Choi KC. Molecular

mechanism(s) of endocrine-disrupting chemicals and their potent

oestrogenicity in diverse cells and tissues that express oestrogen receptors.

J Cell Mol Med. 2013;17:1–11.

60. Schmidt U, Struck S, Gruening B, Hossbach J, Jaeger IS, Parol R, Lindequist

U, Teuscher E, Preissner R. SuperToxic: a comprehensive database of toxic

compounds. Nucleic Acids Res. 2009;37:D295–9.

61. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR.

Open babel: an open chemical toolbox. J Cheminform. 2011;3:33.

62. Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-

like molecules based on molecular complexity and fragment contributions.

J Cheminform. 2009;1:8.

63. Geisser S. Predictive inference. New York, NY: Chapman and Hall; 1993.

64. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical

learning. New York: Springer-Verlag New York; 2013.

65. Matthews BW. Comparison of the predicted and observed secondary

structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405:442–51.

66. Pearson K. VII. Note on regression and inheritance in the case of two

parents. Proc Royal Soc London. 1895;58:240–2.

67. McLachlan G. Discriminant analysis and statistical. Pattern Recogn. 2004.

68. Rosenblatt F. Principles of neurodynamics; perceptrons and the theory of

brain mechanisms; 1962.

69. Lv W, Piao JH, Jiang JG. Typical toxic components in traditional Chinese

medicine. Expert Opin Drug Saf. 2012;11:985–1002.

70. Li X, Chen L, Cheng F, Wu Z, Bian H, Xu C, Li W, Liu G, Shen X, Tang Y. In

silico prediction of chemical acute oral toxicity using multi-classification

methods. J Chem Inf Model. 2014;54:1061–9.

71. Taylor RD, MacCoss M, Lawson AD. Rings in drugs. J Med Chem. 2014;57:

5845–59.

72. Vardanyan R: Chapter 10 - Classes of piperidine-based drugs. In Piperidine-

based drug discovery. Elsevier; 2017: 299–332: Heterocyclic Drug Discovery].

73. Muenter MD, Dinapoli RP, Sharpless NS, Tyce GM. 3-O-methyldopa, L-dopa,

and trihexyphenidyl in the treatment of Parkinson's disease. Mayo Clin Proc.

1973;48:173–83.

74. Tan CC, Yu JT, Wang HF, Tan MS, Meng XF, Wang C, Jiang T, Zhu XC, Tan L.

Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine

for the treatment of Alzheimer's disease: a systematic review and meta-

analysis. J Alzheimers Dis. 2014;41:615–31.

75. Patel SS, Spencer CM. Remifentanil. Drugs. 1996;52:417–27 discussion 428.

76. Diener HC, Cunha L, Forbes C, Sivenius J, Smets P, Lowenthal A. European

stroke prevention study. 2. Dipyridamole and acetylsalicylic acid in the

secondary prevention of stroke. J Neurol Sci. 1996;143:1–13.

77. Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity,

substitution patterns, and frequency of nitrogen heterocycles among U.S.

FDA approved pharmaceuticals. J Med Chem. 2014;57:10257–74.

78. Shaquiquzzaman M, Verma G, Marella A, Akhter M, Akhtar W, Khan MF,

Tasneem S, Alam MM. Piperazine scaffold: a remarkable tool in generation

of diverse pharmacological agents. Eur J Med Chem. 2015;102:487–529.

79. Borsini F, Evans K, Jason K, Rohde F, Alexander B, Pollentier S. Pharmacology

of flibanserin. CNS Drug Rev. 2002;8:117–42.

80. Hyohdoh I, Furuichi N, Aoki T, Itezono Y, Shirai H, Ozawa S, Watanabe F,

Matsushita M, Sakaitani M, Ho PS, et al. Fluorine scanning by nonselective

fluorination: enhancing Raf/MEK inhibition while keeping physicochemical

properties. ACS Med Chem Lett. 2013;4:1059–63.

81. Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S,

Soloshonok VA, Liu H. Fluorine in pharmaceutical industry: fluorine-

containing drugs introduced to the market in the last decade (2001-2011).

Chem Rev. 2014;114:2432–506.

82. Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal

chemistry. Chem Soc Rev. 2008;37:320–30.

83. Davis BA, Nagarajan A, Forrest LR, Singh SK. Mechanism of paroxetine (paxil)

inhibition of the serotonin transporter. Sci Rep. 2016;6:23789.

84. Bohm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U,

Stahl M. Fluorine in medicinal chemistry. Chembiochem. 2004;5:637–43.

85. Shaughnessy MJ, Harsanyi A, Li J, Bright T, Murphy CD, Sandford G.

Targeted fluorination of a nonsteroidal anti-inflammatory drug to prolong

metabolic half-life. ChemMedChem. 2014;9:733–6.

86. Van Heek M, France CF, Compton DS, McLeod RL, Yumibe NP, Alton KB,

Sybertz EJ, Davis HR Jr. In vivo metabolism-based discovery of a potent

cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey

through the identification of the active metabolites of SCH48461. J

Pharmacol Exp Ther. 1997;283:157–63.

87. Reinhart KM, White CM, Baker WL. Prasugrel: a critical comparison with

clopidogrel. Pharmacotherapy. 2009;29:1441–51.

Pu et al. BMC Pharmacology and Toxicology            (2019) 20:2 Page 15 of 15


	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Machine learning algorithms
	Datasets
	Model training, cross-validation, and evaluation

	Results and discussion
	SAscore prediction with eToxPred
	Tox-score prediction with eToxPred
	Composition of non-toxic compounds
	Composition of toxic compounds

	Conclusions
	Availability and requirements
	Abbreviations

	Acknowledgements
	Availability of data and material
	Funding
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

